File: div.v

package info (click to toggle)
ssreflect 2.5.0-2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 7,120 kB
  • sloc: ml: 506; sh: 300; makefile: 42
file content (1047 lines) | stat: -rw-r--r-- 38,996 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)
(* Distributed under the terms of CeCILL-B.                                  *)
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq.

(******************************************************************************)
(* This file deals with divisibility for natural numbers.                     *)
(* It contains the definitions of:                                            *)
(*      edivn m d   == the pair composed of the quotient and remainder        *)
(*                     of the Euclidean division of m by d.                   *)
(*          m %/ d  == quotient of the Euclidean division of m by d.          *)
(*          m %% d  == remainder of the Euclidean division of m by d.         *)
(*  m = n %[mod d]  <-> m equals n modulo d.                                  *)
(*  m == n %[mod d] <=> m equals n modulo d (boolean version).                *)
(*  m <> n %[mod d] <-> m differs from n modulo d.                            *)
(*  m != n %[mod d] <=> m differs from n modulo d (boolean version).          *)
(*           d %| m <=> d divides m.                                          *)
(*         gcdn m n == the GCD of m and n.                                    *)
(*        egcdn m n == the extended GCD (Bezout coefficient pair) of m and n. *)
(*                     If egcdn m n = (u, v), then gcdn m n = m * u - n * v.  *)
(*         lcmn m n == the LCM of m and n.                                    *)
(*      coprime m n <=> m and n are coprime (:= gcdn m n == 1).               *)
(*  chinese m n r s == witness of the chinese remainder theorem.              *)
(* We adjoin an m to operator suffixes to indicate a nested %% (modn), as in  *)
(*   modnDml : m %% d + n = m + n %[mod d].                                   *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

(** Euclidean division *)

Definition edivn_rec d :=
  fix loop m q := if m - d is m'.+1 then loop m' q.+1 else (q, m).

Definition edivn m d := if d > 0 then edivn_rec d.-1 m 0 else (0, m).

Variant edivn_spec m d : nat * nat -> Type :=
  EdivnSpec q r of m = q * d + r & (d > 0) ==> (r < d) : edivn_spec m d (q, r).

Lemma edivnP m d : edivn_spec m d (edivn m d).
Proof.
rewrite -[m in edivn_spec m]/(0 * d + m) /edivn; case: d => //= d.
elim/ltn_ind: m 0 => -[|m] IHm q //=; rewrite subn_if_gt.
case: ltnP => // le_dm; rewrite -[in m.+1](subnKC le_dm) -addSn.
by rewrite addnA -mulSnr; apply/IHm/leq_subr.
Qed.

Lemma edivn_eq d q r : r < d -> edivn (q * d + r) d = (q, r).
Proof.
move=> lt_rd; have d_gt0: 0 < d by apply: leq_trans lt_rd.
case: edivnP lt_rd => q' r'; rewrite d_gt0 /=.
wlog: q q' r r' / q <= q' by case/orP: (leq_total q q'); last symmetry; eauto.
have [||-> _ /addnI ->] //= := ltngtP q q'.
rewrite -(leq_pmul2r d_gt0) => /leq_add lt_qr _ eq_qr _ /lt_qr {lt_qr}.
by rewrite addnS ltnNge mulSn -addnA eq_qr addnCA addnA leq_addr.
Qed.

Definition divn m d := (edivn m d).1.

Notation "m %/ d" := (divn m d) : nat_scope.

(* We redefine modn so that it is structurally decreasing. *)

Definition modn_rec d := fix loop m := if m - d is m'.+1 then loop m' else m.

Definition modn m d := if d > 0 then modn_rec d.-1 m else m.

Notation "m %% d" := (modn m d) : nat_scope.
Notation "m = n %[mod d ]" := (m %% d = n %% d) : nat_scope.
Notation "m == n %[mod d ]" := (m %% d == n %% d) : nat_scope.
Notation "m <> n %[mod d ]" := (m %% d <> n %% d) : nat_scope.
Notation "m != n %[mod d ]" := (m %% d != n %% d) : nat_scope.

Lemma modn_def m d : m %% d = (edivn m d).2.
Proof.
case: d => //= d; rewrite /modn /edivn /=; elim/ltn_ind: m 0 => -[|m] IHm q //=.
by rewrite !subn_if_gt; case: (d <= m) => //; apply/IHm/leq_subr.
Qed.

Lemma edivn_def m d : edivn m d = (m %/ d, m %% d).
Proof. by rewrite /divn modn_def; case: (edivn m d). Qed.

Lemma divn_eq m d : m = m %/ d * d + m %% d.
Proof. by rewrite /divn modn_def; case: edivnP. Qed.

Lemma div0n d : 0 %/ d = 0. Proof. by case: d. Qed.
Lemma divn0 m : m %/ 0 = 0. Proof. by []. Qed.
Lemma mod0n d : 0 %% d = 0. Proof. by case: d. Qed.
Lemma modn0 m : m %% 0 = m. Proof. by []. Qed.

Lemma divn_small m d : m < d -> m %/ d = 0.
Proof. by move=> lt_md; rewrite /divn (edivn_eq 0). Qed.

Lemma divnMDl q m d : 0 < d -> (q * d + m) %/ d = q + m %/ d.
Proof.
move=> d_gt0; rewrite [in LHS](divn_eq m d) addnA -mulnDl.
by rewrite /divn edivn_eq // modn_def; case: edivnP; rewrite d_gt0.
Qed.

Lemma mulnK m d : 0 < d -> m * d %/ d = m.
Proof. by move=> d_gt0; rewrite -[m * d]addn0 divnMDl // div0n addn0. Qed.

Lemma mulKn m d : 0 < d -> d * m %/ d = m.
Proof. by move=> d_gt0; rewrite mulnC mulnK. Qed.

Lemma expnB p m n : p > 0 -> m >= n -> p ^ (m - n) = p ^ m %/ p ^ n.
Proof.
by move=> p_gt0 /subnK-Dm; rewrite -[in RHS]Dm expnD mulnK // expn_gt0 p_gt0.
Qed.

Lemma modn1 m : m %% 1 = 0.
Proof. by rewrite modn_def; case: edivnP => ? []. Qed.

Lemma divn1 m : m %/ 1 = m.
Proof. by rewrite [RHS](@divn_eq m 1) // modn1 addn0 muln1. Qed.

Lemma divnn d : d %/ d = (0 < d).
Proof. by case: d => // d; rewrite -[n in n %/ _]muln1 mulKn. Qed.

Lemma divnMl p m d : p > 0 -> p * m %/ (p * d) = m %/ d.
Proof.
move=> p_gt0; have [->|d_gt0] := posnP d; first by rewrite muln0.
rewrite [RHS]/divn; case: edivnP; rewrite d_gt0 /= => q r ->{m} lt_rd.
rewrite mulnDr mulnCA divnMDl; last by rewrite muln_gt0 p_gt0.
by rewrite addnC divn_small // ltn_pmul2l.
Qed.
Arguments divnMl [p m d].

Lemma divnMr p m d : p > 0 -> m * p %/ (d * p) = m %/ d.
Proof. by move=> p_gt0; rewrite -!(mulnC p) divnMl. Qed.
Arguments divnMr [p m d].

Lemma ltn_mod m d : (m %% d < d) = (0 < d).
Proof. by case: d => // d; rewrite modn_def; case: edivnP. Qed.

