File: finfun.v

package info (click to toggle)
ssreflect 2.5.0-2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 7,120 kB
  • sloc: ml: 506; sh: 300; makefile: 42
file content (595 lines) | stat: -rw-r--r-- 24,752 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)
(* Distributed under the terms of CeCILL-B.                                  *)
From HB Require Import structures.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice.
From mathcomp Require Import fintype tuple.

(******************************************************************************)
(* This file implements a type for functions with a finite domain:            *)
(*      {ffun aT -> rT} where aT should have a finType structure,             *)
(*      {ffun forall x : aT, rT} for dependent functions over a finType aT,   *)
(*  and {ffun funT} where funT expands to a product over a finType.           *)
(* Any eqType, choiceType, countType and finType structures on rT extend to   *)
(* {ffun aT -> rT} as Leibnitz equality and extensional equalities coincide.  *)
(*     (T ^ n)%type is notation for {ffun 'I_n -> T}, which is isomorphic     *)
(*   to n.-tuple T, but is structurally positive and thus can be used to      *)
(*   define inductive types, e.g., Inductive tree := node n of tree ^ n (see  *)
(*   mid-file for an expanded example).                                       *)
(* --> More generally, {ffun fT} is always structurally positive.             *)
(*   {ffun fT} inherits combinatorial structures of rT, i.e., eqType,         *)
(* choiceType, countType, and finType. However, due to some limitations of    *)
(* the Coq 8.9 unification code the structures are only inherited in the      *)
(* NON dependent case, when rT does not depend on x.                          *)
(*  For f : {ffun fT} with fT := forall x : aT, rT we define                  *)
(*              f x == the image of x under f (f coerces to a CiC function)   *)
(* --> The coercion is structurally decreasing, e.g., Coq will accept         *)
(*   Fixpoint size t := let: node n f := t in sumn (codom (size \o f)) + 1.   *)
(* as structurally decreasing on t of the inductive tree type above.          *)
(*       {dffun fT} == alias for {ffun fT} that inherits combinatorial        *)
(*                     structures on rT, when rT DOES depend on x.            *)
(*      total_fun g == the function induced by a dependent function g of type *)
(*                     forall x, rT on the total space {x : aT & rT}.         *)
(*                  := fun x =>  Tagged (fun x => rT) (g x).                  *)
(*        tfgraph f == the total function graph of f, i.e., the #|aT|.-tuple  *)
(*                     of all the (dependent pair) values of total_fun f.     *)
(*         finfun g == the f extensionally equal to g, and the RECOMMENDED    *)
(*                     interface for building elements of {ffun fT}.          *)
(* [ffun x : aT => E] := finfun (fun x : aT => E).                            *)
(*                     There should be an explicit type constraint on E if    *)
(*                     type does not depend on x, due to the Coq unification  *)
(*                     limitations referred to above.                         *)
(*        ffun0 aT0 == the trivial finfun, from a proof aT0 that #|aT| = 0.   *)
(*   f \in family F == f belongs to the family F (f x \in F x for all x)      *)
(*   There are additional operations for non-dependent finite functions,      *)
(* i.e., f in {ffun aT -> rT}.                                                *)
(*    [ffun x => E] := finfun (fun x => E).                                   *)
(*                     The type of E must not depend on x; this restriction   *)
(*                     is a mitigation of the aforementioned Coq unification  *)
(*                     limitations.                                           *)
(*       [ffun=> E] := [ffun _ => E] (E should not have a dependent type).    *)
(*         fgraph f == the function graph of f, i.e., the #|aT|.-tuple        *)
(*                     listing the values of f x, for x ranging over enum aT. *)
(*         Finfun G == the finfun f whose (simple) function graph is G.       *)
(*  f \in ffun_on R == the range of f is a subset of R.                       *)
(*     y.-support f == the y-support of f, i.e., [pred x | f x != y].         *)
(*                     Thus, y.-support f \subset D means f has y-support D.  *)
(*                     We will put Notation support := 0.-support in ssralg.  *)
(* f \in pffun_on y D R == f is a y-partial function from D to R:             *)
(*                     f has y-support D and f x \in R for all x \in D.       *)
(*  f \in pfamily y D F == f belongs to the y-partial family from D to F:     *)
(*                     f has y-support D and f x \in F x for all x \in D.     *)
(*       fprod I T_ == alternative construct to {ffun forall i : I, T_ i} for *)
(*                     the finite product of finTypes, in a set-theoretic way *)
(*                  := Record fprod I T_ := FProd                             *)
(*                     { fprod_fun : {ffun I -> {i : I & T_ i}} ;             *)
(*                     fprod_prop : [forall i : I, tag (fprod_fun i) == i] }. *)
(* fprod I T_ is endowed with a finType structure and allow these operations: *)
(* [fprod i : I => F] == the dependent fprod function built from fun i:I => F *)
(*                    := fprod_of_fun (fun i : I => F)                        *)
(*   [fprod : I => F] == [fprod _ : I => F]                                   *)
(*     [fprod i => F] == [fprod i : _ => F]                                   *)
(*       [fprod => F] == [fprod _ : _ => F]                                   *)
(* These fprod terms coerce into vanilla dependent functions via the coercion *)
(*        fun_of_fprod I T_ : fprod I T_ -> (forall i : I, T_ i).             *)
(* We also define the mutual bijections:                                      *)
(*           fprod_of_dffun : {dffun forall i : I, T_ i} -> fprod I T_        *)
(*           dffun_of_fprod : fprod I T_ -> {dffun forall i : I, T_ i}        *)
(*    of_family_tagged_with : {x in family (tagged_with T_)} -> fprod I T_    *)
(*    to_family_tagged_with : fprod I T_ -> {x in family (tagged_with T_)}    *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Section Def.

