1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From HB Require Import structures.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice.
From mathcomp Require Import fintype tuple.
(******************************************************************************)
(* This file implements a type for functions with a finite domain: *)
(* {ffun aT -> rT} where aT should have a finType structure, *)
(* {ffun forall x : aT, rT} for dependent functions over a finType aT, *)
(* and {ffun funT} where funT expands to a product over a finType. *)
(* Any eqType, choiceType, countType and finType structures on rT extend to *)
(* {ffun aT -> rT} as Leibnitz equality and extensional equalities coincide. *)
(* (T ^ n)%type is notation for {ffun 'I_n -> T}, which is isomorphic *)
(* to n.-tuple T, but is structurally positive and thus can be used to *)
(* define inductive types, e.g., Inductive tree := node n of tree ^ n (see *)
(* mid-file for an expanded example). *)
(* --> More generally, {ffun fT} is always structurally positive. *)
(* {ffun fT} inherits combinatorial structures of rT, i.e., eqType, *)
(* choiceType, countType, and finType. However, due to some limitations of *)
(* the Coq 8.9 unification code the structures are only inherited in the *)
(* NON dependent case, when rT does not depend on x. *)
(* For f : {ffun fT} with fT := forall x : aT, rT we define *)
(* f x == the image of x under f (f coerces to a CiC function) *)
(* --> The coercion is structurally decreasing, e.g., Coq will accept *)
(* Fixpoint size t := let: node n f := t in sumn (codom (size \o f)) + 1. *)
(* as structurally decreasing on t of the inductive tree type above. *)
(* {dffun fT} == alias for {ffun fT} that inherits combinatorial *)
(* structures on rT, when rT DOES depend on x. *)
(* total_fun g == the function induced by a dependent function g of type *)
(* forall x, rT on the total space {x : aT & rT}. *)
(* := fun x => Tagged (fun x => rT) (g x). *)
(* tfgraph f == the total function graph of f, i.e., the #|aT|.-tuple *)
(* of all the (dependent pair) values of total_fun f. *)
(* finfun g == the f extensionally equal to g, and the RECOMMENDED *)
(* interface for building elements of {ffun fT}. *)
(* [ffun x : aT => E] := finfun (fun x : aT => E). *)
(* There should be an explicit type constraint on E if *)
(* type does not depend on x, due to the Coq unification *)
(* limitations referred to above. *)
(* ffun0 aT0 == the trivial finfun, from a proof aT0 that #|aT| = 0. *)
(* f \in family F == f belongs to the family F (f x \in F x for all x) *)
(* There are additional operations for non-dependent finite functions, *)
(* i.e., f in {ffun aT -> rT}. *)
(* [ffun x => E] := finfun (fun x => E). *)
(* The type of E must not depend on x; this restriction *)
(* is a mitigation of the aforementioned Coq unification *)
(* limitations. *)
(* [ffun=> E] := [ffun _ => E] (E should not have a dependent type). *)
(* fgraph f == the function graph of f, i.e., the #|aT|.-tuple *)
(* listing the values of f x, for x ranging over enum aT. *)
(* Finfun G == the finfun f whose (simple) function graph is G. *)
(* f \in ffun_on R == the range of f is a subset of R. *)
(* y.-support f == the y-support of f, i.e., [pred x | f x != y]. *)
(* Thus, y.-support f \subset D means f has y-support D. *)
(* We will put Notation support := 0.-support in ssralg. *)
(* f \in pffun_on y D R == f is a y-partial function from D to R: *)
(* f has y-support D and f x \in R for all x \in D. *)
(* f \in pfamily y D F == f belongs to the y-partial family from D to F: *)
(* f has y-support D and f x \in F x for all x \in D. *)
(* fprod I T_ == alternative construct to {ffun forall i : I, T_ i} for *)
(* the finite product of finTypes, in a set-theoretic way *)
(* := Record fprod I T_ := FProd *)
(* { fprod_fun : {ffun I -> {i : I & T_ i}} ; *)
(* fprod_prop : [forall i : I, tag (fprod_fun i) == i] }. *)
(* fprod I T_ is endowed with a finType structure and allow these operations: *)
(* [fprod i : I => F] == the dependent fprod function built from fun i:I => F *)
(* := fprod_of_fun (fun i : I => F) *)
(* [fprod : I => F] == [fprod _ : I => F] *)
(* [fprod i => F] == [fprod i : _ => F] *)
(* [fprod => F] == [fprod _ : _ => F] *)
(* These fprod terms coerce into vanilla dependent functions via the coercion *)
(* fun_of_fprod I T_ : fprod I T_ -> (forall i : I, T_ i). *)
(* We also define the mutual bijections: *)
(* fprod_of_dffun : {dffun forall i : I, T_ i} -> fprod I T_ *)
(* dffun_of_fprod : fprod I T_ -> {dffun forall i : I, T_ i} *)
(* of_family_tagged_with : {x in family (tagged_with T_)} -> fprod I T_ *)
(* to_family_tagged_with : fprod I T_ -> {x in family (tagged_with T_)} *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Section Def.