Lemma ltn_pmod m d : 0 < d -> m %% d < d.
Proof. by rewrite ltn_mod. Qed.

Lemma leq_divM m d : m %/ d * d <= m.
Proof. by rewrite [leqRHS](divn_eq m d) leq_addr. Qed.

#[deprecated(since="mathcomp 2.4.0", note="Renamed to leq_divM.")]
Notation leq_trunc_div := leq_divM.

Lemma leq_mod m d : m %% d <= m.
Proof. by rewrite [leqRHS](divn_eq m d) leq_addl. Qed.

Lemma leq_div m d : m %/ d <= m.
Proof.
by case: d => // d; apply: leq_trans (leq_pmulr _ _) (leq_divM _ _).
Qed.

Lemma ltn_ceil m d : 0 < d -> m < (m %/ d).+1 * d.
Proof.
by move=> d_gt0; rewrite [in m.+1](divn_eq m d) -addnS mulSnr leq_add2l ltn_mod.
Qed.

Lemma ltn_divLR m n d : d > 0 -> (m %/ d < n) = (m < n * d).
Proof.
move=> d_gt0; apply/idP/idP.
  by rewrite -(leq_pmul2r d_gt0); apply: leq_trans (ltn_ceil _ _).
rewrite !ltnNge -(@leq_pmul2r d n) //; apply: contra => le_nd_floor.
exact: leq_trans le_nd_floor (leq_divM _ _).
Qed.

Lemma leq_divRL m n d : d > 0 -> (m <= n %/ d) = (m * d <= n).
Proof. by move=> d_gt0; rewrite leqNgt ltn_divLR // -leqNgt. Qed.

Lemma ltn_Pdiv m d : 1 < d -> 0 < m -> m %/ d < m.
Proof. by move=> d_gt1 m_gt0; rewrite ltn_divLR ?ltn_Pmulr // ltnW. Qed.

Lemma divn_gt0 d m : 0 < d -> (0 < m %/ d) = (d <= m).
Proof. by move=> d_gt0; rewrite leq_divRL ?mul1n. Qed.

Lemma leq_div2r d m n : m <= n -> m %/ d <= n %/ d.
Proof.
have [-> //| d_gt0 le_mn] := posnP d.
by rewrite leq_divRL // (leq_trans _ le_mn) -?leq_divRL.
Qed.

Lemma leq_div2l m d e : 0 < d -> d <= e -> m %/ e <= m %/ d.
Proof.
move/leq_divRL=> -> le_de.
by apply: leq_trans (leq_divM m e); apply: leq_mul.
Qed.

Lemma edivnD m n d (offset := m %% d + n %% d >= d) : 0 < d ->
   edivn (m + n) d = (m %/ d + n %/ d + offset, m %% d + n %% d - offset * d).
Proof.
rewrite {}/offset; case: d => // d _; rewrite /divn !modn_def.
case: (edivnP m d.+1) (edivnP n d.+1) => [/= q r -> r_lt] [/= p s -> s_lt].
rewrite addnACA -mulnDl; have [r_le s_le] := (ltnW r_lt, ltnW s_lt).
have [d_ge|d_lt] := leqP; first by rewrite addn0 mul0n subn0 edivn_eq.
rewrite addn1 mul1n -[in LHS](subnKC d_lt) addnA -mulSnr edivn_eq//.
by rewrite ltn_subLR// -addnS leq_add.
Qed.

Lemma divnD m n d : 0 < d ->
  (m + n) %/ d = (m %/ d) + (n %/ d) + (m %% d + n %% d >= d).
Proof. by move=> /(@edivnD m n); rewrite edivn_def => -[]. Qed.

Lemma modnD m n d : 0 < d ->
  (m + n) %% d = m %% d + n %% d - (m %% d + n %% d >= d) * d.
Proof. by move=> /(@edivnD m n); rewrite edivn_def => -[]. Qed.

Lemma leqDmod m n d : 0 < d ->
  (d <= m %% d + n %% d) = ((m + n) %% d < n %% d).
Proof.
move=> d_gt0; rewrite modnD//.
have [d_le|_] := leqP d; last by rewrite subn0 ltnNge leq_addl.
by rewrite -(ltn_add2r d) mul1n (subnK d_le) addnC ltn_add2l ltn_pmod.
Qed.

Lemma divnB n m d : 0 < d ->
  (m - n) %/ d = (m %/ d) - (n %/ d) - (m %% d < n %% d).
Proof.
move=> d_gt0; have [mn|/ltnW nm] := leqP m n.
  by rewrite (eqP mn) (eqP (leq_div2r _ _)) ?div0n.
by rewrite -[in m %/ d](subnK nm) divnD// addnAC addnK leqDmod ?subnK ?addnK.
Qed.

Lemma modnB m n d : 0 < d -> n <= m ->
  (m - n) %% d = (m %% d < n %% d) * d + m %% d - n %% d.
Proof.
move=> d_gt0 nm; rewrite -[in m %% _](subnK nm) -leqDmod// modnD//.
have [d_le|_] := leqP d; last by rewrite mul0n add0n subn0 addnK.
by rewrite mul1n addnBA// addnC !addnK.
Qed.

Lemma edivnB m n d (offset := m %% d < n %% d) : 0 < d -> n <= m ->
   edivn (m - n) d = (m %/ d - n %/ d - offset, offset * d + m %% d - n %% d).
Proof. by move=> d_gt0 le_nm; rewrite edivn_def divnB// modnB. Qed.

Lemma leq_divDl p m n : (m + n) %/ p <= m %/ p + n %/ p + 1.
Proof. by have [->//|p_gt0] := posnP p; rewrite divnD// !leq_add// leq_b1. Qed.

Lemma geq_divBl k m p : k %/ p - m %/ p <= (k - m) %/ p + 1.
Proof.
rewrite leq_subLR addnA; apply: leq_trans (leq_divDl _ _ _).
by rewrite -maxnE leq_div2r ?leq_maxr.
Qed.

Lemma divnMA m n p : m %/ (n * p) = m %/ n %/ p.
Proof.
case: n p => [|n] [|p]; rewrite ?muln0 ?div0n //.
rewrite [in RHS](divn_eq m (n.+1 * p.+1)) mulnA mulnAC !divnMDl //.
by rewrite [_ %/ p.+1]divn_small ?addn0 // ltn_divLR // mulnC ltn_mod.
Qed.

Lemma divnAC m n p : m %/ n %/ p =  m %/ p %/ n.
Proof. by rewrite -!divnMA mulnC. Qed.

Lemma modn_small m d : m < d -> m %% d = m.
Proof. by move=> lt_md; rewrite [RHS](divn_eq m d) divn_small. Qed.

Lemma modn_mod m d : m %% d = m %[mod d].
Proof. by case: d => // d; apply: modn_small; rewrite ltn_mod. Qed.

Lemma modnMDl p m d : p * d + m = m %[mod d].
Proof.
have [->|d_gt0] := posnP d; first by rewrite muln0.
by rewrite [in LHS](divn_eq m d) addnA -mulnDl modn_def edivn_eq // ltn_mod.
Qed.

Lemma muln_modr p m d : p * (m %% d) = (p * m) %% (p * d).
Proof.
have [->//|p_gt0] := posnP p; apply: (@addnI (p * (m %/ d * d))).
by rewrite -mulnDr -divn_eq mulnCA -(divnMl p_gt0) -divn_eq.
Qed.