Variables (aT : finType) (rT : aT -> Type).

Inductive finfun_on : seq aT -> Type :=
| finfun_nil                            : finfun_on [::]
| finfun_cons x s of rT x & finfun_on s : finfun_on (x :: s).

Local Fixpoint finfun_rec (g : forall x, rT x) s : finfun_on s :=
  if s is x1 :: s1 then finfun_cons (g x1) (finfun_rec g s1) else finfun_nil.

Local Fixpoint fun_of_fin_rec x s (f_s : finfun_on s) : x \in s -> rT x :=
  if f_s is finfun_cons x1 s1 y1 f_s1 then
    if eqP is ReflectT Dx in reflect _ Dxb return Dxb || (x \in s1) -> rT x then
      fun=> ecast x (rT x) (esym Dx) y1
    else fun_of_fin_rec f_s1
  else fun isF =>  False_rect (rT x) (notF isF).

Variant finfun_of (ph : phant (forall x, rT x)) : predArgType :=
  FinfunOf of finfun_on (enum aT).

Definition dfinfun_of ph := finfun_of ph.

Definition fun_of_fin ph (f : finfun_of ph) x :=
  let: FinfunOf f_aT := f in fun_of_fin_rec f_aT (mem_enum aT x).

End Def.

Coercion fun_of_fin : finfun_of >-> Funclass.
Identity Coercion unfold_dfinfun_of : dfinfun_of >-> finfun_of.
Arguments fun_of_fin {aT rT ph} f x.

Notation "{ 'ffun' fT }" := (finfun_of (Phant fT))
  (format "{ 'ffun'  '[hv' fT ']' }") : type_scope.

Notation "{ 'dffun' fT }" := (dfinfun_of (Phant fT))
  (format "{ 'dffun'  '[hv' fT ']' }") : type_scope.

Definition exp_finIndexType n : finType := 'I_n.
Notation "T ^ n" :=
  (@finfun_of (exp_finIndexType n) (fun=> T) (Phant _)) : type_scope.

Local Notation finPi aT rT := (forall x : Finite.sort aT, rT x) (only parsing).