Variables (aT : finType) (rT : aT -> Type).
Inductive finfun_on : seq aT -> Type :=
| finfun_nil : finfun_on [::]
| finfun_cons x s of rT x & finfun_on s : finfun_on (x :: s).
Local Fixpoint finfun_rec (g : forall x, rT x) s : finfun_on s :=
if s is x1 :: s1 then finfun_cons (g x1) (finfun_rec g s1) else finfun_nil.
Local Fixpoint fun_of_fin_rec x s (f_s : finfun_on s) : x \in s -> rT x :=
if f_s is finfun_cons x1 s1 y1 f_s1 then
if eqP is ReflectT Dx in reflect _ Dxb return Dxb || (x \in s1) -> rT x then
fun=> ecast x (rT x) (esym Dx) y1
else fun_of_fin_rec f_s1
else fun isF => False_rect (rT x) (notF isF).
Variant finfun_of (ph : phant (forall x, rT x)) : predArgType :=
FinfunOf of finfun_on (enum aT).
Definition dfinfun_of ph := finfun_of ph.
Definition fun_of_fin ph (f : finfun_of ph) x :=
let: FinfunOf f_aT := f in fun_of_fin_rec f_aT (mem_enum aT x).
End Def.
Coercion fun_of_fin : finfun_of >-> Funclass.
Identity Coercion unfold_dfinfun_of : dfinfun_of >-> finfun_of.
Arguments fun_of_fin {aT rT ph} f x.
Notation "{ 'ffun' fT }" := (finfun_of (Phant fT))
(format "{ 'ffun' '[hv' fT ']' }") : type_scope.
Notation "{ 'dffun' fT }" := (dfinfun_of (Phant fT))
(format "{ 'dffun' '[hv' fT ']' }") : type_scope.
Definition exp_finIndexType n : finType := 'I_n.
Notation "T ^ n" :=
(@finfun_of (exp_finIndexType n) (fun=> T) (Phant _)) : type_scope.
Local Notation finPi aT rT := (forall x : Finite.sort aT, rT x) (only parsing).
HB.lock Definition finfun aT rT g :=
FinfunOf (Phant (finPi aT rT)) (finfun_rec g (enum aT)).
Canonical finfun_unlock := Unlockable finfun.unlock.
Arguments finfun {aT rT} g.
Notation "[ 'ffun' x : aT => E ]" := (finfun (fun x : aT => E))
(x name) : function_scope.
Notation "[ 'ffun' x => E ]" := (@finfun _ (fun=> _) (fun x => E))
(x name, format "[ 'ffun' x => E ]") : function_scope.
Notation "[ 'ffun' => E ]" := [ffun _ => E]
(format "[ 'ffun' => E ]") : function_scope.
(* Example outcommented.
(* Examples of using finite functions as containers in recursive inductive *)
(* types, and making use of the fact that the type and accessor are *)
(* structurally positive and decreasing, respectively. *)
Unset Elimination Schemes.
Inductive tree := node n of tree ^ n.
Fixpoint size t := let: node n f := t in sumn (codom (size \o f)) + 1.
Example tree_step (K : tree -> Type) :=
forall n st (t := node st) & forall i : 'I_n, K (st i), K t.
Example tree_rect K (Kstep : tree_step K) : forall t, K t.
Proof. by fix IHt 1 => -[n st]; apply/Kstep=> i; apply: IHt. Defined.
(* An artificial example use of dependent functions. *)
Inductive tri_tree n := tri_row of {ffun forall i : 'I_n, tri_tree i}.
Fixpoint tri_size n (t : tri_tree n) :=
let: tri_row f := t in sumn [seq tri_size (f i) | i : 'I_n] + 1.