Lemma muln_modl p m d : (m %% d) * p = (m * p) %% (d * p).
Proof. by rewrite -!(mulnC p); apply: muln_modr. Qed.

Lemma modn_divl m n d : (m %/ d) %% n = m %% (n * d) %/ d.
Proof.
case: d n => [|d] [|n] //; rewrite [in LHS]/divn [in LHS]modn_def.
case: (edivnP m d.+1) edivnP => [/= _ r -> le_rd] [/= q s -> le_sn].
rewrite mulnDl -mulnA -addnA modnMDl modn_small ?divnMDl ?divn_small ?addn0//.
by rewrite mulSnr -addnS leq_add ?leq_mul2r.
Qed.

Lemma modnDl m d : d + m = m %[mod d].
Proof. by rewrite -[m %% _](modnMDl 1) mul1n. Qed.

Lemma modnDr m d : m + d = m %[mod d]. Proof. by rewrite addnC modnDl. Qed.

Lemma modnn d : d %% d = 0. Proof. by rewrite [d %% d](modnDr 0) mod0n. Qed.

Lemma modnMl p d : p * d %% d = 0.
Proof. by rewrite -[p * d]addn0 modnMDl mod0n. Qed.

Lemma modnMr p d : d * p %% d = 0. Proof. by rewrite mulnC modnMl. Qed.

Lemma modnDml m n d : m %% d + n = m + n %[mod d].
Proof. by rewrite [in RHS](divn_eq m d) -addnA modnMDl. Qed.

Lemma modnDmr m n d : m + n %% d = m + n %[mod d].
Proof. by rewrite !(addnC m) modnDml. Qed.

Lemma modnDm m n d : m %% d + n %% d = m + n %[mod d].
Proof. by rewrite modnDml modnDmr. Qed.

Lemma eqn_modDl p m n d : (p + m == p + n %[mod d]) = (m == n %[mod d]).
Proof.
case: d => [|d]; first by rewrite !modn0 eqn_add2l.
apply/eqP/eqP=> eq_mn; last by rewrite -modnDmr eq_mn modnDmr.
rewrite -(modnMDl p m) -(modnMDl p n) !mulnSr -!addnA.
by rewrite -modnDmr eq_mn modnDmr.
Qed.

Lemma eqn_modDr p m n d : (m + p == n + p %[mod d]) = (m == n %[mod d]).
Proof. by rewrite -!(addnC p) eqn_modDl. Qed.

Lemma modnMml m n d : m %% d * n = m * n %[mod d].
Proof. by rewrite [in RHS](divn_eq m d) mulnDl mulnAC modnMDl. Qed.

Lemma modnMmr m n d : m * (n %% d) = m * n %[mod d].
Proof. by rewrite !(mulnC m) modnMml. Qed.

Lemma modnMm m n d : m %% d * (n %% d) = m * n %[mod d].
Proof. by rewrite modnMml modnMmr. Qed.

Lemma modn2 m : m %% 2 = odd m.
Proof. by elim: m => //= m IHm; rewrite -addn1 -modnDml IHm; case odd. Qed.

Lemma divn2 m : m %/ 2 = m./2.
Proof. by rewrite [in RHS](divn_eq m 2) modn2 muln2 addnC half_bit_double. Qed.

Lemma odd_mod m d : odd d = false -> odd (m %% d) = odd m.
Proof.
by move=> d_even; rewrite [in RHS](divn_eq m d) oddD oddM d_even andbF.
Qed.

Lemma modnXm m n a : (a %% n) ^ m = a ^ m %[mod n].
Proof. by elim: m => // m IHm; rewrite !expnS -modnMmr IHm modnMml modnMmr. Qed.

Lemma modnMDXl p m n d : (p * d + m) ^ n  = m ^ n %[mod d].
Proof. by elim: n => // n IH; rewrite !expnS -modnMm IH modnMDl modnMm. Qed.

(** Divisibility **)

Definition dvdn d m := m %% d == 0.

Notation "m %| d" := (dvdn m d) : nat_scope.

Lemma dvdnP d m : reflect (exists k, m = k * d) (d %| m).
Proof.
apply: (iffP eqP) => [md0 | [k ->]]; last by rewrite modnMl.
by exists (m %/ d); rewrite [LHS](divn_eq m d) md0 addn0.
Qed.
Arguments dvdnP {d m}.

Lemma dvdn0 d : d %| 0.
Proof. by case: d. Qed.

Lemma dvd0n n : (0 %| n) = (n == 0).
Proof. by case: n. Qed.

Lemma dvdn1 d : (d %| 1) = (d == 1).
Proof. by case: d => [|[|d]] //; rewrite /dvdn modn_small. Qed.

Lemma dvd1n m : 1 %| m.
Proof. by rewrite /dvdn modn1. Qed.

Lemma dvdn_gt0 d m : m > 0 -> d %| m -> d > 0.
Proof. by case: d => // /prednK <-. Qed.

Lemma dvdnn m : m %| m.
Proof. by rewrite /dvdn modnn. Qed.

Lemma dvdn_mull d m n : d %| n -> d %| m * n.
Proof. by case/dvdnP=> n' ->; rewrite /dvdn mulnA modnMl. Qed.

Lemma dvdn_mulr d m n : d %| m -> d %| m * n.
Proof. by move=> d_m; rewrite mulnC dvdn_mull. Qed.
#[global] Hint Resolve dvdn0 dvd1n dvdnn dvdn_mull dvdn_mulr : core.

Lemma dvdn_mul d1 d2 m1 m2 : d1 %| m1 -> d2 %| m2 -> d1 * d2 %| m1 * m2.
Proof.
by move=> /dvdnP[q1 ->] /dvdnP[q2 ->]; rewrite mulnCA -mulnA 2?dvdn_mull.
Qed.

Lemma dvdn_trans n d m : d %| n -> n %| m -> d %| m.
Proof. by move=> d_dv_n /dvdnP[n1 ->]; apply: dvdn_mull. Qed.

Lemma dvdn_eq d m : (d %| m) = (m %/ d * d == m).
Proof.
apply/eqP/eqP=> [modm0 | <-]; last exact: modnMl.
by rewrite [RHS](divn_eq m d) modm0 addn0.
Qed.

Lemma dvdn2 n : (2 %| n) = ~~ odd n.
Proof. by rewrite /dvdn modn2; case (odd n). Qed.

Lemma dvdn_odd m n : m %| n -> odd n -> odd m.
Proof. by move=> m_dv_n; apply: contraTT; rewrite -!dvdn2 => /dvdn_trans->. Qed.

Lemma divnK d m : d %| m -> m %/ d * d = m.
Proof. by rewrite dvdn_eq; move/eqP. Qed.

Lemma leq_divLR d m n : d %| m -> (m %/ d <= n) = (m <= n * d).
Proof. by case: d m => [|d] [|m] ///divnK=> {2}<-; rewrite leq_pmul2r. Qed.

Lemma ltn_divRL d m n : d %| m -> (n < m %/ d) = (n * d < m).
Proof. by move=> dv_d_m; rewrite !ltnNge leq_divLR. Qed.

Lemma eqn_div d m n : d > 0 -> d %| m -> (n == m %/ d) = (n * d == m).
Proof. by move=> d_gt0 dv_d_m; rewrite -(eqn_pmul2r d_gt0) divnK. Qed.

