1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq.
(******************************************************************************)
(* This file deals with divisibility for natural numbers. *)
(* It contains the definitions of: *)
(* edivn m d == the pair composed of the quotient and remainder *)
(* of the Euclidean division of m by d. *)
(* m %/ d == quotient of the Euclidean division of m by d. *)
(* m %% d == remainder of the Euclidean division of m by d. *)
(* m = n %[mod d] <-> m equals n modulo d. *)
(* m == n %[mod d] <=> m equals n modulo d (boolean version). *)
(* m <> n %[mod d] <-> m differs from n modulo d. *)
(* m != n %[mod d] <=> m differs from n modulo d (boolean version). *)
(* d %| m <=> d divides m. *)
(* gcdn m n == the GCD of m and n. *)
(* egcdn m n == the extended GCD (Bezout coefficient pair) of m and n. *)
(* If egcdn m n = (u, v), then gcdn m n = m * u - n * v. *)
(* lcmn m n == the LCM of m and n. *)
(* coprime m n <=> m and n are coprime (:= gcdn m n == 1). *)
(* chinese m n r s == witness of the chinese remainder theorem. *)
(* We adjoin an m to operator suffixes to indicate a nested %% (modn), as in *)
(* modnDml : m %% d + n = m + n %[mod d]. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
(** Euclidean division *)
Definition edivn_rec d :=
fix loop m q := if m - d is m'.+1 then loop m' q.+1 else (q, m).
Definition edivn m d := if d > 0 then edivn_rec d.-1 m 0 else (0, m).
Variant edivn_spec m d : nat * nat -> Type :=
EdivnSpec q r of m = q * d + r & (d > 0) ==> (r < d) : edivn_spec m d (q, r).
Lemma edivnP m d : edivn_spec m d (edivn m d).
Proof.
rewrite -[m in edivn_spec m]/(0 * d + m) /edivn; case: d => //= d.
elim/ltn_ind: m 0 => -[|m] IHm q //=; rewrite subn_if_gt.
case: ltnP => // le_dm; rewrite -[in m.+1](subnKC le_dm) -addSn.
by rewrite addnA -mulSnr; apply/IHm/leq_subr.
Qed.
Lemma edivn_eq d q r : r < d -> edivn (q * d + r) d = (q, r).
Proof.
move=> lt_rd; have d_gt0: 0 < d by apply: leq_trans lt_rd.
case: edivnP lt_rd => q' r'; rewrite d_gt0 /=.
wlog: q q' r r' / q <= q' by case/orP: (leq_total q q'); last symmetry; eauto.
have [||-> _ /addnI ->] //= := ltngtP q q'.
rewrite -(leq_pmul2r d_gt0) => /leq_add lt_qr _ eq_qr _ /lt_qr {lt_qr}.
by rewrite addnS ltnNge mulSn -addnA eq_qr addnCA addnA leq_addr.
Qed.
Definition divn m d := (edivn m d).1.
Notation "m %/ d" := (divn m d) : nat_scope.
(* We redefine modn so that it is structurally decreasing. *)
Definition modn_rec d := fix loop m := if m - d is m'.+1 then loop m' else m.
Definition modn m d := if d > 0 then modn_rec d.-1 m else m.
Notation "m %% d" := (modn m d) : nat_scope.
Notation "m = n %[mod d ]" := (m %% d = n %% d) : nat_scope.
Notation "m == n %[mod d ]" := (m %% d == n %% d) : nat_scope.
Notation "m <> n %[mod d ]" := (m %% d <> n %% d) : nat_scope.
Notation "m != n %[mod d ]" := (m %% d != n %% d) : nat_scope.
Lemma modn_def m d : m %% d = (edivn m d).2.
Proof.
case: d => //= d; rewrite /modn /edivn /=; elim/ltn_ind: m 0 => -[|m] IHm q //=.
by rewrite !subn_if_gt; case: (d <= m) => //; apply/IHm/leq_subr.
Qed.
Lemma edivn_def m d : edivn m d = (m %/ d, m %% d).
Proof. by rewrite /divn modn_def; case: (edivn m d). Qed.
Lemma divn_eq m d : m = m %/ d * d + m %% d.
Proof. by rewrite /divn modn_def; case: edivnP. Qed.
Lemma div0n d : 0 %/ d = 0. Proof. by case: d. Qed.
Lemma divn0 m : m %/ 0 = 0. Proof. by []. Qed.
Lemma mod0n d : 0 %% d = 0. Proof. by case: d. Qed.
Lemma modn0 m : m %% 0 = m. Proof. by []. Qed.
Lemma divn_small m d : m < d -> m %/ d = 0.
Proof. by move=> lt_md; rewrite /divn (edivn_eq 0). Qed.
Lemma divnMDl q m d : 0 < d -> (q * d + m) %/ d = q + m %/ d.
Proof.
move=> d_gt0; rewrite [in LHS](divn_eq m d) addnA -mulnDl.
by rewrite /divn edivn_eq // modn_def; case: edivnP; rewrite d_gt0.
Qed.
Lemma mulnK m d : 0 < d -> m * d %/ d = m.
Proof. by move=> d_gt0; rewrite -[m * d]addn0 divnMDl // div0n addn0. Qed.
Lemma mulKn m d : 0 < d -> d * m %/ d = m.
Proof. by move=> d_gt0; rewrite mulnC mulnK. Qed.
Lemma expnB p m n : p > 0 -> m >= n -> p ^ (m - n) = p ^ m %/ p ^ n.
Proof.
by move=> p_gt0 /subnK-Dm; rewrite -[in RHS]Dm expnD mulnK // expn_gt0 p_gt0.
Qed.
Lemma modn1 m : m %% 1 = 0.
Proof. by rewrite modn_def; case: edivnP => ? []. Qed.
Lemma divn1 m : m %/ 1 = m.
Proof. by rewrite [RHS](@divn_eq m 1) // modn1 addn0 muln1. Qed.
Lemma divnn d : d %/ d = (0 < d).
Proof. by case: d => // d; rewrite -[n in n %/ _]muln1 mulKn. Qed.
Lemma divnMl p m d : p > 0 -> p * m %/ (p * d) = m %/ d.
Proof.
move=> p_gt0; have [->|d_gt0] := posnP d; first by rewrite muln0.
rewrite [RHS]/divn; case: edivnP; rewrite d_gt0 /= => q r ->{m} lt_rd.
rewrite mulnDr mulnCA divnMDl; last by rewrite muln_gt0 p_gt0.
by rewrite addnC divn_small // ltn_pmul2l.
Qed.
Arguments divnMl [p m d].
Lemma divnMr p m d : p > 0 -> m * p %/ (d * p) = m %/ d.
Proof. by move=> p_gt0; rewrite -!(mulnC p) divnMl. Qed.
Arguments divnMr [p m d].
Lemma ltn_mod m d : (m %% d < d) = (0 < d).
Proof. by case: d => // d; rewrite modn_def; case: edivnP. Qed.
Lemma ltn_pmod m d : 0 < d -> m %% d < d.
Proof. by rewrite ltn_mod. Qed.
Lemma leq_divM m d : m %/ d * d <= m.
Proof. by rewrite [leqRHS](divn_eq m d) leq_addr. Qed.
#[deprecated(since="mathcomp 2.4.0", note="Renamed to leq_divM.")]
Notation leq_trunc_div := leq_divM.