Example tri_tree_step (K : forall n, tri_tree n -> Type) :=
forall n st (t := tri_row st) & forall i : 'I_n, K i (st i), K n t.
Example tri_tree_rect K (Kstep : tri_tree_step K) : forall n t, K n t.
Proof. by fix IHt 2 => n [st]; apply/Kstep=> i; apply: IHt. Defined.
Set Elimination Schemes.
(* End example. *) *)
(* The correspondence between finfun_of and CiC dependent functions. *)
Section DepPlainTheory.
Variables (aT : finType) (rT : aT -> Type).
Notation fT := {ffun finPi aT rT}.
Implicit Type f : fT.
Fact ffun0 (aT0 : #|aT| = 0) : fT.
Proof. by apply/finfun=> x; have:= card0_eq aT0 x. Qed.
Lemma ffunE g x : (finfun g : fT) x = g x.
Proof.
rewrite unlock /=; set s := enum aT; set s_x : mem_seq s x := mem_enum _ _.
by elim: s s_x => //= x1 s IHs; case: eqP => [|_]; [case: x1 / | apply: IHs].
Qed.
Lemma ffunP (f1 f2 : fT) : (forall x, f1 x = f2 x) <-> f1 = f2.
Proof.
suffices ffunK f g: (forall x, f x = g x) -> f = finfun g.
by split=> [/ffunK|] -> //; apply/esym/ffunK.
case: f => f Dg; rewrite unlock; congr FinfunOf.
have{} Dg x (aTx : mem_seq (enum aT) x): g x = fun_of_fin_rec f aTx.
by rewrite -Dg /= (bool_irrelevance (mem_enum _ _) aTx).
elim: (enum aT) / f (enum_uniq aT) => //= x1 s y f IHf /andP[s'x1 Us] in Dg *.
rewrite Dg ?eqxx //=; case: eqP => // /eq_axiomK-> /= _.
rewrite {}IHf // => x s_x; rewrite Dg ?s_x ?orbT //.
by case: eqP (memPn s'x1 x s_x) => // _ _ /(bool_irrelevance s_x) <-.
Qed.
Lemma ffunK : @cancel (finPi aT rT) fT fun_of_fin finfun.
Proof. by move=> f; apply/ffunP=> x; rewrite ffunE. Qed.
Lemma eq_dffun (g1 g2 : forall x, rT x) :
(forall x, g1 x = g2 x) -> finfun g1 = finfun g2.
Proof. by move=> eq_g; apply/ffunP => x; rewrite !ffunE eq_g. Qed.
Definition total_fun g x := Tagged rT (g x : rT x).
Definition tfgraph f := codom_tuple (total_fun f).
Lemma codom_tffun f : codom (total_fun f) = tfgraph f. Proof. by []. Qed.
Local Definition tfgraph_inv (G : #|aT|.-tuple {x : aT & rT x}) : option fT :=
if eqfunP isn't ReflectT Dtg then None else
Some [ffun x => ecast x (rT x) (Dtg x) (tagged (tnth G (enum_rank x)))].
Local Lemma tfgraphK : pcancel tfgraph tfgraph_inv.
Proof.
move=> f; have Dg x: tnth (tfgraph f) (enum_rank x) = total_fun f x.
by rewrite tnth_map -[tnth _ _]enum_val_nth enum_rankK.
rewrite /tfgraph_inv; case: eqfunP => /= [Dtg | [] x]; last by rewrite Dg.
congr (Some _); apply/ffunP=> x; rewrite ffunE.
by rewrite Dg in (Dx := Dtg x) *; rewrite eq_axiomK.
Qed.
Lemma tfgraph_inj : injective tfgraph. Proof. exact: pcan_inj tfgraphK. Qed.
Definition family_mem mF := [pred f : fT | [forall x, in_mem (f x) (mF x)]].
Variables (pT : forall x, predType (rT x)) (F : forall x, pT x).
(* Helper for defining notation for function families. *)
Local Definition fmem F x := mem (F x : pT x).
Lemma familyP f : reflect (forall x, f x \in F x) (f \in family_mem (fmem F)).
Proof. exact: forallP. Qed.
End DepPlainTheory.
Arguments ffunK {aT rT} f : rename.
Arguments ffun0 {aT rT} aT0.