Lemma eqn_mul d m n : d > 0 -> d %| m -> (m == n * d) = (m %/ d == n).
Proof. by move=> d_gt0 dv_d_m; rewrite eq_sym -eqn_div // eq_sym. Qed.

Lemma divn_mulAC d m n : d %| m -> m %/ d * n = m * n %/ d.
Proof.
case: d m => [[] //| d m] dv_d_m; apply/eqP.
by rewrite eqn_div ?dvdn_mulr // mulnAC divnK.
Qed.

Lemma muln_divA d m n : d %| n -> m * (n %/ d) = m * n %/ d.
Proof. by move=> dv_d_m; rewrite !(mulnC m) divn_mulAC. Qed.

Lemma muln_divCA d m n : d %| m -> d %| n -> m * (n %/ d) = n * (m %/ d).
Proof. by move=> dv_d_m dv_d_n; rewrite mulnC divn_mulAC ?muln_divA. Qed.

Lemma divnA m n p : p %| n -> m %/ (n %/ p) = m * p %/ n.
Proof. by case: p => [|p] dv_n; rewrite -[in RHS](divnK dv_n) // divnMr. Qed.

Lemma modn_dvdm m n d : d %| m -> n %% m = n %[mod d].
Proof.
by case/dvdnP=> q def_m; rewrite [in RHS](divn_eq n m) def_m mulnA modnMDl.
Qed.

Lemma dvdn_leq d m : 0 < m -> d %| m -> d <= m.
Proof. by move=> m_gt0 /dvdnP[[|k] Dm]; rewrite Dm // leq_addr in m_gt0 *. Qed.

Lemma gtnNdvd n d : 0 < n -> n < d -> (d %| n) = false.
Proof. by move=> n_gt0 lt_nd; rewrite /dvdn eqn0Ngt modn_small ?n_gt0. Qed.

Lemma eqn_dvd m n : (m == n) = (m %| n) && (n %| m).
Proof.
case: m n => [|m] [|n] //; apply/idP/andP => [/eqP -> //| []].
by rewrite eqn_leq => Hmn Hnm; do 2 rewrite dvdn_leq //.
Qed.

Lemma dvdn_pmul2l p d m : 0 < p -> (p * d %| p * m) = (d %| m).
Proof. by case: p => // p _; rewrite /dvdn -muln_modr // muln_eq0. Qed.
Arguments dvdn_pmul2l [p d m].

Lemma dvdn_pmul2r p d m : 0 < p -> (d * p %| m * p) = (d %| m).
Proof. by move=> p_gt0; rewrite -!(mulnC p) dvdn_pmul2l. Qed.
Arguments dvdn_pmul2r [p d m].

Lemma dvdn_divLR p d m : 0 < p -> p %| d -> (d %/ p %| m) = (d %| m * p).
Proof. by move=> /(@dvdn_pmul2r p _ m) <- /divnK->. Qed.

Lemma dvdn_divRL p d m : p %| m -> (d %| m %/ p) = (d * p %| m).
Proof.
have [-> | /(@dvdn_pmul2r p d) <- /divnK-> //] := posnP p.
by rewrite divn0 muln0 dvdn0.
Qed.

Lemma dvdn_div d m : d %| m -> m %/ d %| m.
Proof. by move/divnK=> {2}<-; apply: dvdn_mulr. Qed.

Lemma dvdn_exp2l p m n : m <= n -> p ^ m %| p ^ n.
Proof. by move/subnK <-; rewrite expnD dvdn_mull. Qed.

Lemma dvdn_Pexp2l p m n : p > 1 -> (p ^ m %| p ^ n) = (m <= n).
Proof.
move=> p_gt1; case: leqP => [|gt_n_m]; first exact: dvdn_exp2l.
by rewrite gtnNdvd ?ltn_exp2l ?expn_gt0 // ltnW.
Qed.

Lemma dvdn_exp2r m n k : m %| n -> m ^ k %| n ^ k.
Proof. by case/dvdnP=> q ->; rewrite expnMn dvdn_mull. Qed.

Lemma divn_modl m n d : d %| n -> (m %% n) %/ d = (m %/ d) %% (n %/ d).
Proof. by move=> dvd_dn; rewrite modn_divl divnK. Qed.

Lemma dvdn_addr m d n : d %| m -> (d %| m + n) = (d %| n).
Proof. by case/dvdnP=> q ->; rewrite /dvdn modnMDl. Qed.

Lemma dvdn_addl n d m : d %| n -> (d %| m + n) = (d %| m).
Proof. by rewrite addnC; apply: dvdn_addr. Qed.

Lemma dvdn_add d m n : d %| m -> d %| n -> d %| m + n.
Proof. by move/dvdn_addr->. Qed.

Lemma dvdn_add_eq d m n : d %| m + n -> (d %| m) = (d %| n).
Proof. by move=> dv_d_mn; apply/idP/idP => [/dvdn_addr | /dvdn_addl] <-. Qed.

Lemma dvdn_subr d m n : n <= m -> d %| m -> (d %| m - n) = (d %| n).
Proof. by move=> le_n_m dv_d_m; apply: dvdn_add_eq; rewrite subnK. Qed.

Lemma dvdn_subl d m n : n <= m -> d %| n -> (d %| m - n) = (d %| m).
Proof. by move=> le_n_m dv_d_m; rewrite -(dvdn_addl _ dv_d_m) subnK. Qed.

Lemma dvdn_sub d m n : d %| m -> d %| n -> d %| m - n.
Proof.
by case: (leqP n m) => [le_nm /dvdn_subr <- // | /ltnW/eqnP ->]; rewrite dvdn0.
Qed.

Lemma dvdn_exp k d m : 0 < k -> d %| m -> d %| (m ^ k).
Proof. by case: k => // k _ d_dv_m; rewrite expnS dvdn_mulr. Qed.

Lemma dvdn_fact m n : 0 < m <= n -> m %| n`!.
Proof.
case: m => //= m; elim: n => //= n IHn; rewrite ltnS.
have [/IHn/dvdn_mull->||-> _] // := ltngtP m n; exact: dvdn_mulr.
Qed.

#[global] Hint Resolve dvdn_add dvdn_sub dvdn_exp : core.

Lemma eqn_mod_dvd d m n : n <= m -> (m == n %[mod d]) = (d %| m - n).
Proof.
by move/subnK=> Dm; rewrite -[n in LHS]add0n -[in LHS]Dm eqn_modDr mod0n.
Qed.

Lemma divnDMl q m d : 0 < d -> (m + q * d) %/ d = (m %/ d) + q.
Proof. by move=> d_gt0; rewrite addnC divnMDl// addnC. Qed.

Lemma divnMBl q m d : 0 < d -> (q * d - m) %/ d = q - (m %/ d) - (~~ (d %| m)).
Proof. by move=> d_gt0; rewrite divnB// mulnK// modnMl lt0n. Qed.

Lemma divnBMl q m d : (m - q * d) %/ d = (m %/ d) - q.
Proof. by case: d => [|d]//=; rewrite divnB// mulnK// modnMl ltn0 subn0. Qed.

Lemma divnDl m n d : d %| m -> (m + n) %/ d = m %/ d + n %/ d.
Proof. by case: d => // d /divnK-Dm; rewrite -[in LHS]Dm divnMDl. Qed.

Lemma divnDr m n d : d %| n -> (m + n) %/ d = m %/ d + n %/ d.
Proof. by move=> dv_n; rewrite addnC divnDl // addnC. Qed.