Lemma leq_mod m d : m %% d <= m.
Proof. by rewrite [leqRHS](divn_eq m d) leq_addl. Qed.
Lemma leq_div m d : m %/ d <= m.
Proof.
by case: d => // d; apply: leq_trans (leq_pmulr _ _) (leq_divM _ _).
Qed.
Lemma ltn_ceil m d : 0 < d -> m < (m %/ d).+1 * d.
Proof.
by move=> d_gt0; rewrite [in m.+1](divn_eq m d) -addnS mulSnr leq_add2l ltn_mod.
Qed.
Lemma ltn_divLR m n d : d > 0 -> (m %/ d < n) = (m < n * d).
Proof.
move=> d_gt0; apply/idP/idP.
by rewrite -(leq_pmul2r d_gt0); apply: leq_trans (ltn_ceil _ _).
rewrite !ltnNge -(@leq_pmul2r d n) //; apply: contra => le_nd_floor.
exact: leq_trans le_nd_floor (leq_divM _ _).
Qed.
Lemma leq_divRL m n d : d > 0 -> (m <= n %/ d) = (m * d <= n).
Proof. by move=> d_gt0; rewrite leqNgt ltn_divLR // -leqNgt. Qed.
Lemma ltn_Pdiv m d : 1 < d -> 0 < m -> m %/ d < m.
Proof. by move=> d_gt1 m_gt0; rewrite ltn_divLR ?ltn_Pmulr // ltnW. Qed.
Lemma divn_gt0 d m : 0 < d -> (0 < m %/ d) = (d <= m).
Proof. by move=> d_gt0; rewrite leq_divRL ?mul1n. Qed.
Lemma leq_div2r d m n : m <= n -> m %/ d <= n %/ d.
Proof.
have [-> //| d_gt0 le_mn] := posnP d.
by rewrite leq_divRL // (leq_trans _ le_mn) -?leq_divRL.
Qed.
Lemma leq_div2l m d e : 0 < d -> d <= e -> m %/ e <= m %/ d.
Proof.
move/leq_divRL=> -> le_de.
by apply: leq_trans (leq_divM m e); apply: leq_mul.
Qed.
Lemma edivnD m n d (offset := m %% d + n %% d >= d) : 0 < d ->
edivn (m + n) d = (m %/ d + n %/ d + offset, m %% d + n %% d - offset * d).
Proof.
rewrite {}/offset; case: d => // d _; rewrite /divn !modn_def.
case: (edivnP m d.+1) (edivnP n d.+1) => [/= q r -> r_lt] [/= p s -> s_lt].
rewrite addnACA -mulnDl; have [r_le s_le] := (ltnW r_lt, ltnW s_lt).
have [d_ge|d_lt] := leqP; first by rewrite addn0 mul0n subn0 edivn_eq.
rewrite addn1 mul1n -[in LHS](subnKC d_lt) addnA -mulSnr edivn_eq//.
by rewrite ltn_subLR// -addnS leq_add.
Qed.
Lemma divnD m n d : 0 < d ->
(m + n) %/ d = (m %/ d) + (n %/ d) + (m %% d + n %% d >= d).
Proof. by move=> /(@edivnD m n); rewrite edivn_def => -[]. Qed.
Lemma modnD m n d : 0 < d ->
(m + n) %% d = m %% d + n %% d - (m %% d + n %% d >= d) * d.
Proof. by move=> /(@edivnD m n); rewrite edivn_def => -[]. Qed.
Lemma leqDmod m n d : 0 < d ->
(d <= m %% d + n %% d) = ((m + n) %% d < n %% d).
Proof.
move=> d_gt0; rewrite modnD//.
have [d_le|_] := leqP d; last by rewrite subn0 ltnNge leq_addl.
by rewrite -(ltn_add2r d) mul1n (subnK d_le) addnC ltn_add2l ltn_pmod.
Qed.
Lemma divnB n m d : 0 < d ->
(m - n) %/ d = (m %/ d) - (n %/ d) - (m %% d < n %% d).
Proof.
move=> d_gt0; have [mn|/ltnW nm] := leqP m n.
by rewrite (eqP mn) (eqP (leq_div2r _ _)) ?div0n.
by rewrite -[in m %/ d](subnK nm) divnD// addnAC addnK leqDmod ?subnK ?addnK.
Qed.
Lemma modnB m n d : 0 < d -> n <= m ->
(m - n) %% d = (m %% d < n %% d) * d + m %% d - n %% d.
Proof.
move=> d_gt0 nm; rewrite -[in m %% _](subnK nm) -leqDmod// modnD//.
have [d_le|_] := leqP d; last by rewrite mul0n add0n subn0 addnK.
by rewrite mul1n addnBA// addnC !addnK.
Qed.
Lemma edivnB m n d (offset := m %% d < n %% d) : 0 < d -> n <= m ->
edivn (m - n) d = (m %/ d - n %/ d - offset, offset * d + m %% d - n %% d).
Proof. by move=> d_gt0 le_nm; rewrite edivn_def divnB// modnB. Qed.
Lemma leq_divDl p m n : (m + n) %/ p <= m %/ p + n %/ p + 1.
Proof. by have [->//|p_gt0] := posnP p; rewrite divnD// !leq_add// leq_b1. Qed.
Lemma geq_divBl k m p : k %/ p - m %/ p <= (k - m) %/ p + 1.
Proof.
rewrite leq_subLR addnA; apply: leq_trans (leq_divDl _ _ _).
by rewrite -maxnE leq_div2r ?leq_maxr.
Qed.
Lemma divnMA m n p : m %/ (n * p) = m %/ n %/ p.
Proof.
case: n p => [|n] [|p]; rewrite ?muln0 ?div0n //.
rewrite [in RHS](divn_eq m (n.+1 * p.+1)) mulnA mulnAC !divnMDl //.
by rewrite [_ %/ p.+1]divn_small ?addn0 // ltn_divLR // mulnC ltn_mod.
Qed.
Lemma divnAC m n p : m %/ n %/ p = m %/ p %/ n.
Proof. by rewrite -!divnMA mulnC. Qed.
Lemma modn_small m d : m < d -> m %% d = m.
Proof. by move=> lt_md; rewrite [RHS](divn_eq m d) divn_small. Qed.
Lemma modn_mod m d : m %% d = m %[mod d].
Proof. by case: d => // d; apply: modn_small; rewrite ltn_mod. Qed.
Lemma modnMDl p m d : p * d + m = m %[mod d].
Proof.
have [->|d_gt0] := posnP d; first by rewrite muln0.
by rewrite [in LHS](divn_eq m d) addnA -mulnDl modn_def edivn_eq // ltn_mod.
Qed.
Lemma muln_modr p m d : p * (m %% d) = (p * m) %% (p * d).
Proof.
have [->//|p_gt0] := posnP p; apply: (@addnI (p * (m %/ d * d))).
by rewrite -mulnDr -divn_eq mulnCA -(divnMl p_gt0) -divn_eq.
Qed.
Lemma muln_modl p m d : (m %% d) * p = (m * p) %% (d * p).
Proof. by rewrite -!(mulnC p); apply: muln_modr. Qed.
Lemma modn_divl m n d : (m %/ d) %% n = m %% (n * d) %/ d.