Arguments eq_dffun {aT rT} [g1] g2 eq_g12.
Arguments total_fun {aT rT} g x.
Arguments tfgraph {aT rT} f.
Arguments tfgraphK {aT rT} f : rename.
Arguments tfgraph_inj {aT rT} [f1 f2] : rename.
Arguments fmem {aT rT pT} F x /.
Arguments familyP {aT rT pT F f}.
Notation family F := (family_mem (fmem F)).
Section InheritedStructures.
Variable aT : finType.
Notation dffun_aT rT rS := {dffun forall x : aT, rT x : rS}.
#[hnf] HB.instance Definition _ rT := Equality.copy (dffun_aT rT eqType)
(pcan_type tfgraphK).
#[hnf] HB.instance Definition _ (rT : eqType) :=
Equality.copy {ffun aT -> rT} {dffun forall _, rT}.
#[hnf] HB.instance Definition _ rT := Choice.copy (dffun_aT rT choiceType)
(pcan_type tfgraphK).
#[hnf] HB.instance Definition _ (rT : choiceType) :=
Choice.copy {ffun aT -> rT} {dffun forall _, rT}.
#[hnf] HB.instance Definition _ rT := Countable.copy (dffun_aT rT countType)
(pcan_type tfgraphK).
#[hnf] HB.instance Definition _ (rT : countType) :=
Countable.copy {ffun aT -> rT} {dffun forall _, rT}.
#[hnf] HB.instance Definition _ rT := Finite.copy (dffun_aT rT finType)
(pcan_type tfgraphK).
#[hnf] HB.instance Definition _ (rT : finType) :=
Finite.copy {ffun aT -> rT} {dffun forall _, rT}.
End InheritedStructures.
Section FinFunTuple.
Context {T : Type} {n : nat}.
Definition tuple_of_finfun (f : T ^ n) : n.-tuple T := [tuple f i | i < n].
Definition finfun_of_tuple (t : n.-tuple T) : (T ^ n) := [ffun i => tnth t i].
Lemma finfun_of_tupleK : cancel finfun_of_tuple tuple_of_finfun.
Proof.
by move=> t; apply: eq_from_tnth => i; rewrite tnth_map ffunE tnth_ord_tuple.
Qed.
Lemma tuple_of_finfunK : cancel tuple_of_finfun finfun_of_tuple.
Proof.
by move=> f; apply/ffunP => i; rewrite ffunE tnth_map tnth_ord_tuple.
Qed.
End FinFunTuple.
Section FunPlainTheory.
Variables (aT : finType) (rT : Type).
Notation fT := {ffun aT -> rT}.
Implicit Types (f : fT) (R : pred rT).
Definition fgraph f := codom_tuple f.
Definition Finfun (G : #|aT|.-tuple rT) := [ffun x => tnth G (enum_rank x)].
Lemma tnth_fgraph f i : tnth (fgraph f) i = f (enum_val i).
Proof. by rewrite tnth_map /tnth -enum_val_nth. Qed.
Lemma FinfunK : cancel Finfun fgraph.
Proof.
by move=> G; apply/eq_from_tnth=> i; rewrite tnth_fgraph ffunE enum_valK.
Qed.
Lemma fgraphK : cancel fgraph Finfun.
Proof. by move=> f; apply/ffunP=> x; rewrite ffunE tnth_fgraph enum_rankK. Qed.
Lemma fgraph_ffun0 aT0 : fgraph (ffun0 aT0) = nil :> seq rT.
Proof. by apply/nilP/eqP; rewrite size_tuple. Qed.
Lemma codom_ffun f : codom f = fgraph f. Proof. by []. Qed.
Lemma tagged_tfgraph f : @map _ rT tagged (tfgraph f) = fgraph f.
Proof. by rewrite -map_comp. Qed.
Lemma eq_ffun (g1 g2 : aT -> rT) : g1 =1 g2 -> finfun g1 = finfun g2.
Proof. exact: eq_dffun. Qed.
Lemma fgraph_codom f : fgraph f = codom_tuple f.
Proof. exact/esym/val_inj/codom_ffun. Qed.
Definition ffun_on_mem (mR : mem_pred rT) := family_mem (fun _ : aT => mR).
Lemma ffun_onP R f : reflect (forall x, f x \in R) (f \in ffun_on_mem (mem R)).
Proof. exact: forallP. Qed.
End FunPlainTheory.