Lemma divnBl m n d : d %| m -> (m - n) %/ d = m %/ d - (n %/ d) - (~~ (d %| n)).
Proof. by case: d => [|d] // /divnK-Dm; rewrite -[in LHS]Dm divnMBl. Qed.

Lemma divnBr m n d : d %| n -> (m - n) %/ d = m %/ d - n %/ d.
Proof. by case: d => [|d]// /divnK-Dm; rewrite -[in LHS]Dm divnBMl. Qed.

Lemma edivnS m d : 0 < d -> edivn m.+1 d =
  if d %| m.+1 then ((m %/ d).+1, 0) else (m %/ d, (m %% d).+1).
Proof.
case: d => [|[|d]] //= _; first by rewrite edivn_def modn1 dvd1n !divn1.
rewrite -addn1 /dvdn modn_def edivnD//= (@modn_small 1)// (@divn_small 1)//.
rewrite addn1 addn0 ltnS; have [||<-] := ltngtP d.+1.
- by rewrite ltnNge -ltnS ltn_pmod.
- by rewrite addn0 mul0n subn0.
- by rewrite addn1 mul1n subnn.
Qed.

Lemma modnS m d : m.+1 %% d = if d %| m.+1 then 0 else (m %% d).+1.
Proof. by case: d => [|d]//; rewrite modn_def edivnS//; case: ifP. Qed.

Lemma divnS m d : 0 < d -> m.+1 %/ d = (d %| m.+1) + m %/ d.
Proof. by move=> d_gt0; rewrite /divn edivnS//; case: ifP. Qed.

Lemma divn_pred m d : m.-1 %/ d = (m %/ d) - (d %| m).
Proof.
by case: d m => [|d] [|m]; rewrite ?divn1 ?dvd1n ?subn1//= divnS// addnC addnK.
Qed.

Lemma modn_pred m d : d != 1 -> 0 < m ->
  m.-1 %% d = if d %| m then d.-1 else (m %% d).-1.
Proof.
rewrite -subn1; case: d m => [|[|d]] [|m]//= _ _.
  by rewrite ?modn1 ?dvd1n ?modn0 ?subn1.
rewrite modnB// (@modn_small 1)// [_ < _]leqn0 /dvdn mulnbl/= subn1.
by case: eqP => // ->; rewrite addn0.
Qed.

Lemma edivn_pred m d : d != 1 -> 0 < m ->
  edivn m.-1 d = if d %| m then ((m %/ d).-1, d.-1) else (m %/ d, (m %% d).-1).
Proof.
move=> d_neq1 m_gt0; rewrite edivn_def divn_pred modn_pred//.
by case: ifP; rewrite ?subn0 ?subn1.
Qed.

(***********************************************************************)
(*   A function that computes the gcd of 2 numbers                     *)
(***********************************************************************)

Fixpoint gcdn m n :=
  let n' := n %% m in if n' is 0 then m else
  if m - n'.-1 is m'.+1 then gcdn (m' %% n') n' else n'.
Arguments gcdn : simpl never.

Lemma gcdnE m n : gcdn m n = if m == 0 then n else gcdn (n %% m) m.
Proof.
elim/ltn_ind: m n => -[|m] IHm [|n] //=; rewrite /gcdn -/gcdn.
case def_p: (_ %% _) => // [p].
have{def_p} lt_pm: p.+1 < m.+1 by rewrite -def_p ltn_pmod.
rewrite {}IHm // subn_if_gt ltnW //=; congr gcdn.
by rewrite -(subnK (ltnW lt_pm)) modnDr.
Qed.

Lemma gcdnn : idempotent_op gcdn.
Proof. by case=> // n; rewrite gcdnE modnn. Qed.

Lemma gcdnC : commutative gcdn.
Proof.
move=> m n; wlog lt_nm: m n / n < m by have [? ->|? <-|-> //] := ltngtP n m.
by rewrite gcdnE -[in m == 0](ltn_predK lt_nm) modn_small.
Qed.

Lemma gcd0n : left_id 0 gcdn. Proof. by case. Qed.
Lemma gcdn0 : right_id 0 gcdn. Proof. by case. Qed.

Lemma gcd1n : left_zero 1 gcdn.
Proof. by move=> n; rewrite gcdnE modn1. Qed.

Lemma gcdn1 : right_zero 1 gcdn.
Proof. by move=> n; rewrite gcdnC gcd1n. Qed.

Lemma dvdn_gcdr m n : gcdn m n %| n.
Proof.
elim/ltn_ind: m n => -[|m] IHm [|n] //=.
rewrite gcdnE; case def_p: (_ %% _) => [|p]; first by rewrite /dvdn def_p.
have lt_pm: p < m by rewrite -ltnS -def_p ltn_pmod.
rewrite /= (divn_eq n.+1 m.+1) def_p dvdn_addr ?dvdn_mull //; last exact: IHm.
by rewrite gcdnE /= IHm // (ltn_trans (ltn_pmod _ _)).
Qed.

Lemma dvdn_gcdl m n : gcdn m n %| m.
Proof. by rewrite gcdnC dvdn_gcdr. Qed.

Lemma gcdn_gt0 m n : (0 < gcdn m n) = (0 < m) || (0 < n).
Proof.
by case: m n => [|m] [|n] //; apply: (@dvdn_gt0 _ m.+1) => //; apply: dvdn_gcdl.
Qed.

Lemma gcdnMDl k m n : gcdn m (k * m + n) = gcdn m n.
Proof. by rewrite !(gcdnE m) modnMDl mulnC; case: m. Qed.

Lemma gcdnDl m n : gcdn m (m + n) = gcdn m n.
Proof. by rewrite -[m in m + n]mul1n gcdnMDl. Qed.

Lemma gcdnDr m n : gcdn m (n + m) = gcdn m n.
Proof. by rewrite addnC gcdnDl. Qed.

Lemma gcdnMl n m : gcdn n (m * n) = n.
Proof. by case: n => [|n]; rewrite gcdnE modnMl // muln0. Qed.

Lemma gcdnMr n m : gcdn n (n * m) = n.
Proof. by rewrite mulnC gcdnMl. Qed.

Lemma gcdn_idPl {m n} : reflect (gcdn m n = m) (m %| n).
Proof.
by apply: (iffP idP) => [/dvdnP[q ->] | <-]; rewrite (gcdnMl, dvdn_gcdr).
Qed.

Lemma gcdn_idPr {m n} : reflect (gcdn m n = n) (n %| m).
Proof. by rewrite gcdnC; apply: gcdn_idPl. Qed.

Lemma expn_min e m n : e ^ minn m n = gcdn (e ^ m) (e ^ n).
Proof. by case: leqP => [|/ltnW] /(dvdn_exp2l e) /gcdn_idPl; rewrite gcdnC. Qed.

Lemma gcdn_modr m n : gcdn m (n %% m) = gcdn m n.
Proof. by rewrite [in RHS](divn_eq n m) gcdnMDl. Qed.

Lemma gcdn_modl m n : gcdn (m %% n) n = gcdn m n.
Proof. by rewrite !(gcdnC _ n) gcdn_modr. Qed.

(* Extended gcd, which computes Bezout coefficients. *)

Fixpoint Bezout_rec km kn qs :=
  if qs is q :: qs' then Bezout_rec kn (NatTrec.add_mul q kn km) qs'
  else (km, kn).