Proof.
case: d n => [|d] [|n] //; rewrite [in LHS]/divn [in LHS]modn_def.
case: (edivnP m d.+1) edivnP => [/= _ r -> le_rd] [/= q s -> le_sn].
rewrite mulnDl -mulnA -addnA modnMDl modn_small ?divnMDl ?divn_small ?addn0//.
by rewrite mulSnr -addnS leq_add ?leq_mul2r.
Qed.
Lemma modnDl m d : d + m = m %[mod d].
Proof. by rewrite -[m %% _](modnMDl 1) mul1n. Qed.
Lemma modnDr m d : m + d = m %[mod d]. Proof. by rewrite addnC modnDl. Qed.
Lemma modnn d : d %% d = 0. Proof. by rewrite [d %% d](modnDr 0) mod0n. Qed.
Lemma modnMl p d : p * d %% d = 0.
Proof. by rewrite -[p * d]addn0 modnMDl mod0n. Qed.
Lemma modnMr p d : d * p %% d = 0. Proof. by rewrite mulnC modnMl. Qed.
Lemma modnDml m n d : m %% d + n = m + n %[mod d].
Proof. by rewrite [in RHS](divn_eq m d) -addnA modnMDl. Qed.
Lemma modnDmr m n d : m + n %% d = m + n %[mod d].
Proof. by rewrite !(addnC m) modnDml. Qed.
Lemma modnDm m n d : m %% d + n %% d = m + n %[mod d].
Proof. by rewrite modnDml modnDmr. Qed.
Lemma eqn_modDl p m n d : (p + m == p + n %[mod d]) = (m == n %[mod d]).
Proof.
case: d => [|d]; first by rewrite !modn0 eqn_add2l.
apply/eqP/eqP=> eq_mn; last by rewrite -modnDmr eq_mn modnDmr.
rewrite -(modnMDl p m) -(modnMDl p n) !mulnSr -!addnA.
by rewrite -modnDmr eq_mn modnDmr.
Qed.
Lemma eqn_modDr p m n d : (m + p == n + p %[mod d]) = (m == n %[mod d]).
Proof. by rewrite -!(addnC p) eqn_modDl. Qed.
Lemma modnMml m n d : m %% d * n = m * n %[mod d].
Proof. by rewrite [in RHS](divn_eq m d) mulnDl mulnAC modnMDl. Qed.
Lemma modnMmr m n d : m * (n %% d) = m * n %[mod d].
Proof. by rewrite !(mulnC m) modnMml. Qed.
Lemma modnMm m n d : m %% d * (n %% d) = m * n %[mod d].
Proof. by rewrite modnMml modnMmr. Qed.
Lemma modn2 m : m %% 2 = odd m.
Proof. by elim: m => //= m IHm; rewrite -addn1 -modnDml IHm; case odd. Qed.
Lemma divn2 m : m %/ 2 = m./2.
Proof. by rewrite [in RHS](divn_eq m 2) modn2 muln2 addnC half_bit_double. Qed.
Lemma odd_mod m d : odd d = false -> odd (m %% d) = odd m.
Proof.
by move=> d_even; rewrite [in RHS](divn_eq m d) oddD oddM d_even andbF.
Qed.
Lemma modnXm m n a : (a %% n) ^ m = a ^ m %[mod n].
Proof. by elim: m => // m IHm; rewrite !expnS -modnMmr IHm modnMml modnMmr. Qed.
Lemma modnMDXl p m n d : (p * d + m) ^ n = m ^ n %[mod d].
Proof. by elim: n => // n IH; rewrite !expnS -modnMm IH modnMDl modnMm. Qed.
(** Divisibility **)
Definition dvdn d m := m %% d == 0.
Notation "m %| d" := (dvdn m d) : nat_scope.
Lemma dvdnP d m : reflect (exists k, m = k * d) (d %| m).
Proof.
apply: (iffP eqP) => [md0 | [k ->]]; last by rewrite modnMl.
by exists (m %/ d); rewrite [LHS](divn_eq m d) md0 addn0.
Qed.
Arguments dvdnP {d m}.
Lemma dvdn0 d : d %| 0.
Proof. by case: d. Qed.
Lemma dvd0n n : (0 %| n) = (n == 0).
Proof. by case: n. Qed.
Lemma dvdn1 d : (d %| 1) = (d == 1).
Proof. by case: d => [|[|d]] //; rewrite /dvdn modn_small. Qed.
Lemma dvd1n m : 1 %| m.
Proof. by rewrite /dvdn modn1. Qed.
Lemma dvdn_gt0 d m : m > 0 -> d %| m -> d > 0.
Proof. by case: d => // /prednK <-. Qed.
Lemma dvdnn m : m %| m.
Proof. by rewrite /dvdn modnn. Qed.
Lemma dvdn_mull d m n : d %| n -> d %| m * n.
Proof. by case/dvdnP=> n' ->; rewrite /dvdn mulnA modnMl. Qed.
Lemma dvdn_mulr d m n : d %| m -> d %| m * n.
Proof. by move=> d_m; rewrite mulnC dvdn_mull. Qed.
#[global] Hint Resolve dvdn0 dvd1n dvdnn dvdn_mull dvdn_mulr : core.
Lemma dvdn_mul d1 d2 m1 m2 : d1 %| m1 -> d2 %| m2 -> d1 * d2 %| m1 * m2.
Proof.
by move=> /dvdnP[q1 ->] /dvdnP[q2 ->]; rewrite mulnCA -mulnA 2?dvdn_mull.
Qed.
Lemma dvdn_trans n d m : d %| n -> n %| m -> d %| m.
Proof. by move=> d_dv_n /dvdnP[n1 ->]; apply: dvdn_mull. Qed.
Lemma dvdn_eq d m : (d %| m) = (m %/ d * d == m).
Proof.
apply/eqP/eqP=> [modm0 | <-]; last exact: modnMl.
by rewrite [RHS](divn_eq m d) modm0 addn0.
Qed.
Lemma dvdn2 n : (2 %| n) = ~~ odd n.
Proof. by rewrite /dvdn modn2; case (odd n). Qed.
Lemma dvdn_odd m n : m %| n -> odd n -> odd m.
Proof. by move=> m_dv_n; apply: contraTT; rewrite -!dvdn2 => /dvdn_trans->. Qed.
Lemma divnK d m : d %| m -> m %/ d * d = m.
Proof. by rewrite dvdn_eq; move/eqP. Qed.
Lemma leq_divLR d m n : d %| m -> (m %/ d <= n) = (m <= n * d).
Proof. by case: d m => [|d] [|m] ///divnK=> {2}<-; rewrite leq_pmul2r. Qed.
Lemma ltn_divRL d m n : d %| m -> (n < m %/ d) = (n * d < m).
Proof. by move=> dv_d_m; rewrite !ltnNge leq_divLR. Qed.
Lemma eqn_div d m n : d > 0 -> d %| m -> (n == m %/ d) = (n * d == m).
Proof. by move=> d_gt0 dv_d_m; rewrite -(eqn_pmul2r d_gt0) divnK. Qed.
Lemma eqn_mul d m n : d > 0 -> d %| m -> (m == n * d) = (m %/ d == n).
Proof. by move=> d_gt0 dv_d_m; rewrite eq_sym -eqn_div // eq_sym. Qed.
Lemma divn_mulAC d m n : d %| m -> m %/ d * n = m * n %/ d.