Arguments Finfun {aT rT} G.
Arguments fgraph {aT rT} f.
Arguments FinfunK {aT rT} G : rename.
Arguments fgraphK {aT rT} f : rename.
Arguments eq_ffun {aT rT} [g1] g2 eq_g12.
Arguments ffun_onP {aT rT R f}.
Notation ffun_on R := (ffun_on_mem _ (mem R)).
Notation "@ 'ffun_on' aT R" :=
(ffun_on R : simpl_pred (finfun_of (Phant (aT -> id _))))
(at level 10, aT, R at level 9).
Lemma nth_fgraph_ord T n (x0 : T) (i : 'I_n) f : nth x0 (fgraph f) i = f i.
Proof.
by rewrite -[i in RHS]enum_rankK -tnth_fgraph (tnth_nth x0) enum_rank_ord.
Qed.
(*****************************************************************************)
Section Support.
Variables (aT : Type) (rT : eqType).
Definition support_for y (f : aT -> rT) := [pred x | f x != y].
Lemma supportE x y f : (x \in support_for y f) = (f x != y). Proof. by []. Qed.
End Support.
Notation "y .-support" := (support_for y)
(at level 1, format "y .-support") : function_scope.
Section EqTheory.
Variables (aT : finType) (rT : eqType).
Notation fT := {ffun aT -> rT}.
Implicit Types (y : rT) (D : {pred aT}) (R : {pred rT}) (f : fT).
Lemma supportP y D g :
reflect (forall x, x \notin D -> g x = y) (y.-support g \subset D).
Proof.
by (apply: (iffP subsetP) => Dg x; [apply: contraNeq|apply: contraR]) => /Dg->.
Qed.
Definition pfamily_mem y mD (mF : aT -> mem_pred rT) :=
family (fun i : aT => if in_mem i mD then pred_of_simpl (mF i) else pred1 y).
Lemma pfamilyP (pT : predType rT) y D (F : aT -> pT) f :
reflect (y.-support f \subset D /\ {in D, forall x, f x \in F x})
(f \in pfamily_mem y (mem D) (fmem F)).
Proof.
apply: (iffP familyP) => [/= f_pfam | [/supportP f_supp f_fam] x].
split=> [|x Ax]; last by have:= f_pfam x; rewrite Ax.
by apply/subsetP=> x; case: ifP (f_pfam x) => //= _ fx0 /negP[].
by case: ifPn => Ax /=; rewrite inE /= (f_fam, f_supp).
Qed.
Definition pffun_on_mem y mD mR := pfamily_mem y mD (fun _ => mR).
Lemma pffun_onP y D R f :
reflect (y.-support f \subset D /\ {subset image f D <= R})
(f \in pffun_on_mem y (mem D) (mem R)).
Proof.
apply: (iffP (pfamilyP y D (fun _ => R) f)) => [] [-> f_fam]; split=> //.
by move=> _ /imageP[x Ax ->]; apply: f_fam.
by move=> x Ax; apply: f_fam; apply/imageP; exists x.
Qed.
End EqTheory.
Arguments supportP {aT rT y D g}.
Arguments pfamilyP {aT rT pT y D F f}.
Arguments pffun_onP {aT rT y D R f}.
Notation pfamily y D F := (pfamily_mem y (mem D) (fmem F)).
Notation pffun_on y D R := (pffun_on_mem y (mem D) (mem R)).
(*****************************************************************************)
Section FinDepTheory.
Variables (aT : finType) (rT : aT -> finType).
Notation fT := {dffun forall x : aT, rT x}.
Lemma card_family (F : forall x, pred (rT x)) :
#|(family F : simpl_pred fT)| = foldr muln 1 [seq #|F x| | x : aT].