Fixpoint egcdn_rec m n s qs :=
  if s is s'.+1 then
    let: (q, r) := edivn m n in
    if r > 0 then egcdn_rec n r s' (q :: qs) else
    if odd (size qs) then qs else q.-1 :: qs
  else [::0].

Definition egcdn m n := Bezout_rec 0 1 (egcdn_rec m n n [::]).

Variant egcdn_spec m n : nat * nat -> Type :=
  EgcdnSpec km kn of km * m = kn * n + gcdn m n & kn * gcdn m n < m :
    egcdn_spec m n (km, kn).

Lemma egcd0n n : egcdn 0 n = (1, 0).
Proof. by case: n. Qed.

Lemma egcdnP m n : m > 0 -> egcdn_spec m n (egcdn m n).
Proof.
have [-> /= | n_gt0 m_gt0] := posnP n; first by split; rewrite // mul1n gcdn0.
rewrite /egcdn; set s := (s in egcdn_rec _ _ s); pose bz := Bezout_rec n m [::].
have: n < s.+1 by []; move defSpec: (egcdn_spec bz.2 bz.1) s => Spec s.
elim: s => [[]|s IHs] //= in n m (qs := [::]) bz defSpec n_gt0 m_gt0 *.
case: edivnP => q r def_m; rewrite n_gt0 ltnS /= => lt_rn le_ns1.
case: posnP => [r0 {s le_ns1 IHs lt_rn}|r_gt0]; last first.
  by apply: IHs => //=; [rewrite natTrecE -def_m | rewrite (leq_trans lt_rn)].
rewrite {r}r0 addn0 in def_m; set b := odd _; pose d := gcdn m n.
pose km := ~~ b : nat; pose kn := if b then 1 else q.-1.
rewrite [bz in Spec bz](_ : _ = Bezout_rec km kn qs); last first.
  by rewrite /kn /km; case: (b) => //=; rewrite natTrecE addn0 muln1.
have def_d: d = n by rewrite /d def_m gcdnC gcdnE modnMl gcd0n -[n]prednK.
have: km * m + 2 * b * d = kn * n + d.
  rewrite {}/kn {}/km def_m def_d -mulSnr; case: b; rewrite //= addn0 mul1n.
  by rewrite prednK //; apply: dvdn_gt0 m_gt0 _; rewrite def_m dvdn_mulr.
have{def_m}: kn * d <= m.
  have q_gt0 : 0 < q by rewrite def_m muln_gt0 n_gt0 ?andbT in m_gt0.
  by rewrite /kn; case b; rewrite def_d def_m leq_pmul2r // leq_pred.
have{def_d}: km * d <= n by rewrite -[n]mul1n def_d leq_pmul2r // leq_b1.
move: km {q}kn m_gt0 n_gt0 defSpec; rewrite {}/b {}/d {}/bz.
elim: qs m n => [|q qs IHq] n r kn kr n_gt0 r_gt0 /=.
  set d := gcdn n r; rewrite mul0n addn0 => <- le_kn_r _ def_d; split=> //.
  have d_gt0: 0 < d by rewrite gcdn_gt0 n_gt0.
  have /ltn_pmul2l<-: 0 < kn by rewrite -(ltn_pmul2r n_gt0) def_d ltn_addl.
  by rewrite def_d -addn1 leq_add // mulnCA leq_mul2l le_kn_r orbT.
rewrite !natTrecE; set m := _ + r; set km := _ + kn; pose d := gcdn m n.
have ->: gcdn n r = d by rewrite [d]gcdnC gcdnMDl.
have m_gt0: 0 < m by rewrite addn_gt0 r_gt0 orbT.
have d_gt0: 0 < d by rewrite gcdn_gt0 m_gt0.
move=> {}/IHq IHq le_kn_r le_kr_n def_d; apply: IHq => //; rewrite -/d.
  by rewrite mulnDl leq_add // -mulnA leq_mul2l le_kr_n orbT.
apply: (@addIn d); rewrite mulnDr -addnA addnACA -def_d addnACA mulnA.
rewrite -!mulnDl -mulnDr -addnA [kr * _]mulnC; congr addn.
by rewrite addnC addn_negb muln1 mul2n addnn.
Qed.

Lemma Bezoutl m n : m > 0 -> {a | a < m & m %| gcdn m n + a * n}.
Proof.
move=> m_gt0; case: (egcdnP n m_gt0) => km kn def_d lt_kn_m.
exists kn; last by rewrite addnC -def_d dvdn_mull.
apply: leq_ltn_trans lt_kn_m.
by rewrite -{1}[kn]muln1 leq_mul2l gcdn_gt0 m_gt0 orbT.
Qed.

Lemma Bezoutr m n : n > 0 -> {a | a < n & n %| gcdn m n + a * m}.
Proof. by rewrite gcdnC; apply: Bezoutl. Qed.

(* Back to the gcd. *)

Lemma dvdn_gcd p m n : p %| gcdn m n = (p %| m) && (p %| n).
Proof.
apply/idP/andP=> [dv_pmn | [dv_pm dv_pn]].
  by rewrite !(dvdn_trans dv_pmn) ?dvdn_gcdl ?dvdn_gcdr.
have [->|n_gt0] := posnP n; first by rewrite gcdn0.
case: (Bezoutr m n_gt0) => // km _ /(dvdn_trans dv_pn).
by rewrite dvdn_addl // dvdn_mull.
Qed.

Lemma gcdnAC : right_commutative gcdn.
Proof.
suffices dvd m n p: gcdn (gcdn m n) p %| gcdn (gcdn m p) n.
  by move=> m n p; apply/eqP; rewrite eqn_dvd !dvd.
rewrite !dvdn_gcd dvdn_gcdr.
by rewrite !(dvdn_trans (dvdn_gcdl _ p)) ?dvdn_gcdl ?dvdn_gcdr.
Qed.

Lemma gcdnA : associative gcdn.
Proof. by move=> m n p; rewrite !(gcdnC m) gcdnAC. Qed.

Lemma gcdnCA : left_commutative gcdn.
Proof. by move=> m n p; rewrite !gcdnA (gcdnC m). Qed.

Lemma gcdnACA : interchange gcdn gcdn.
Proof. by move=> m n p q; rewrite -!gcdnA (gcdnCA n). Qed.

Lemma muln_gcdr : right_distributive muln gcdn.
Proof.
move=> p m n; have [-> //|p_gt0] := posnP p.
elim/ltn_ind: m n => m IHm n; rewrite gcdnE [RHS]gcdnE muln_eq0 (gtn_eqF p_gt0).
by case: posnP => // m_gt0; rewrite -muln_modr //=; apply/IHm/ltn_pmod.
Qed.

Lemma muln_gcdl : left_distributive muln gcdn.
Proof. by move=> m n p; rewrite -!(mulnC p) muln_gcdr. Qed.

Lemma gcdn_def d m n :
    d %| m -> d %| n -> (forall d', d' %| m -> d' %| n -> d' %| d) ->
  gcdn m n = d.
Proof.
move=> dv_dm dv_dn gdv_d; apply/eqP.
by rewrite eqn_dvd dvdn_gcd dv_dm dv_dn gdv_d ?dvdn_gcdl ?dvdn_gcdr.
Qed.

Lemma muln_divCA_gcd n m : n * (m %/ gcdn n m)  = m * (n %/ gcdn n m).
Proof. by rewrite muln_divCA ?dvdn_gcdl ?dvdn_gcdr. Qed.

(* We derive the lcm directly. *)

Definition lcmn m n := m * n %/ gcdn m n.