Proof.
case: d m => [[] //| d m] dv_d_m; apply/eqP.
by rewrite eqn_div ?dvdn_mulr // mulnAC divnK.
Qed.
Lemma muln_divA d m n : d %| n -> m * (n %/ d) = m * n %/ d.
Proof. by move=> dv_d_m; rewrite !(mulnC m) divn_mulAC. Qed.
Lemma muln_divCA d m n : d %| m -> d %| n -> m * (n %/ d) = n * (m %/ d).
Proof. by move=> dv_d_m dv_d_n; rewrite mulnC divn_mulAC ?muln_divA. Qed.
Lemma divnA m n p : p %| n -> m %/ (n %/ p) = m * p %/ n.
Proof. by case: p => [|p] dv_n; rewrite -[in RHS](divnK dv_n) // divnMr. Qed.
Lemma modn_dvdm m n d : d %| m -> n %% m = n %[mod d].
Proof.
by case/dvdnP=> q def_m; rewrite [in RHS](divn_eq n m) def_m mulnA modnMDl.
Qed.
Lemma dvdn_leq d m : 0 < m -> d %| m -> d <= m.
Proof. by move=> m_gt0 /dvdnP[[|k] Dm]; rewrite Dm // leq_addr in m_gt0 *. Qed.
Lemma gtnNdvd n d : 0 < n -> n < d -> (d %| n) = false.
Proof. by move=> n_gt0 lt_nd; rewrite /dvdn eqn0Ngt modn_small ?n_gt0. Qed.
Lemma eqn_dvd m n : (m == n) = (m %| n) && (n %| m).
Proof.
case: m n => [|m] [|n] //; apply/idP/andP => [/eqP -> //| []].
by rewrite eqn_leq => Hmn Hnm; do 2 rewrite dvdn_leq //.
Qed.
Lemma dvdn_pmul2l p d m : 0 < p -> (p * d %| p * m) = (d %| m).
Proof. by case: p => // p _; rewrite /dvdn -muln_modr // muln_eq0. Qed.
Arguments dvdn_pmul2l [p d m].
Lemma dvdn_pmul2r p d m : 0 < p -> (d * p %| m * p) = (d %| m).
Proof. by move=> p_gt0; rewrite -!(mulnC p) dvdn_pmul2l. Qed.
Arguments dvdn_pmul2r [p d m].
Lemma dvdn_divLR p d m : 0 < p -> p %| d -> (d %/ p %| m) = (d %| m * p).
Proof. by move=> /(@dvdn_pmul2r p _ m) <- /divnK->. Qed.
Lemma dvdn_divRL p d m : p %| m -> (d %| m %/ p) = (d * p %| m).
Proof.
have [-> | /(@dvdn_pmul2r p d) <- /divnK-> //] := posnP p.
by rewrite divn0 muln0 dvdn0.
Qed.
Lemma dvdn_div d m : d %| m -> m %/ d %| m.
Proof. by move/divnK=> {2}<-; apply: dvdn_mulr. Qed.
Lemma dvdn_exp2l p m n : m <= n -> p ^ m %| p ^ n.
Proof. by move/subnK <-; rewrite expnD dvdn_mull. Qed.
Lemma dvdn_Pexp2l p m n : p > 1 -> (p ^ m %| p ^ n) = (m <= n).
Proof.
move=> p_gt1; case: leqP => [|gt_n_m]; first exact: dvdn_exp2l.
by rewrite gtnNdvd ?ltn_exp2l ?expn_gt0 // ltnW.
Qed.
Lemma dvdn_exp2r m n k : m %| n -> m ^ k %| n ^ k.
Proof. by case/dvdnP=> q ->; rewrite expnMn dvdn_mull. Qed.
Lemma divn_modl m n d : d %| n -> (m %% n) %/ d = (m %/ d) %% (n %/ d).
Proof. by move=> dvd_dn; rewrite modn_divl divnK. Qed.
Lemma dvdn_addr m d n : d %| m -> (d %| m + n) = (d %| n).
Proof. by case/dvdnP=> q ->; rewrite /dvdn modnMDl. Qed.
Lemma dvdn_addl n d m : d %| n -> (d %| m + n) = (d %| m).
Proof. by rewrite addnC; apply: dvdn_addr. Qed.
Lemma dvdn_add d m n : d %| m -> d %| n -> d %| m + n.
Proof. by move/dvdn_addr->. Qed.
Lemma dvdn_add_eq d m n : d %| m + n -> (d %| m) = (d %| n).
Proof. by move=> dv_d_mn; apply/idP/idP => [/dvdn_addr | /dvdn_addl] <-. Qed.
Lemma dvdn_subr d m n : n <= m -> d %| m -> (d %| m - n) = (d %| n).
Proof. by move=> le_n_m dv_d_m; apply: dvdn_add_eq; rewrite subnK. Qed.
Lemma dvdn_subl d m n : n <= m -> d %| n -> (d %| m - n) = (d %| m).
Proof. by move=> le_n_m dv_d_m; rewrite -(dvdn_addl _ dv_d_m) subnK. Qed.
Lemma dvdn_sub d m n : d %| m -> d %| n -> d %| m - n.
Proof.
by case: (leqP n m) => [le_nm /dvdn_subr <- // | /ltnW/eqnP ->]; rewrite dvdn0.
Qed.
Lemma dvdn_exp k d m : 0 < k -> d %| m -> d %| (m ^ k).
Proof. by case: k => // k _ d_dv_m; rewrite expnS dvdn_mulr. Qed.
Lemma dvdn_fact m n : 0 < m <= n -> m %| n`!.
Proof.
case: m => //= m; elim: n => //= n IHn; rewrite ltnS.
have [/IHn/dvdn_mull->||-> _] // := ltngtP m n; exact: dvdn_mulr.
Qed.
#[global] Hint Resolve dvdn_add dvdn_sub dvdn_exp : core.
Lemma eqn_mod_dvd d m n : n <= m -> (m == n %[mod d]) = (d %| m - n).
Proof.
by move/subnK=> Dm; rewrite -[n in LHS]add0n -[in LHS]Dm eqn_modDr mod0n.
Qed.
Lemma divnDMl q m d : 0 < d -> (m + q * d) %/ d = (m %/ d) + q.
Proof. by move=> d_gt0; rewrite addnC divnMDl// addnC. Qed.
Lemma divnMBl q m d : 0 < d -> (q * d - m) %/ d = q - (m %/ d) - (~~ (d %| m)).
Proof. by move=> d_gt0; rewrite divnB// mulnK// modnMl lt0n. Qed.
Lemma divnBMl q m d : (m - q * d) %/ d = (m %/ d) - q.
Proof. by case: d => [|d]//=; rewrite divnB// mulnK// modnMl ltn0 subn0. Qed.
Lemma divnDl m n d : d %| m -> (m + n) %/ d = m %/ d + n %/ d.
Proof. by case: d => // d /divnK-Dm; rewrite -[in LHS]Dm divnMDl. Qed.
Lemma divnDr m n d : d %| n -> (m + n) %/ d = m %/ d + n %/ d.
Proof. by move=> dv_n; rewrite addnC divnDl // addnC. Qed.
Lemma divnBl m n d : d %| m -> (m - n) %/ d = m %/ d - (n %/ d) - (~~ (d %| n)).
Proof. by case: d => [|d] // /divnK-Dm; rewrite -[in LHS]Dm divnMBl. Qed.