HB.lock Definition finfun aT rT g :=
  FinfunOf (Phant (finPi aT rT)) (finfun_rec g (enum aT)).
Canonical finfun_unlock := Unlockable finfun.unlock.
Arguments finfun {aT rT} g.

Notation "[ 'ffun' x : aT => E ]" := (finfun (fun x : aT => E))
  (x name) : function_scope.

Notation "[ 'ffun' x => E ]" := (@finfun _ (fun=> _) (fun x => E))
  (x name, format "[ 'ffun'  x  =>  E ]") : function_scope.

Notation "[ 'ffun' => E ]" := [ffun _ => E]
  (format "[ 'ffun' =>  E ]") : function_scope.

(* Example outcommented.
(* Examples of using finite functions as containers in recursive inductive    *)
(* types, and making use of the fact that the type and accessor are           *)
(* structurally positive and decreasing, respectively.                        *)
Unset Elimination Schemes.
Inductive tree := node n of tree ^ n.
Fixpoint size t := let: node n f := t in sumn (codom (size \o f)) + 1.
Example tree_step (K : tree -> Type) :=
  forall n st (t := node st) & forall i : 'I_n, K (st i), K t.
Example tree_rect K (Kstep : tree_step K) : forall t, K t.
Proof. by fix IHt 1 => -[n st]; apply/Kstep=> i; apply: IHt. Defined.

(* An artificial example use of dependent functions.                          *)
Inductive tri_tree n := tri_row of {ffun forall i : 'I_n, tri_tree i}.
Fixpoint tri_size n (t : tri_tree n) :=
  let: tri_row f := t in sumn [seq tri_size (f i) | i : 'I_n] + 1.
Example tri_tree_step (K : forall n, tri_tree n -> Type) :=
  forall n st (t := tri_row st) & forall i : 'I_n, K i (st i), K n t.
Example tri_tree_rect K (Kstep : tri_tree_step K) : forall n t, K n t.
Proof. by fix IHt 2 => n [st]; apply/Kstep=> i; apply: IHt. Defined.
Set Elimination Schemes.
(* End example. *) *)

(* The correspondence between finfun_of and CiC dependent functions.          *)
Section DepPlainTheory.
Variables (aT : finType) (rT : aT -> Type).
Notation fT := {ffun finPi aT rT}.
Implicit Type f : fT.

Fact ffun0 (aT0 : #|aT| = 0) : fT.
Proof. by apply/finfun=> x; have:= card0_eq aT0 x. Qed.

Lemma ffunE g x : (finfun g : fT) x = g x.
Proof.
rewrite unlock /=; set s := enum aT; set s_x : mem_seq s x := mem_enum _ _.
by elim: s s_x => //= x1 s IHs; case: eqP => [|_]; [case: x1 / | apply: IHs].
Qed.

Lemma ffunP (f1 f2 : fT) : (forall x, f1 x = f2 x) <-> f1 = f2.
Proof.
suffices ffunK f g: (forall x, f x = g x) -> f = finfun g.
  by split=> [/ffunK|] -> //; apply/esym/ffunK.
case: f => f Dg; rewrite unlock; congr FinfunOf.
have{} Dg x (aTx : mem_seq (enum aT) x): g x = fun_of_fin_rec f aTx.
  by rewrite -Dg /= (bool_irrelevance (mem_enum _ _) aTx).
elim: (enum aT) / f (enum_uniq aT) => //= x1 s y f IHf /andP[s'x1 Us] in Dg *.
rewrite Dg ?eqxx //=; case: eqP => // /eq_axiomK-> /= _.
rewrite {}IHf // => x s_x; rewrite Dg ?s_x ?orbT //.
by case: eqP (memPn s'x1 x s_x) => // _ _ /(bool_irrelevance s_x) <-.
Qed.

Lemma ffunK : @cancel (finPi aT rT) fT fun_of_fin finfun.
Proof. by move=> f; apply/ffunP=> x; rewrite ffunE. Qed.