Lemma lcmnC : commutative lcmn.
Proof. by move=> m n; rewrite /lcmn mulnC gcdnC. Qed.

Lemma lcm0n : left_zero 0 lcmn.  Proof. by move=> n; apply: div0n. Qed.
Lemma lcmn0 : right_zero 0 lcmn. Proof. by move=> n; rewrite lcmnC lcm0n. Qed.

Lemma lcm1n : left_id 1 lcmn.
Proof. by move=> n; rewrite /lcmn gcd1n mul1n divn1. Qed.

Lemma lcmn1 : right_id 1 lcmn.
Proof. by move=> n; rewrite lcmnC lcm1n. Qed.

Lemma muln_lcm_gcd m n : lcmn m n * gcdn m n = m * n.
Proof. by apply/eqP; rewrite divnK ?dvdn_mull ?dvdn_gcdr. Qed.

Lemma lcmn_gt0 m n : (0 < lcmn m n) = (0 < m) && (0 < n).
Proof. by rewrite -muln_gt0 ltn_divRL ?dvdn_mull ?dvdn_gcdr. Qed.

Lemma muln_lcmr : right_distributive muln lcmn.
Proof.
case=> // m n p; rewrite /lcmn -muln_gcdr -!mulnA divnMl // mulnCA.
by rewrite muln_divA ?dvdn_mull ?dvdn_gcdr.
Qed.

Lemma muln_lcml : left_distributive muln lcmn.
Proof. by move=> m n p; rewrite -!(mulnC p) muln_lcmr. Qed.

Lemma lcmnA : associative lcmn.
Proof.
move=> m n p; rewrite [LHS]/lcmn [RHS]/lcmn mulnC.
rewrite !divn_mulAC ?dvdn_mull ?dvdn_gcdr // -!divnMA ?dvdn_mulr ?dvdn_gcdl //.
rewrite mulnC mulnA !muln_gcdr; congr (_ %/ _).
by rewrite ![_ * lcmn _ _]mulnC !muln_lcm_gcd !muln_gcdl -!(mulnC m) gcdnA.
Qed.

Lemma lcmnCA : left_commutative lcmn.
Proof. by move=> m n p; rewrite !lcmnA (lcmnC m). Qed.

Lemma lcmnAC : right_commutative lcmn.
Proof. by move=> m n p; rewrite -!lcmnA (lcmnC n). Qed.

Lemma lcmnACA : interchange lcmn lcmn.
Proof. by move=> m n p q; rewrite -!lcmnA (lcmnCA n). Qed.

Lemma dvdn_lcml d1 d2 : d1 %| lcmn d1 d2.
Proof. by rewrite /lcmn -muln_divA ?dvdn_gcdr ?dvdn_mulr. Qed.

Lemma dvdn_lcmr d1 d2 : d2 %| lcmn d1 d2.
Proof. by rewrite lcmnC dvdn_lcml. Qed.

Lemma dvdn_lcm d1 d2 m : lcmn d1 d2 %| m = (d1 %| m) && (d2 %| m).
Proof.
case: d1 d2 => [|d1] [|d2]; try by case: m => [|m]; rewrite ?lcmn0 ?andbF.
rewrite -(@dvdn_pmul2r (gcdn d1.+1 d2.+1)) ?gcdn_gt0 // muln_lcm_gcd.
by rewrite muln_gcdr dvdn_gcd {1}mulnC andbC !dvdn_pmul2r.
Qed.

Lemma lcmnMl m n : lcmn m (m * n) = m * n.
Proof. by case: m => // m; rewrite /lcmn gcdnMr mulKn. Qed.

Lemma lcmnMr m n : lcmn n (m * n) = m * n.
Proof. by rewrite mulnC lcmnMl. Qed.

Lemma lcmn_idPr {m n} : reflect (lcmn m n = n) (m %| n).
Proof.
by apply: (iffP idP) => [/dvdnP[q ->] | <-]; rewrite (lcmnMr, dvdn_lcml).
Qed.

Lemma lcmn_idPl {m n} : reflect (lcmn m n = m) (n %| m).
Proof. by rewrite lcmnC; apply: lcmn_idPr. Qed.

Lemma expn_max e m n : e ^ maxn m n = lcmn (e ^ m) (e ^ n).
Proof. by case: leqP => [|/ltnW] /(dvdn_exp2l e) /lcmn_idPl; rewrite lcmnC. Qed.

(* Coprime factors *)

Definition coprime m n := gcdn m n == 1.

Lemma coprime1n n : coprime 1 n.
Proof. by rewrite /coprime gcd1n. Qed.

Lemma coprimen1 n : coprime n 1.
Proof. by rewrite /coprime gcdn1. Qed.

Lemma coprime_sym m n : coprime m n = coprime n m.
Proof. by rewrite /coprime gcdnC. Qed.

Lemma coprime_modl m n : coprime (m %% n) n = coprime m n.
Proof. by rewrite /coprime gcdn_modl. Qed.

Lemma coprime_modr m n : coprime m (n %% m) = coprime m n.
Proof. by rewrite /coprime gcdn_modr. Qed.

Lemma coprime2n n : coprime 2 n = odd n.
Proof. by rewrite -coprime_modr modn2; case: (odd n). Qed.

Lemma coprimen2 n : coprime n 2 = odd n.
Proof. by rewrite coprime_sym coprime2n. Qed.

Lemma coprimeSn n : coprime n.+1 n.
Proof. by rewrite -coprime_modl (modnDr 1) coprime_modl coprime1n. Qed.

Lemma coprimenS n : coprime n n.+1.
Proof. by rewrite coprime_sym coprimeSn. Qed.

Lemma coprimePn n : n > 0 -> coprime n.-1 n.
Proof. by case: n => // n _; rewrite coprimenS. Qed.

Lemma coprimenP n : n > 0 -> coprime n n.-1.
Proof. by case: n => // n _; rewrite coprimeSn. Qed.

Lemma coprimeP n m :
  n > 0 -> reflect (exists u, u.1 * n - u.2 * m = 1) (coprime n m).
Proof.
move=> n_gt0; apply: (iffP eqP) => [<-| [[kn km] /= kn_km_1]].
  by have [kn km kg _] := egcdnP m n_gt0; exists (kn, km); rewrite kg addKn.
apply gcdn_def; rewrite ?dvd1n // => d dv_d_n dv_d_m.
by rewrite -kn_km_1 dvdn_subr ?dvdn_mull // ltnW // -subn_gt0 kn_km_1.
Qed.

Lemma modn_coprime k n : 0 < k -> (exists u, (k * u) %% n = 1) -> coprime k n.
Proof.
move=> k_gt0 [u Hu]; apply/coprimeP=> //.
by exists (u, k * u %/ n); rewrite /= mulnC {1}(divn_eq (k * u) n) addKn.
Qed.

Lemma Gauss_dvd m n p : coprime m n -> (m * n %| p) = (m %| p) && (n %| p).
Proof. by move=> co_mn; rewrite -muln_lcm_gcd (eqnP co_mn) muln1 dvdn_lcm. Qed.

Lemma Gauss_dvdr m n p : coprime m n -> (m %| n * p) = (m %| p).
Proof.
case: n => [|n] co_mn; first by case: m co_mn => [|[]] // _; rewrite !dvd1n.
by symmetry; rewrite mulnC -(@dvdn_pmul2r n.+1) ?Gauss_dvd // andbC dvdn_mull.
Qed.