Lemma divnBr m n d : d %| n -> (m - n) %/ d = m %/ d - n %/ d.
Proof. by case: d => [|d]// /divnK-Dm; rewrite -[in LHS]Dm divnBMl. Qed.
Lemma edivnS m d : 0 < d -> edivn m.+1 d =
if d %| m.+1 then ((m %/ d).+1, 0) else (m %/ d, (m %% d).+1).
Proof.
case: d => [|[|d]] //= _; first by rewrite edivn_def modn1 dvd1n !divn1.
rewrite -addn1 /dvdn modn_def edivnD//= (@modn_small 1)// (@divn_small 1)//.
rewrite addn1 addn0 ltnS; have [||<-] := ltngtP d.+1.
- by rewrite ltnNge -ltnS ltn_pmod.
- by rewrite addn0 mul0n subn0.
- by rewrite addn1 mul1n subnn.
Qed.
Lemma modnS m d : m.+1 %% d = if d %| m.+1 then 0 else (m %% d).+1.
Proof. by case: d => [|d]//; rewrite modn_def edivnS//; case: ifP. Qed.
Lemma divnS m d : 0 < d -> m.+1 %/ d = (d %| m.+1) + m %/ d.
Proof. by move=> d_gt0; rewrite /divn edivnS//; case: ifP. Qed.
Lemma divn_pred m d : m.-1 %/ d = (m %/ d) - (d %| m).
Proof.
by case: d m => [|d] [|m]; rewrite ?divn1 ?dvd1n ?subn1//= divnS// addnC addnK.
Qed.
Lemma modn_pred m d : d != 1 -> 0 < m ->
m.-1 %% d = if d %| m then d.-1 else (m %% d).-1.
Proof.
rewrite -subn1; case: d m => [|[|d]] [|m]//= _ _.
by rewrite ?modn1 ?dvd1n ?modn0 ?subn1.
rewrite modnB// (@modn_small 1)// [_ < _]leqn0 /dvdn mulnbl/= subn1.
by case: eqP => // ->; rewrite addn0.
Qed.
Lemma edivn_pred m d : d != 1 -> 0 < m ->
edivn m.-1 d = if d %| m then ((m %/ d).-1, d.-1) else (m %/ d, (m %% d).-1).
Proof.
move=> d_neq1 m_gt0; rewrite edivn_def divn_pred modn_pred//.
by case: ifP; rewrite ?subn0 ?subn1.
Qed.
(***********************************************************************)
(* A function that computes the gcd of 2 numbers *)
(***********************************************************************)
Fixpoint gcdn m n :=
let n' := n %% m in if n' is 0 then m else
if m - n'.-1 is m'.+1 then gcdn (m' %% n') n' else n'.
Arguments gcdn : simpl never.
Lemma gcdnE m n : gcdn m n = if m == 0 then n else gcdn (n %% m) m.
Proof.
elim/ltn_ind: m n => -[|m] IHm [|n] //=; rewrite /gcdn -/gcdn.
case def_p: (_ %% _) => // [p].
have{def_p} lt_pm: p.+1 < m.+1 by rewrite -def_p ltn_pmod.
rewrite {}IHm // subn_if_gt ltnW //=; congr gcdn.
by rewrite -(subnK (ltnW lt_pm)) modnDr.
Qed.
Lemma gcdnn : idempotent_op gcdn.
Proof. by case=> // n; rewrite gcdnE modnn. Qed.
Lemma gcdnC : commutative gcdn.
Proof.
move=> m n; wlog lt_nm: m n / n < m by have [? ->|? <-|-> //] := ltngtP n m.
by rewrite gcdnE -[in m == 0](ltn_predK lt_nm) modn_small.
Qed.
Lemma gcd0n : left_id 0 gcdn. Proof. by case. Qed.
Lemma gcdn0 : right_id 0 gcdn. Proof. by case. Qed.
Lemma gcd1n : left_zero 1 gcdn.
Proof. by move=> n; rewrite gcdnE modn1. Qed.
Lemma gcdn1 : right_zero 1 gcdn.
Proof. by move=> n; rewrite gcdnC gcd1n. Qed.
Lemma dvdn_gcdr m n : gcdn m n %| n.
Proof.
elim/ltn_ind: m n => -[|m] IHm [|n] //=.
rewrite gcdnE; case def_p: (_ %% _) => [|p]; first by rewrite /dvdn def_p.
have lt_pm: p < m by rewrite -ltnS -def_p ltn_pmod.
rewrite /= (divn_eq n.+1 m.+1) def_p dvdn_addr ?dvdn_mull //; last exact: IHm.
by rewrite gcdnE /= IHm // (ltn_trans (ltn_pmod _ _)).
Qed.
Lemma dvdn_gcdl m n : gcdn m n %| m.
Proof. by rewrite gcdnC dvdn_gcdr. Qed.
Lemma gcdn_gt0 m n : (0 < gcdn m n) = (0 < m) || (0 < n).
Proof.
by case: m n => [|m] [|n] //; apply: (@dvdn_gt0 _ m.+1) => //; apply: dvdn_gcdl.
Qed.
Lemma gcdnMDl k m n : gcdn m (k * m + n) = gcdn m n.
Proof. by rewrite !(gcdnE m) modnMDl mulnC; case: m. Qed.
Lemma gcdnDl m n : gcdn m (m + n) = gcdn m n.
Proof. by rewrite -[m in m + n]mul1n gcdnMDl. Qed.
Lemma gcdnDr m n : gcdn m (n + m) = gcdn m n.
Proof. by rewrite addnC gcdnDl. Qed.
Lemma gcdnMl n m : gcdn n (m * n) = n.
Proof. by case: n => [|n]; rewrite gcdnE modnMl // muln0. Qed.
Lemma gcdnMr n m : gcdn n (n * m) = n.
Proof. by rewrite mulnC gcdnMl. Qed.
Lemma gcdn_idPl {m n} : reflect (gcdn m n = m) (m %| n).
Proof.
by apply: (iffP idP) => [/dvdnP[q ->] | <-]; rewrite (gcdnMl, dvdn_gcdr).
Qed.
Lemma gcdn_idPr {m n} : reflect (gcdn m n = n) (n %| m).
Proof. by rewrite gcdnC; apply: gcdn_idPl. Qed.
Lemma expn_min e m n : e ^ minn m n = gcdn (e ^ m) (e ^ n).
Proof. by case: leqP => [|/ltnW] /(dvdn_exp2l e) /gcdn_idPl; rewrite gcdnC. Qed.
Lemma gcdn_modr m n : gcdn m (n %% m) = gcdn m n.
Proof. by rewrite [in RHS](divn_eq n m) gcdnMDl. Qed.
Lemma gcdn_modl m n : gcdn (m %% n) n = gcdn m n.
Proof. by rewrite !(gcdnC _ n) gcdn_modr. Qed.
(* Extended gcd, which computes Bezout coefficients. *)
Fixpoint Bezout_rec km kn qs :=
if qs is q :: qs' then Bezout_rec kn (NatTrec.add_mul q kn km) qs'
else (km, kn).
Fixpoint egcdn_rec m n s qs :=
if s is s'.+1 then
let: (q, r) := edivn m n in
if r > 0 then egcdn_rec n r s' (q :: qs) else
if odd (size qs) then qs else q.-1 :: qs
else [::0].