Lemma eq_dffun (g1 g2 : forall x, rT x) :
   (forall x, g1 x = g2 x) -> finfun g1 = finfun g2.
Proof. by move=> eq_g; apply/ffunP => x; rewrite !ffunE eq_g. Qed.

Definition total_fun g x := Tagged rT (g x : rT x).

Definition tfgraph f := codom_tuple (total_fun f).

Lemma codom_tffun f : codom (total_fun f) = tfgraph f. Proof. by []. Qed.

Local Definition tfgraph_inv (G : #|aT|.-tuple {x : aT & rT x}) : option fT :=
  if eqfunP isn't ReflectT Dtg then None else
  Some [ffun x => ecast x (rT x) (Dtg x) (tagged (tnth G (enum_rank x)))].

Local Lemma tfgraphK : pcancel tfgraph tfgraph_inv.
Proof.
move=> f; have Dg x: tnth (tfgraph f) (enum_rank x) = total_fun f x.
  by rewrite tnth_map -[tnth _ _]enum_val_nth enum_rankK.
rewrite /tfgraph_inv; case: eqfunP => /= [Dtg | [] x]; last by rewrite Dg.
congr (Some _); apply/ffunP=> x; rewrite ffunE.
by rewrite Dg in (Dx := Dtg x) *; rewrite eq_axiomK.
Qed.

Lemma tfgraph_inj : injective tfgraph. Proof. exact: pcan_inj tfgraphK. Qed.

Definition family_mem mF := [pred f : fT | [forall x, in_mem (f x) (mF x)]].

Variables (pT : forall x, predType (rT x)) (F : forall x, pT x).

(* Helper for defining notation for function families. *)
Local Definition fmem F x := mem (F x : pT x).

Lemma familyP f : reflect (forall x, f x \in F x) (f \in family_mem (fmem F)).
Proof. exact: forallP. Qed.

End DepPlainTheory.

Arguments ffunK {aT rT} f : rename.
Arguments ffun0 {aT rT} aT0.
Arguments eq_dffun {aT rT} [g1] g2 eq_g12.
Arguments total_fun {aT rT} g x.
Arguments tfgraph {aT rT} f.
Arguments tfgraphK {aT rT} f : rename.
Arguments tfgraph_inj {aT rT} [f1 f2] : rename.

Arguments fmem {aT rT pT} F x /.
Arguments familyP {aT rT pT F f}.
Notation family F := (family_mem (fmem F)).

Section InheritedStructures.

Variable aT : finType.
Notation dffun_aT rT rS := {dffun forall x : aT, rT x : rS}.

#[hnf] HB.instance Definition _ rT := Equality.copy (dffun_aT rT eqType)
  (pcan_type tfgraphK).
#[hnf] HB.instance Definition _ (rT : eqType) :=
  Equality.copy {ffun aT -> rT} {dffun forall _, rT}.

#[hnf] HB.instance Definition _ rT := Choice.copy (dffun_aT rT choiceType)
  (pcan_type tfgraphK).
#[hnf] HB.instance Definition _ (rT : choiceType) :=
  Choice.copy {ffun aT -> rT} {dffun forall _, rT}.

#[hnf] HB.instance Definition _ rT := Countable.copy (dffun_aT rT countType)
  (pcan_type tfgraphK).
#[hnf] HB.instance Definition _ (rT : countType) :=
  Countable.copy {ffun aT -> rT} {dffun forall _, rT}.

#[hnf] HB.instance Definition _ rT := Finite.copy (dffun_aT rT finType)
  (pcan_type tfgraphK).
#[hnf] HB.instance Definition _ (rT : finType) :=
  Finite.copy {ffun aT -> rT} {dffun forall _, rT}.

End InheritedStructures.

Section FinFunTuple.

Context {T : Type} {n : nat}.

Definition tuple_of_finfun (f : T ^ n) : n.-tuple T := [tuple f i | i < n].