Proof.
rewrite /image_mem; set E := enum aT in (uniqE := enum_uniq aT) *.
have trivF x: x \notin E -> #|F x| = 1 by rewrite mem_enum.
elim: E uniqE => /= [_ | x0 E IH_E /andP[E'x0 uniqE]] in F trivF *.
have /fin_all_exists[f0 Ff0] x: exists y0, F x =i pred1 y0.
have /pred0Pn[y Fy]: #|F x| != 0 by rewrite trivF.
by exists y; apply/fsym/subset_cardP; rewrite ?subset_pred1 // card1 trivF.
apply: eq_card1 (finfun f0 : fT) _ _ => f; apply/familyP/eqP=> [Ff | {f}-> x].
by apply/ffunP=> x; have /[!(Ff0, ffunE)]/eqP := Ff x.
by rewrite ffunE Ff0 inE /=.
have [y0 Fxy0 | Fx00] := pickP (F x0); last first.
by rewrite !eq_card0 // => f; apply: contraFF (Fx00 (f x0))=> /familyP; apply.
pose F1 x := if eqP is ReflectT Dx then xpred1 (ecast x (rT x) Dx y0) else F x.
transitivity (#|[predX F x0 & family F1 : pred fT]|); last first.
rewrite cardX {}IH_E {uniqE}// => [|x E'x]; last first.
rewrite /F1; case: eqP => [Dx | /nesym/eqP-x0'x]; first exact: card1.
by rewrite trivF // negb_or x0'x.
congr (_ * foldr _ _ _); apply/eq_in_map=> x Ex.
by rewrite /F1; case: eqP => // Dx0; rewrite Dx0 Ex in E'x0.
pose g yf : fT := let: (y, f) := yf : rT x0 * fT in
[ffun x => if eqP is ReflectT Dx then ecast x (rT x) Dx y else f x].
have gK: cancel (fun f : fT => (f x0, g (y0, f))) g.
by move=> f; apply/ffunP=> x; rewrite !ffunE; case: eqP => //; case: x /.
rewrite -(card_image (can_inj gK)); apply: eq_card => [] [y f] /=.
apply/imageP/andP=> [[f1 /familyP/=Ff1] [-> ->]| [/=Fx0y /familyP/=Ff]].
split=> //; apply/familyP=> x; rewrite ffunE /F1 /=.
by case: eqP => // Dx; apply: eqxx.
exists (g (y, f)).
by apply/familyP=> x; have:= Ff x; rewrite ffunE /F1; case: eqP; [case: x /|].
congr (_, _); first by rewrite /= ffunE; case: eqP => // Dx; rewrite eq_axiomK.
by apply/ffunP=> x; have:= Ff x; rewrite !ffunE /F1; case: eqP => // Dx /eqP.
Qed.
Lemma card_dep_ffun : #|fT| = foldr muln 1 [seq #|rT x| | x : aT].
Proof. by rewrite -card_family; apply/esym/eq_card=> f; apply/familyP. Qed.
End FinDepTheory.
Section FinFunTheory.
Variables aT rT : finType.
Notation fT := {ffun aT -> rT}.
Implicit Types (D : {pred aT}) (R : {pred rT}) (F : aT -> pred rT).
Lemma card_pfamily y0 D F :
#|pfamily y0 D F| = foldr muln 1 [seq #|F x| | x in D].
Proof.
rewrite card_family !/(image _ _) /(enum D) -enumT /=.
by elim: (enum aT) => //= x E ->; have [// | D'x] := ifP; rewrite card1 mul1n.
Qed.
Lemma card_pffun_on y0 D R : #|pffun_on y0 D R| = #|R| ^ #|D|.
Proof.
rewrite (cardE D) card_pfamily /image_mem.
by elim: (enum D) => //= _ e ->; rewrite expnS.
Qed.
Lemma card_ffun_on R : #|@ffun_on aT R| = #|R| ^ #|aT|.
Proof.
rewrite card_family /image_mem cardT.
by elim: (enum aT) => //= _ e ->; rewrite expnS.
Qed.
Lemma card_ffun : #|fT| = #|rT| ^ #|aT|.
Proof. by rewrite -card_ffun_on; apply/esym/eq_card=> f; apply/forallP. Qed.
End FinFunTheory.
Section DependentFiniteProduct.
Variables (I : finType) (T_ : I -> finType).
Notation fprod_type := (forall i : I, T_ i) (only parsing).
(* Definition of [fprod] := dependent product of finTypes *)
Record fprod : predArgType := FProd
{ fprod_fun : {ffun I -> {i : I & T_ i}} ;
fprod_prop : [forall i : I, tag (fprod_fun i) == i] }.
Lemma tag_fprod_fun (f : fprod) i : tag (fprod_fun f i) = i.
Proof. by have /'forall_eqP/(_ i) := fprod_prop f. Qed.
Definition fun_of_fprod (f : fprod) : fprod_type :=
fun i => etagged ('forall_eqP (fprod_prop f) i).