Definition egcdn m n := Bezout_rec 0 1 (egcdn_rec m n n [::]).
Variant egcdn_spec m n : nat * nat -> Type :=
EgcdnSpec km kn of km * m = kn * n + gcdn m n & kn * gcdn m n < m :
egcdn_spec m n (km, kn).
Lemma egcd0n n : egcdn 0 n = (1, 0).
Proof. by case: n. Qed.
Lemma egcdnP m n : m > 0 -> egcdn_spec m n (egcdn m n).
Proof.
have [-> /= | n_gt0 m_gt0] := posnP n; first by split; rewrite // mul1n gcdn0.
rewrite /egcdn; set s := (s in egcdn_rec _ _ s); pose bz := Bezout_rec n m [::].
have: n < s.+1 by []; move defSpec: (egcdn_spec bz.2 bz.1) s => Spec s.
elim: s => [[]|s IHs] //= in n m (qs := [::]) bz defSpec n_gt0 m_gt0 *.
case: edivnP => q r def_m; rewrite n_gt0 ltnS /= => lt_rn le_ns1.
case: posnP => [r0 {s le_ns1 IHs lt_rn}|r_gt0]; last first.
by apply: IHs => //=; [rewrite natTrecE -def_m | rewrite (leq_trans lt_rn)].
rewrite {r}r0 addn0 in def_m; set b := odd _; pose d := gcdn m n.
pose km := ~~ b : nat; pose kn := if b then 1 else q.-1.
rewrite [bz in Spec bz](_ : _ = Bezout_rec km kn qs); last first.
by rewrite /kn /km; case: (b) => //=; rewrite natTrecE addn0 muln1.
have def_d: d = n by rewrite /d def_m gcdnC gcdnE modnMl gcd0n -[n]prednK.
have: km * m + 2 * b * d = kn * n + d.
rewrite {}/kn {}/km def_m def_d -mulSnr; case: b; rewrite //= addn0 mul1n.
by rewrite prednK //; apply: dvdn_gt0 m_gt0 _; rewrite def_m dvdn_mulr.
have{def_m}: kn * d <= m.
have q_gt0 : 0 < q by rewrite def_m muln_gt0 n_gt0 ?andbT in m_gt0.
by rewrite /kn; case b; rewrite def_d def_m leq_pmul2r // leq_pred.
have{def_d}: km * d <= n by rewrite -[n]mul1n def_d leq_pmul2r // leq_b1.
move: km {q}kn m_gt0 n_gt0 defSpec; rewrite {}/b {}/d {}/bz.
elim: qs m n => [|q qs IHq] n r kn kr n_gt0 r_gt0 /=.
set d := gcdn n r; rewrite mul0n addn0 => <- le_kn_r _ def_d; split=> //.
have d_gt0: 0 < d by rewrite gcdn_gt0 n_gt0.
have /ltn_pmul2l<-: 0 < kn by rewrite -(ltn_pmul2r n_gt0) def_d ltn_addl.
by rewrite def_d -addn1 leq_add // mulnCA leq_mul2l le_kn_r orbT.
rewrite !natTrecE; set m := _ + r; set km := _ + kn; pose d := gcdn m n.
have ->: gcdn n r = d by rewrite [d]gcdnC gcdnMDl.
have m_gt0: 0 < m by rewrite addn_gt0 r_gt0 orbT.
have d_gt0: 0 < d by rewrite gcdn_gt0 m_gt0.
move=> {}/IHq IHq le_kn_r le_kr_n def_d; apply: IHq => //; rewrite -/d.
by rewrite mulnDl leq_add // -mulnA leq_mul2l le_kr_n orbT.
apply: (@addIn d); rewrite mulnDr -addnA addnACA -def_d addnACA mulnA.
rewrite -!mulnDl -mulnDr -addnA [kr * _]mulnC; congr addn.
by rewrite addnC addn_negb muln1 mul2n addnn.
Qed.
Lemma Bezoutl m n : m > 0 -> {a | a < m & m %| gcdn m n + a * n}.
Proof.
move=> m_gt0; case: (egcdnP n m_gt0) => km kn def_d lt_kn_m.
exists kn; last by rewrite addnC -def_d dvdn_mull.
apply: leq_ltn_trans lt_kn_m.
by rewrite -{1}[kn]muln1 leq_mul2l gcdn_gt0 m_gt0 orbT.
Qed.
Lemma Bezoutr m n : n > 0 -> {a | a < n & n %| gcdn m n + a * m}.
Proof. by rewrite gcdnC; apply: Bezoutl. Qed.
(* Back to the gcd. *)
Lemma dvdn_gcd p m n : p %| gcdn m n = (p %| m) && (p %| n).
Proof.
apply/idP/andP=> [dv_pmn | [dv_pm dv_pn]].
by rewrite !(dvdn_trans dv_pmn) ?dvdn_gcdl ?dvdn_gcdr.
have [->|n_gt0] := posnP n; first by rewrite gcdn0.
case: (Bezoutr m n_gt0) => // km _ /(dvdn_trans dv_pn).
by rewrite dvdn_addl // dvdn_mull.
Qed.
Lemma gcdnAC : right_commutative gcdn.
Proof.
suffices dvd m n p: gcdn (gcdn m n) p %| gcdn (gcdn m p) n.
by move=> m n p; apply/eqP; rewrite eqn_dvd !dvd.
rewrite !dvdn_gcd dvdn_gcdr.
by rewrite !(dvdn_trans (dvdn_gcdl _ p)) ?dvdn_gcdl ?dvdn_gcdr.
Qed.
Lemma gcdnA : associative gcdn.
Proof. by move=> m n p; rewrite !(gcdnC m) gcdnAC. Qed.
Lemma gcdnCA : left_commutative gcdn.
Proof. by move=> m n p; rewrite !gcdnA (gcdnC m). Qed.
Lemma gcdnACA : interchange gcdn gcdn.
Proof. by move=> m n p q; rewrite -!gcdnA (gcdnCA n). Qed.
Lemma muln_gcdr : right_distributive muln gcdn.
Proof.
move=> p m n; have [-> //|p_gt0] := posnP p.
elim/ltn_ind: m n => m IHm n; rewrite gcdnE [RHS]gcdnE muln_eq0 (gtn_eqF p_gt0).
by case: posnP => // m_gt0; rewrite -muln_modr //=; apply/IHm/ltn_pmod.
Qed.
Lemma muln_gcdl : left_distributive muln gcdn.
Proof. by move=> m n p; rewrite -!(mulnC p) muln_gcdr. Qed.
Lemma gcdn_def d m n :
d %| m -> d %| n -> (forall d', d' %| m -> d' %| n -> d' %| d) ->
gcdn m n = d.
Proof.
move=> dv_dm dv_dn gdv_d; apply/eqP.
by rewrite eqn_dvd dvdn_gcd dv_dm dv_dn gdv_d ?dvdn_gcdl ?dvdn_gcdr.
Qed.
Lemma muln_divCA_gcd n m : n * (m %/ gcdn n m) = m * (n %/ gcdn n m).
Proof. by rewrite muln_divCA ?dvdn_gcdl ?dvdn_gcdr. Qed.
(* We derive the lcm directly. *)
Definition lcmn m n := m * n %/ gcdn m n.
Lemma lcmnC : commutative lcmn.