Definition finfun_of_tuple (t : n.-tuple T) : (T ^ n) := [ffun i => tnth t i].

Lemma finfun_of_tupleK : cancel finfun_of_tuple tuple_of_finfun.
Proof.
by move=> t; apply: eq_from_tnth => i; rewrite tnth_map ffunE tnth_ord_tuple.
Qed.

Lemma tuple_of_finfunK : cancel tuple_of_finfun finfun_of_tuple.
Proof.
by move=> f; apply/ffunP => i; rewrite ffunE tnth_map tnth_ord_tuple.
Qed.

End FinFunTuple.

Section FunPlainTheory.

Variables (aT : finType) (rT : Type).
Notation fT := {ffun aT -> rT}.
Implicit Types (f : fT) (R : pred rT).

Definition fgraph f := codom_tuple f.

Definition Finfun (G : #|aT|.-tuple rT) := [ffun x => tnth G (enum_rank x)].

Lemma tnth_fgraph f i : tnth (fgraph f) i = f (enum_val i).
Proof. by rewrite tnth_map /tnth -enum_val_nth. Qed.

Lemma FinfunK : cancel Finfun fgraph.
Proof.
by move=> G; apply/eq_from_tnth=> i; rewrite tnth_fgraph ffunE enum_valK.
Qed.

Lemma fgraphK : cancel fgraph Finfun.
Proof. by move=> f; apply/ffunP=> x; rewrite ffunE tnth_fgraph enum_rankK. Qed.

Lemma fgraph_ffun0 aT0 : fgraph (ffun0 aT0) = nil :> seq rT.
Proof. by apply/nilP/eqP; rewrite size_tuple. Qed.

Lemma codom_ffun f : codom f = fgraph f. Proof. by []. Qed.

Lemma tagged_tfgraph f : @map _ rT tagged (tfgraph f) = fgraph f.
Proof. by rewrite -map_comp. Qed.

Lemma eq_ffun (g1 g2 : aT -> rT) : g1 =1 g2 -> finfun g1 = finfun g2.
Proof. exact: eq_dffun. Qed.

Lemma fgraph_codom f : fgraph f = codom_tuple f.
Proof. exact/esym/val_inj/codom_ffun. Qed.

Definition ffun_on_mem (mR : mem_pred rT) := family_mem (fun _ : aT => mR).

Lemma ffun_onP R f : reflect (forall x, f x \in R) (f \in ffun_on_mem (mem R)).
Proof. exact: forallP. Qed.

End FunPlainTheory.

Arguments Finfun {aT rT} G.
Arguments fgraph {aT rT} f.
Arguments FinfunK {aT rT} G : rename.
Arguments fgraphK {aT rT} f : rename.
Arguments eq_ffun {aT rT} [g1] g2 eq_g12.
Arguments ffun_onP {aT rT R f}.

Notation ffun_on R := (ffun_on_mem _ (mem R)).
Notation "@ 'ffun_on' aT R" :=
  (ffun_on R : simpl_pred (finfun_of (Phant (aT -> id _))))
  (at level 10, aT, R at level 9).

Lemma nth_fgraph_ord T n (x0 : T) (i : 'I_n) f : nth x0 (fgraph f) i = f i.
Proof.
by rewrite -[i in RHS]enum_rankK -tnth_fgraph  (tnth_nth x0) enum_rank_ord.
Qed.

(*****************************************************************************)

Section Support.

Variables (aT : Type) (rT : eqType).

Definition support_for y (f : aT -> rT) := [pred x | f x != y].

Lemma supportE x y f : (x \in support_for y f) = (f x != y). Proof. by []. Qed.

End Support.

Notation "y .-support" := (support_for y)
  (at level 1, format "y .-support") : function_scope.

Section EqTheory.

Variables (aT : finType) (rT : eqType).
Notation fT := {ffun aT -> rT}.
Implicit Types (y : rT) (D : {pred aT}) (R : {pred rT}) (f : fT).