Coercion fun_of_fprod : fprod >-> Funclass.
#[hnf] HB.instance Definition _ := [isSub for fprod_fun].
#[hnf] HB.instance Definition _ := [Finite of fprod by <:].
Lemma fprod_of_prod_type_subproof (f : fprod_type) :
[forall i : I, tag ([ffun i => Tagged T_ (f i)] i) == i].
Proof. by apply/'forall_eqP => i /=; rewrite ffunE. Qed.
Definition fprod_of_fun (f : fprod_type) : fprod :=
FProd (fprod_of_prod_type_subproof f).
Lemma fprodK : cancel fun_of_fprod fprod_of_fun.
Proof.
rewrite /fun_of_fprod /fprod_of_fun; case=> f fP.
by apply/val_inj/ffunP => i /=; rewrite !ffunE etaggedK.
Qed.
Lemma fprodE g i : fprod_of_fun g i = g i.
Proof.
rewrite /fprod_of_fun /fun_of_fprod/=.
by move: ('forall_eqP _ _); rewrite ffunE/= => e; rewrite eq_axiomK.
Qed.
Lemma fprodP (f1 f2 : fprod) : (forall x, f1 x = f2 x) <-> f1 = f2.
Proof.
split=> [eq_f12|->//]; rewrite -[f1]fprodK -[f2]fprodK.
by apply/val_inj/ffunP => i; rewrite !ffunE eq_f12.
Qed.
Definition dffun_of_fprod (f : fprod) : {dffun forall i : I, T_ i} :=
[ffun x => f x].
Definition fprod_of_dffun (f : {dffun forall i : I, T_ i}) : fprod :=
fprod_of_fun f.
Lemma dffun_of_fprodK : cancel dffun_of_fprod fprod_of_dffun.
Proof. by move=> f; apply/fprodP=> i; rewrite fprodE ffunE. Qed.
#[local] Hint Resolve dffun_of_fprodK : core.
Lemma fprod_of_dffunK : cancel fprod_of_dffun dffun_of_fprod.
Proof. by move=> f; apply/ffunP => i; rewrite !ffunE fprodE. Qed.
#[local] Hint Resolve fprod_of_dffunK : core.
Lemma dffun_of_fprod_bij : bijective dffun_of_fprod.
Proof. by exists fprod_of_dffun. Qed.
Lemma fprod_of_dffun_bij : bijective fprod_of_dffun.
Proof. by exists dffun_of_fprod. Qed.
Definition to_family_tagged_with (f : fprod) : {x in family (tagged_with T_)} :=
exist _ (fprod_fun f) (fprod_prop f).
Definition of_family_tagged_with (f : {x in family (tagged_with T_)}) : fprod :=
FProd (valP f).
Lemma to_family_tagged_withK :
cancel to_family_tagged_with of_family_tagged_with.
Proof. by case=> f fP; apply/val_inj. Qed.
#[local] Hint Resolve to_family_tagged_withK : core.
Lemma of_family_tagged_withK :
cancel of_family_tagged_with to_family_tagged_with.
Proof. by case=> f fP; apply/val_inj. Qed.
#[local] Hint Resolve of_family_tagged_withK : core.
Lemma to_family_tagged_with_bij : bijective to_family_tagged_with.
Proof. by exists of_family_tagged_with. Qed.
Lemma of_family_tagged_with_bij : bijective of_family_tagged_with.
Proof. by exists to_family_tagged_with. Qed.
Lemma etaggedE (a : fprod) (i : I) (e : tag (fprod_fun a i) = i) :
etagged e = a i.
Proof. by case: a e => //= f fP e; congr etagged; apply: eq_irrelevance. Qed.
End DependentFiniteProduct.
Arguments to_family_tagged_with {I T_}.
Arguments of_family_tagged_with {I T_}.
Notation "[ 'fprod' i : I => F ]" := (fprod_of_fun (fun i : I => F))
(i name, only parsing) : function_scope.
Notation "[ 'fprod' : I => F ]" := (fprod_of_fun (fun _ : I => F))
(only parsing) : function_scope.
Notation "[ 'fprod' i => F ]" := [fprod i : _ => F]
(i name, format "[ 'fprod' i => F ]") : function_scope.
Notation "[ 'fprod' => F ]" := [fprod : _ => F]
(format "[ 'fprod' => F ]") : function_scope.
|