Proof. by move=> m n; rewrite /lcmn mulnC gcdnC. Qed.
Lemma lcm0n : left_zero 0 lcmn. Proof. by move=> n; apply: div0n. Qed.
Lemma lcmn0 : right_zero 0 lcmn. Proof. by move=> n; rewrite lcmnC lcm0n. Qed.
Lemma lcm1n : left_id 1 lcmn.
Proof. by move=> n; rewrite /lcmn gcd1n mul1n divn1. Qed.
Lemma lcmn1 : right_id 1 lcmn.
Proof. by move=> n; rewrite lcmnC lcm1n. Qed.
Lemma muln_lcm_gcd m n : lcmn m n * gcdn m n = m * n.
Proof. by apply/eqP; rewrite divnK ?dvdn_mull ?dvdn_gcdr. Qed.
Lemma lcmn_gt0 m n : (0 < lcmn m n) = (0 < m) && (0 < n).
Proof. by rewrite -muln_gt0 ltn_divRL ?dvdn_mull ?dvdn_gcdr. Qed.
Lemma muln_lcmr : right_distributive muln lcmn.
Proof.
case=> // m n p; rewrite /lcmn -muln_gcdr -!mulnA divnMl // mulnCA.
by rewrite muln_divA ?dvdn_mull ?dvdn_gcdr.
Qed.
Lemma muln_lcml : left_distributive muln lcmn.
Proof. by move=> m n p; rewrite -!(mulnC p) muln_lcmr. Qed.
Lemma lcmnA : associative lcmn.
Proof.
move=> m n p; rewrite [LHS]/lcmn [RHS]/lcmn mulnC.
rewrite !divn_mulAC ?dvdn_mull ?dvdn_gcdr // -!divnMA ?dvdn_mulr ?dvdn_gcdl //.
rewrite mulnC mulnA !muln_gcdr; congr (_ %/ _).
by rewrite ![_ * lcmn _ _]mulnC !muln_lcm_gcd !muln_gcdl -!(mulnC m) gcdnA.
Qed.
Lemma lcmnCA : left_commutative lcmn.
Proof. by move=> m n p; rewrite !lcmnA (lcmnC m). Qed.
Lemma lcmnAC : right_commutative lcmn.
Proof. by move=> m n p; rewrite -!lcmnA (lcmnC n). Qed.
Lemma lcmnACA : interchange lcmn lcmn.
Proof. by move=> m n p q; rewrite -!lcmnA (lcmnCA n). Qed.
Lemma dvdn_lcml d1 d2 : d1 %| lcmn d1 d2.
Proof. by rewrite /lcmn -muln_divA ?dvdn_gcdr ?dvdn_mulr. Qed.
Lemma dvdn_lcmr d1 d2 : d2 %| lcmn d1 d2.
Proof. by rewrite lcmnC dvdn_lcml. Qed.
Lemma dvdn_lcm d1 d2 m : lcmn d1 d2 %| m = (d1 %| m) && (d2 %| m).
Proof.
case: d1 d2 => [|d1] [|d2]; try by case: m => [|m]; rewrite ?lcmn0 ?andbF.
rewrite -(@dvdn_pmul2r (gcdn d1.+1 d2.+1)) ?gcdn_gt0 // muln_lcm_gcd.
by rewrite muln_gcdr dvdn_gcd {1}mulnC andbC !dvdn_pmul2r.
Qed.
Lemma lcmnMl m n : lcmn m (m * n) = m * n.
Proof. by case: m => // m; rewrite /lcmn gcdnMr mulKn. Qed.
Lemma lcmnMr m n : lcmn n (m * n) = m * n.
Proof. by rewrite mulnC lcmnMl. Qed.
Lemma lcmn_idPr {m n} : reflect (lcmn m n = n) (m %| n).
Proof.
by apply: (iffP idP) => [/dvdnP[q ->] | <-]; rewrite (lcmnMr, dvdn_lcml).
Qed.
Lemma lcmn_idPl {m n} : reflect (lcmn m n = m) (n %| m).
Proof. by rewrite lcmnC; apply: lcmn_idPr. Qed.
Lemma expn_max e m n : e ^ maxn m n = lcmn (e ^ m) (e ^ n).
Proof. by case: leqP => [|/ltnW] /(dvdn_exp2l e) /lcmn_idPl; rewrite lcmnC. Qed.
(* Coprime factors *)
Definition coprime m n := gcdn m n == 1.
Lemma coprime1n n : coprime 1 n.
Proof. by rewrite /coprime gcd1n. Qed.
Lemma coprimen1 n : coprime n 1.
Proof. by rewrite /coprime gcdn1. Qed.
Lemma coprime_sym m n : coprime m n = coprime n m.
Proof. by rewrite /coprime gcdnC. Qed.
Lemma coprime_modl m n : coprime (m %% n) n = coprime m n.
Proof. by rewrite /coprime gcdn_modl. Qed.
Lemma coprime_modr m n : coprime m (n %% m) = coprime m n.
Proof. by rewrite /coprime gcdn_modr. Qed.
Lemma coprime2n n : coprime 2 n = odd n.
Proof. by rewrite -coprime_modr modn2; case: (odd n). Qed.
Lemma coprimen2 n : coprime n 2 = odd n.
Proof. by rewrite coprime_sym coprime2n. Qed.
Lemma coprimeSn n : coprime n.+1 n.
Proof. by rewrite -coprime_modl (modnDr 1) coprime_modl coprime1n. Qed.
Lemma coprimenS n : coprime n n.+1.
Proof. by rewrite coprime_sym coprimeSn. Qed.
Lemma coprimePn n : n > 0 -> coprime n.-1 n.
Proof. by case: n => // n _; rewrite coprimenS. Qed.
Lemma coprimenP n : n > 0 -> coprime n n.-1.
Proof. by case: n => // n _; rewrite coprimeSn. Qed.
Lemma coprimeP n m :
n > 0 -> reflect (exists u, u.1 * n - u.2 * m = 1) (coprime n m).
Proof.
move=> n_gt0; apply: (iffP eqP) => [<-| [[kn km] /= kn_km_1]].
by have [kn km kg _] := egcdnP m n_gt0; exists (kn, km); rewrite kg addKn.
apply gcdn_def; rewrite ?dvd1n // => d dv_d_n dv_d_m.
by rewrite -kn_km_1 dvdn_subr ?dvdn_mull // ltnW // -subn_gt0 kn_km_1.
Qed.
Lemma modn_coprime k n : 0 < k -> (exists u, (k * u) %% n = 1) -> coprime k n.
Proof.
move=> k_gt0 [u Hu]; apply/coprimeP=> //.
by exists (u, k * u %/ n); rewrite /= mulnC {1}(divn_eq (k * u) n) addKn.
Qed.
Lemma Gauss_dvd m n p : coprime m n -> (m * n %| p) = (m %| p) && (n %| p).
Proof. by move=> co_mn; rewrite -muln_lcm_gcd (eqnP co_mn) muln1 dvdn_lcm. Qed.
Lemma Gauss_dvdr m n p : coprime m n -> (m %| n * p) = (m %| p).
Proof.
case: n => [|n] co_mn; first by case: m co_mn => [|[]] // _; rewrite !dvd1n.
by symmetry; rewrite mulnC -(@dvdn_pmul2r n.+1) ?Gauss_dvd // andbC dvdn_mull.