Lemma supportP y D g :
  reflect (forall x, x \notin D -> g x = y) (y.-support g \subset D).
Proof.
by (apply: (iffP subsetP) => Dg x; [apply: contraNeq|apply: contraR]) => /Dg->.
Qed.

Definition pfamily_mem y mD (mF : aT -> mem_pred rT) :=
  family (fun i : aT => if in_mem i mD then pred_of_simpl (mF i) else pred1 y).

Lemma pfamilyP (pT : predType rT) y D (F : aT -> pT) f :
  reflect (y.-support f \subset D /\ {in D, forall x, f x \in F x})
          (f \in pfamily_mem y (mem D) (fmem F)).
Proof.
apply: (iffP familyP) => [/= f_pfam | [/supportP f_supp f_fam] x].
  split=> [|x Ax]; last by have:= f_pfam x; rewrite Ax.
  by apply/subsetP=> x; case: ifP (f_pfam x) => //= _ fx0 /negP[].
by case: ifPn => Ax /=; rewrite inE /= (f_fam, f_supp).
Qed.

Definition pffun_on_mem y mD mR := pfamily_mem y mD (fun _ => mR).

Lemma pffun_onP y D R f :
  reflect (y.-support f \subset D /\ {subset image f D <= R})
          (f \in pffun_on_mem y (mem D) (mem R)).
Proof.
apply: (iffP (pfamilyP y D (fun _ => R) f)) => [] [-> f_fam]; split=> //.
  by move=> _ /imageP[x Ax ->]; apply: f_fam.
by move=> x Ax; apply: f_fam; apply/imageP; exists x.
Qed.

End EqTheory.

Arguments supportP {aT rT y D g}.
Arguments pfamilyP {aT rT pT y D F f}.
Arguments pffun_onP {aT rT y D R f}.

Notation pfamily y D F := (pfamily_mem y (mem D) (fmem F)).
Notation pffun_on y D R := (pffun_on_mem y (mem D) (mem R)).

(*****************************************************************************)

Section FinDepTheory.

Variables (aT : finType) (rT : aT -> finType).
Notation fT := {dffun forall x : aT, rT x}.

Lemma card_family (F : forall x, pred (rT x)) :
  #|(family F : simpl_pred fT)| = foldr muln 1 [seq #|F x| | x : aT].
Proof.
rewrite /image_mem; set E := enum aT in (uniqE := enum_uniq aT) *.
have trivF x: x \notin E -> #|F x| = 1 by rewrite mem_enum.
elim: E uniqE => /= [_ | x0 E IH_E /andP[E'x0 uniqE]] in F trivF *.
  have /fin_all_exists[f0 Ff0] x: exists y0, F x =i pred1 y0.
    have /pred0Pn[y Fy]: #|F x| != 0 by rewrite trivF.
    by exists y; apply/fsym/subset_cardP; rewrite ?subset_pred1 // card1 trivF.
  apply: eq_card1 (finfun f0 : fT) _ _ => f; apply/familyP/eqP=> [Ff | {f}-> x].
    by apply/ffunP=> x; have /[!(Ff0, ffunE)]/eqP := Ff x.
  by rewrite ffunE Ff0 inE /=.
have [y0 Fxy0 | Fx00] := pickP (F x0); last first.
  by rewrite !eq_card0 // => f; apply: contraFF (Fx00 (f x0))=> /familyP; apply.
pose F1 x := if eqP is ReflectT Dx then xpred1 (ecast x (rT x) Dx y0) else F x.
transitivity (#|[predX F x0 & family F1 : pred fT]|); last first.
  rewrite cardX {}IH_E {uniqE}// => [|x E'x]; last first.
    rewrite /F1; case: eqP => [Dx | /nesym/eqP-x0'x]; first exact: card1.
    by rewrite trivF // negb_or x0'x.
  congr (_ * foldr _ _ _); apply/eq_in_map=> x Ex.
  by rewrite /F1; case: eqP => // Dx0; rewrite Dx0 Ex in E'x0.
pose g yf : fT := let: (y, f) := yf : rT x0 * fT in
  [ffun x => if eqP is ReflectT Dx then ecast x (rT x) Dx y else f x].
have gK: cancel (fun f : fT => (f x0, g (y0, f))) g.
  by move=> f; apply/ffunP=> x; rewrite !ffunE; case: eqP => //; case: x /.
rewrite -(card_image (can_inj gK)); apply: eq_card => [] [y f] /=.
apply/imageP/andP=> [[f1 /familyP/=Ff1] [-> ->]| [/=Fx0y /familyP/=Ff]].
  split=> //; apply/familyP=> x; rewrite ffunE /F1 /=.
  by case: eqP => // Dx; apply: eqxx.
exists (g (y, f)).
  by apply/familyP=> x; have:= Ff x; rewrite ffunE /F1; case: eqP; [case: x /|].
congr (_, _); first by rewrite /= ffunE; case: eqP => // Dx; rewrite eq_axiomK.
by apply/ffunP=> x; have:= Ff x; rewrite !ffunE /F1; case: eqP => // Dx /eqP.
Qed.