Lemma Gauss_dvdl m n p : coprime m p -> (m %| n * p) = (m %| n).
Proof. by rewrite mulnC; apply: Gauss_dvdr. Qed.

Lemma dvdn_double_leq m n : m %| n -> odd m -> ~~ odd n -> 0 < n -> m.*2 <= n.
Proof.
move=> m_dv_n odd_m even_n n_gt0.
by rewrite -muln2 dvdn_leq // Gauss_dvd ?coprimen2 ?m_dv_n ?dvdn2.
Qed.

Lemma dvdn_double_ltn m n : m %| n.-1 -> odd m -> odd n -> 1 < n -> m.*2 < n.
Proof. by case: n => //; apply: dvdn_double_leq. Qed.

Lemma Gauss_gcdr p m n : coprime p m -> gcdn p (m * n) = gcdn p n.
Proof.
move=> co_pm; apply/eqP; rewrite eqn_dvd !dvdn_gcd !dvdn_gcdl /=.
rewrite andbC dvdn_mull ?dvdn_gcdr //= -(@Gauss_dvdr _ m) ?dvdn_gcdr //.
by rewrite /coprime gcdnAC (eqnP co_pm) gcd1n.
Qed.

Lemma Gauss_gcdl p m n : coprime p n -> gcdn p (m * n) = gcdn p m.
Proof. by move=> co_pn; rewrite mulnC Gauss_gcdr. Qed.

Lemma coprimeMr p m n : coprime p (m * n) = coprime p m && coprime p n.
Proof.
case co_pm: (coprime p m) => /=; first by rewrite /coprime Gauss_gcdr.
apply/eqP=> co_p_mn; case/eqnP: co_pm; apply gcdn_def => // d dv_dp dv_dm.
by rewrite -co_p_mn dvdn_gcd dv_dp dvdn_mulr.
Qed.

Lemma coprimeMl p m n : coprime (m * n) p = coprime m p && coprime n p.
Proof. by rewrite -!(coprime_sym p) coprimeMr. Qed.

Lemma coprime_pexpl k m n : 0 < k -> coprime (m ^ k) n = coprime m n.
Proof.
case: k => // k _; elim: k => [|k IHk]; first by rewrite expn1.
by rewrite expnS coprimeMl -IHk; case coprime.
Qed.

Lemma coprime_pexpr k m n : 0 < k -> coprime m (n ^ k) = coprime m n.
Proof. by move=> k_gt0; rewrite !(coprime_sym m) coprime_pexpl. Qed.

Lemma coprimeXl k m n : coprime m n -> coprime (m ^ k) n.
Proof. by case: k => [|k] co_pm; rewrite ?coprime1n // coprime_pexpl. Qed.

Lemma coprimeXr k m n : coprime m n -> coprime m (n ^ k).
Proof. by rewrite !(coprime_sym m); apply: coprimeXl. Qed.

Lemma coprime_dvdl m n p : m %| n -> coprime n p -> coprime m p.
Proof. by case/dvdnP=> d ->; rewrite coprimeMl => /andP[]. Qed.

Lemma coprime_dvdr m n p : m %| n -> coprime p n -> coprime p m.
Proof. by rewrite !(coprime_sym p); apply: coprime_dvdl. Qed.

Lemma coprime_egcdn n m : n > 0 -> coprime (egcdn n m).1 (egcdn n m).2.
Proof.
move=> n_gt0; case: (egcdnP m n_gt0) => kn km /= /eqP.
have [/dvdnP[u defn] /dvdnP[v defm]] := (dvdn_gcdl n m, dvdn_gcdr n m).
rewrite -[gcdn n m]mul1n {1}defm {1}defn !mulnA -mulnDl addnC.
rewrite eqn_pmul2r ?gcdn_gt0 ?n_gt0 //; case: kn => // kn /eqP def_knu _.
by apply/coprimeP=> //; exists (u, v); rewrite mulnC def_knu mulnC addnK.
Qed.

Lemma dvdn_pexp2r m n k : k > 0 -> (m ^ k %| n ^ k) = (m %| n).
Proof.
move=> k_gt0; apply/idP/idP=> [dv_mn_k|]; last exact: dvdn_exp2r.
have [->|n_gt0] := posnP n; first by rewrite dvdn0.
have [n' def_n] := dvdnP (dvdn_gcdr m n); set d := gcdn m n in def_n.
have [m' def_m] := dvdnP (dvdn_gcdl m n); rewrite -/d in def_m.
have d_gt0: d > 0 by rewrite gcdn_gt0 n_gt0 orbT.
rewrite def_m def_n !expnMn dvdn_pmul2r ?expn_gt0 ?d_gt0 // in dv_mn_k.
have: coprime (m' ^ k) (n' ^ k).
  rewrite coprime_pexpl // coprime_pexpr // /coprime -(eqn_pmul2r d_gt0) mul1n.
  by rewrite muln_gcdl -def_m -def_n.
rewrite /coprime -gcdn_modr (eqnP dv_mn_k) gcdn0 -(exp1n k).
by rewrite (inj_eq (expIn k_gt0)) def_m; move/eqP->; rewrite mul1n dvdn_gcdr.
Qed.

Section Chinese.

(***********************************************************************)
(*   The chinese remainder theorem                                     *)
(***********************************************************************)

Variables m1 m2 : nat.
Hypothesis co_m12 : coprime m1 m2.

Lemma chinese_remainder x y :
  (x == y %[mod m1 * m2]) = (x == y %[mod m1]) && (x == y %[mod m2]).
Proof.
wlog le_yx : x y / y <= x; last by rewrite !eqn_mod_dvd // Gauss_dvd.
by have [?|/ltnW ?] := leqP y x; last rewrite !(eq_sym (x %% _)); apply.
Qed.

(***********************************************************************)
(*   A function that solves the chinese remainder problem              *)
(***********************************************************************)

Definition chinese r1 r2 :=
  r1 * m2 * (egcdn m2 m1).1 + r2 * m1 * (egcdn m1 m2).1.

Lemma chinese_modl r1 r2 : chinese r1 r2 = r1 %[mod m1].
Proof.
rewrite /chinese; case: (posnP m2) co_m12 => [-> /eqnP | m2_gt0 _].
  by rewrite gcdn0 => ->; rewrite !modn1.
case: egcdnP => // k2 k1 def_m1 _.
rewrite mulnAC -mulnA def_m1 gcdnC (eqnP co_m12) mulnDr mulnA muln1.
by rewrite addnAC (mulnAC _ m1) -mulnDl modnMDl.
Qed.

Lemma chinese_modr r1 r2 : chinese r1 r2 = r2 %[mod m2].
Proof.
rewrite /chinese; case: (posnP m1) co_m12 => [-> /eqnP | m1_gt0 _].
  by rewrite gcd0n => ->; rewrite !modn1.
case: (egcdnP m2) => // k1 k2 def_m2 _.
rewrite addnC mulnAC -mulnA def_m2 (eqnP co_m12) mulnDr mulnA muln1.
by rewrite addnAC (mulnAC _ m2) -mulnDl modnMDl.
Qed.

Lemma chinese_mod x : x = chinese (x %% m1) (x %% m2) %[mod m1 * m2].
Proof.
apply/eqP; rewrite chinese_remainder //.
by rewrite chinese_modl chinese_modr !modn_mod !eqxx.
Qed.

End Chinese.