Qed.
Lemma Gauss_dvdl m n p : coprime m p -> (m %| n * p) = (m %| n).
Proof. by rewrite mulnC; apply: Gauss_dvdr. Qed.
Lemma dvdn_double_leq m n : m %| n -> odd m -> ~~ odd n -> 0 < n -> m.*2 <= n.
Proof.
move=> m_dv_n odd_m even_n n_gt0.
by rewrite -muln2 dvdn_leq // Gauss_dvd ?coprimen2 ?m_dv_n ?dvdn2.
Qed.
Lemma dvdn_double_ltn m n : m %| n.-1 -> odd m -> odd n -> 1 < n -> m.*2 < n.
Proof. by case: n => //; apply: dvdn_double_leq. Qed.
Lemma Gauss_gcdr p m n : coprime p m -> gcdn p (m * n) = gcdn p n.
Proof.
move=> co_pm; apply/eqP; rewrite eqn_dvd !dvdn_gcd !dvdn_gcdl /=.
rewrite andbC dvdn_mull ?dvdn_gcdr //= -(@Gauss_dvdr _ m) ?dvdn_gcdr //.
by rewrite /coprime gcdnAC (eqnP co_pm) gcd1n.
Qed.
Lemma Gauss_gcdl p m n : coprime p n -> gcdn p (m * n) = gcdn p m.
Proof. by move=> co_pn; rewrite mulnC Gauss_gcdr. Qed.
Lemma coprimeMr p m n : coprime p (m * n) = coprime p m && coprime p n.
Proof.
case co_pm: (coprime p m) => /=; first by rewrite /coprime Gauss_gcdr.
apply/eqP=> co_p_mn; case/eqnP: co_pm; apply gcdn_def => // d dv_dp dv_dm.
by rewrite -co_p_mn dvdn_gcd dv_dp dvdn_mulr.
Qed.
Lemma coprimeMl p m n : coprime (m * n) p = coprime m p && coprime n p.
Proof. by rewrite -!(coprime_sym p) coprimeMr. Qed.
Lemma coprime_pexpl k m n : 0 < k -> coprime (m ^ k) n = coprime m n.
Proof.
case: k => // k _; elim: k => [|k IHk]; first by rewrite expn1.
by rewrite expnS coprimeMl -IHk; case coprime.
Qed.
Lemma coprime_pexpr k m n : 0 < k -> coprime m (n ^ k) = coprime m n.
Proof. by move=> k_gt0; rewrite !(coprime_sym m) coprime_pexpl. Qed.
Lemma coprimeXl k m n : coprime m n -> coprime (m ^ k) n.
Proof. by case: k => [|k] co_pm; rewrite ?coprime1n // coprime_pexpl. Qed.
Lemma coprimeXr k m n : coprime m n -> coprime m (n ^ k).
Proof. by rewrite !(coprime_sym m); apply: coprimeXl. Qed.
Lemma coprime_dvdl m n p : m %| n -> coprime n p -> coprime m p.
Proof. by case/dvdnP=> d ->; rewrite coprimeMl => /andP[]. Qed.
Lemma coprime_dvdr m n p : m %| n -> coprime p n -> coprime p m.
Proof. by rewrite !(coprime_sym p); apply: coprime_dvdl. Qed.
Lemma coprime_egcdn n m : n > 0 -> coprime (egcdn n m).1 (egcdn n m).2.
Proof.
move=> n_gt0; case: (egcdnP m n_gt0) => kn km /= /eqP.
have [/dvdnP[u defn] /dvdnP[v defm]] := (dvdn_gcdl n m, dvdn_gcdr n m).
rewrite -[gcdn n m]mul1n {1}defm {1}defn !mulnA -mulnDl addnC.
rewrite eqn_pmul2r ?gcdn_gt0 ?n_gt0 //; case: kn => // kn /eqP def_knu _.
by apply/coprimeP=> //; exists (u, v); rewrite mulnC def_knu mulnC addnK.
Qed.
Lemma dvdn_pexp2r m n k : k > 0 -> (m ^ k %| n ^ k) = (m %| n).
Proof.
move=> k_gt0; apply/idP/idP=> [dv_mn_k|]; last exact: dvdn_exp2r.
have [->|n_gt0] := posnP n; first by rewrite dvdn0.
have [n' def_n] := dvdnP (dvdn_gcdr m n); set d := gcdn m n in def_n.
have [m' def_m] := dvdnP (dvdn_gcdl m n); rewrite -/d in def_m.
have d_gt0: d > 0 by rewrite gcdn_gt0 n_gt0 orbT.
rewrite def_m def_n !expnMn dvdn_pmul2r ?expn_gt0 ?d_gt0 // in dv_mn_k.
have: coprime (m' ^ k) (n' ^ k).
rewrite coprime_pexpl // coprime_pexpr // /coprime -(eqn_pmul2r d_gt0) mul1n.
by rewrite muln_gcdl -def_m -def_n.
rewrite /coprime -gcdn_modr (eqnP dv_mn_k) gcdn0 -(exp1n k).
by rewrite (inj_eq (expIn k_gt0)) def_m; move/eqP->; rewrite mul1n dvdn_gcdr.
Qed.
Section Chinese.
(***********************************************************************)
(* The chinese remainder theorem *)
(***********************************************************************)
Variables m1 m2 : nat.
Hypothesis co_m12 : coprime m1 m2.
Lemma chinese_remainder x y :
(x == y %[mod m1 * m2]) = (x == y %[mod m1]) && (x == y %[mod m2]).
Proof.
wlog le_yx : x y / y <= x; last by rewrite !eqn_mod_dvd // Gauss_dvd.
by have [?|/ltnW ?] := leqP y x; last rewrite !(eq_sym (x %% _)); apply.
Qed.
(***********************************************************************)
(* A function that solves the chinese remainder problem *)
(***********************************************************************)
Definition chinese r1 r2 :=
r1 * m2 * (egcdn m2 m1).1 + r2 * m1 * (egcdn m1 m2).1.
Lemma chinese_modl r1 r2 : chinese r1 r2 = r1 %[mod m1].
Proof.
rewrite /chinese; case: (posnP m2) co_m12 => [-> /eqnP | m2_gt0 _].
by rewrite gcdn0 => ->; rewrite !modn1.
case: egcdnP => // k2 k1 def_m1 _.
rewrite mulnAC -mulnA def_m1 gcdnC (eqnP co_m12) mulnDr mulnA muln1.
by rewrite addnAC (mulnAC _ m1) -mulnDl modnMDl.
Qed.
Lemma chinese_modr r1 r2 : chinese r1 r2 = r2 %[mod m2].
Proof.
rewrite /chinese; case: (posnP m1) co_m12 => [-> /eqnP | m1_gt0 _].
by rewrite gcd0n => ->; rewrite !modn1.
case: (egcdnP m2) => // k1 k2 def_m2 _.
rewrite addnC mulnAC -mulnA def_m2 (eqnP co_m12) mulnDr mulnA muln1.
by rewrite addnAC (mulnAC _ m2) -mulnDl modnMDl.
Qed.
Lemma chinese_mod x : x = chinese (x %% m1) (x %% m2) %[mod m1 * m2].
Proof.
apply/eqP; rewrite chinese_remainder //.
by rewrite chinese_modl chinese_modr !modn_mod !eqxx.
Qed.
End Chinese.
|