Lemma card_dep_ffun : #|fT| = foldr muln 1 [seq #|rT x| | x : aT].
Proof. by rewrite -card_family; apply/esym/eq_card=> f; apply/familyP. Qed.

End FinDepTheory.

Section FinFunTheory.

Variables aT rT : finType.
Notation fT := {ffun aT -> rT}.
Implicit Types (D : {pred aT}) (R : {pred rT}) (F : aT -> pred rT).

Lemma card_pfamily y0 D F :
  #|pfamily y0 D F| = foldr muln 1 [seq #|F x| | x in D].
Proof.
rewrite card_family !/(image _ _) /(enum D) -enumT /=.
by elim: (enum aT) => //= x E ->; have [// | D'x] := ifP; rewrite card1 mul1n.
Qed.

Lemma card_pffun_on y0 D R : #|pffun_on y0 D R| = #|R| ^ #|D|.
Proof.
rewrite (cardE D) card_pfamily /image_mem.
by elim: (enum D) => //= _ e ->; rewrite expnS.
Qed.

Lemma card_ffun_on R : #|@ffun_on aT R| = #|R| ^ #|aT|.
Proof.
rewrite card_family /image_mem cardT.
by elim: (enum aT) => //= _ e ->; rewrite expnS.
Qed.

Lemma card_ffun : #|fT| = #|rT| ^ #|aT|.
Proof. by rewrite -card_ffun_on; apply/esym/eq_card=> f; apply/forallP. Qed.

End FinFunTheory.

Section DependentFiniteProduct.

Variables (I : finType) (T_ : I -> finType).
Notation fprod_type := (forall i : I, T_ i) (only parsing).

(* Definition of [fprod] := dependent product of finTypes *)
Record fprod : predArgType := FProd
  { fprod_fun : {ffun I -> {i : I & T_ i}} ;
    fprod_prop : [forall i : I, tag (fprod_fun i) == i] }.

Lemma tag_fprod_fun (f : fprod) i : tag (fprod_fun f i) = i.
Proof. by have /'forall_eqP/(_ i) := fprod_prop f. Qed.

Definition fun_of_fprod (f : fprod) : fprod_type :=
  fun i => etagged ('forall_eqP (fprod_prop f) i).
Coercion fun_of_fprod : fprod >-> Funclass.

#[hnf] HB.instance Definition _ := [isSub for fprod_fun].
#[hnf] HB.instance Definition _ := [Finite of fprod by <:].

Lemma fprod_of_prod_type_subproof (f : fprod_type) :
   [forall i : I, tag ([ffun i => Tagged T_ (f i)] i) == i].
Proof. by apply/'forall_eqP => i /=; rewrite ffunE. Qed.

Definition fprod_of_fun (f : fprod_type) : fprod :=
  FProd (fprod_of_prod_type_subproof f).

Lemma fprodK : cancel fun_of_fprod fprod_of_fun.
Proof.
rewrite /fun_of_fprod /fprod_of_fun; case=> f fP.
by apply/val_inj/ffunP => i /=; rewrite !ffunE etaggedK.
Qed.

Lemma fprodE g i : fprod_of_fun g i = g i.
Proof.
rewrite /fprod_of_fun /fun_of_fprod/=.
by move: ('forall_eqP _ _); rewrite ffunE/= => e; rewrite eq_axiomK.
Qed.

Lemma fprodP (f1 f2 : fprod) : (forall x, f1 x = f2 x) <-> f1 = f2.
Proof.
split=> [eq_f12|->//]; rewrite -[f1]fprodK -[f2]fprodK.
by apply/val_inj/ffunP => i; rewrite !ffunE eq_f12.
Qed.

Definition dffun_of_fprod (f : fprod) : {dffun forall i : I, T_ i} :=
  [ffun x => f x].

Definition fprod_of_dffun (f : {dffun forall i : I, T_ i}) : fprod :=
  fprod_of_fun f.

Lemma dffun_of_fprodK : cancel dffun_of_fprod fprod_of_dffun.
Proof. by move=> f; apply/fprodP=> i; rewrite fprodE ffunE. Qed.
#[local] Hint Resolve dffun_of_fprodK : core.

Lemma fprod_of_dffunK : cancel fprod_of_dffun dffun_of_fprod.
Proof. by move=> f; apply/ffunP => i; rewrite !ffunE fprodE. Qed.
#[local] Hint Resolve fprod_of_dffunK : core.

Lemma dffun_of_fprod_bij : bijective dffun_of_fprod.
Proof. by exists fprod_of_dffun. Qed.

Lemma fprod_of_dffun_bij : bijective fprod_of_dffun.
Proof. by exists dffun_of_fprod. Qed.

Definition to_family_tagged_with (f : fprod) : {x in family (tagged_with T_)} :=
  exist _ (fprod_fun f) (fprod_prop f).

Definition of_family_tagged_with (f : {x in family (tagged_with T_)}) : fprod :=
  FProd (valP f).

Lemma to_family_tagged_withK :
  cancel to_family_tagged_with of_family_tagged_with.
Proof. by case=> f fP; apply/val_inj. Qed.
#[local] Hint Resolve to_family_tagged_withK : core.

Lemma of_family_tagged_withK :
  cancel of_family_tagged_with to_family_tagged_with.
Proof. by case=> f fP; apply/val_inj. Qed.
#[local] Hint Resolve of_family_tagged_withK : core.

Lemma to_family_tagged_with_bij : bijective to_family_tagged_with.
Proof. by exists of_family_tagged_with. Qed.

Lemma of_family_tagged_with_bij : bijective of_family_tagged_with.
Proof. by exists to_family_tagged_with. Qed.

Lemma etaggedE (a : fprod) (i : I) (e : tag (fprod_fun a i) = i) :
  etagged e = a i.
Proof. by case: a e => //= f fP e; congr etagged; apply: eq_irrelevance. Qed.

End DependentFiniteProduct.

Arguments to_family_tagged_with {I T_}.
Arguments of_family_tagged_with {I T_}.

Notation "[ 'fprod' i : I => F ]" := (fprod_of_fun (fun i : I => F))
  (i name, only parsing) : function_scope.

Notation "[ 'fprod' : I => F ]" := (fprod_of_fun (fun _ : I => F))
  (only parsing) : function_scope.

Notation "[ 'fprod' i => F ]" := [fprod i : _ => F]
  (i name, format "[ 'fprod'  i  =>  F ]") : function_scope.

Notation "[ 'fprod' => F ]" := [fprod : _ => F]
  (format "[ 'fprod' =>  F ]") : function_scope.