1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq.
(******************************************************************************)
(* The basic theory of paths over an eqType; this file is essentially a *)
(* complement to seq.v. Paths are non-empty sequences that obey a progression *)
(* relation. They are passed around in three parts: the head and tail of the *)
(* sequence, and a proof of a (boolean) predicate asserting the progression. *)
(* This "exploded" view is rarely embarrassing, as the first two parameters *)
(* are usually inferred from the type of the third; on the contrary, it saves *)
(* the hassle of constantly constructing and destructing a dependent record. *)
(* We define similarly cycles, for which we allow the empty sequence, *)
(* which represents a non-rooted empty cycle; by contrast, the "empty" path *)
(* from a point x is the one-item sequence containing only x. *)
(* We allow duplicates; uniqueness, if desired (as is the case for several *)
(* geometric constructions), must be asserted separately. We do provide *)
(* shorthand, but only for cycles, because the equational properties of *)
(* "path" and "uniq" are unfortunately incompatible (esp. wrt "cat"). *)
(* We define notations for the common cases of function paths, where the *)
(* progress relation is actually a function. In detail: *)
(* path e x p == x :: p is an e-path [:: x_0; x_1; ... ; x_n], i.e., we *)
(* have e x_i x_{i+1} for all i < n. The path x :: p starts *)
(* at x and ends at last x p. *)
(* fpath f x p == x :: p is an f-path, where f is a function, i.e., p is of *)
(* the form [:: f x; f (f x); ...]. This is just a notation *)
(* for path (frel f) x p. *)
(* sorted e s == s is an e-sorted sequence: either s = [::], or s = x :: p *)
(* is an e-path (this is often used with e = leq or ltn). *)
(* cycle e c == c is an e-cycle: either c = [::], or c = x :: p with *)
(* x :: (rcons p x) an e-path. *)
(* fcycle f c == c is an f-cycle, for a function f. *)
(* traject f x n == the f-path of size n starting at x *)
(* := [:: x; f x; ...; iter n.-1 f x] *)
(* looping f x n == the f-paths of size greater than n starting at x loop *)
(* back, or, equivalently, traject f x n contains all *)
(* iterates of f at x. *)
(* merge e s1 s2 == the e-sorted merge of sequences s1 and s2: this is always *)
(* a permutation of s1 ++ s2, and is e-sorted when s1 and s2 *)
(* are and e is total. *)
(* sort e s == a permutation of the sequence s, that is e-sorted when e *)
(* is total (computed by a merge sort with the merge function *)
(* above). This sort function is also designed to be stable. *)
(* mem2 s x y == x, then y occur in the sequence (path) s; this is *)
(* non-strict: mem2 s x x = (x \in s). *)
(* next c x == the successor of the first occurrence of x in the sequence *)
(* c (viewed as a cycle), or x if x \notin c. *)
(* prev c x == the predecessor of the first occurrence of x in the *)
(* sequence c (viewed as a cycle), or x if x \notin c. *)
(* arc c x y == the sub-arc of the sequence c (viewed as a cycle) starting *)
(* at the first occurrence of x in c, and ending just before *)
(* the next occurrence of y (in cycle order); arc c x y *)
(* returns an unspecified sub-arc of c if x and y do not both *)
(* occur in c. *)
(* ucycle e c <-> ucycleb e c (ucycle e c is a Coercion target of type Prop) *)
(* ufcycle f c <-> c is a simple f-cycle, for a function f. *)
(* shorten x p == the tail a duplicate-free subpath of x :: p with the same *)
(* endpoints (x and last x p), obtained by removing all loops *)
(* from x :: p. *)
(* rel_base e e' h b <-> the function h is a functor from relation e to *)
(* relation e', EXCEPT at points whose image under h satisfy *)
(* the "base" predicate b: *)
(* e' (h x) (h y) = e x y UNLESS b (h x) holds *)
(* This is the statement of the side condition of the path *)
(* functorial mapping lemma map_path. *)
(* fun_base f f' h b <-> the function h is a functor from function f to f', *)
(* except at the preimage of predicate b under h. *)
(* We also provide three segmenting dependently-typed lemmas (splitP, splitPl *)
(* and splitPr) whose elimination split a path x0 :: p at an internal point x *)
(* as follows: *)
(* - splitP applies when x \in p; it replaces p with (rcons p1 x ++ p2), so *)
(* that x appears explicitly at the end of the left part. The elimination *)
(* of splitP will also simultaneously replace take (index x p) with p1 and *)
(* drop (index x p).+1 p with p2. *)
(* - splitPl applies when x \in x0 :: p; it replaces p with p1 ++ p2 and *)
(* simultaneously generates an equation x = last x0 p1. *)
(* - splitPr applies when x \in p; it replaces p with (p1 ++ x :: p2), so x *)
(* appears explicitly at the start of the right part. *)
(* The parts p1 and p2 are computed using index/take/drop in all cases, but *)
(* only splitP attempts to substitute the explicit values. The substitution *)
(* of p can be deferred using the dependent equation generation feature of *)
(* ssreflect, e.g.: case/splitPr def_p: {1}p / x_in_p => [p1 p2] generates *)
(* the equation p = p1 ++ p2 instead of performing the substitution outright. *)
(* Similarly, eliminating the loop removal lemma shortenP simultaneously *)
(* replaces shorten e x p with a fresh constant p', and last x p with *)
(* last x p'. *)
(* Note that although all "path" functions actually operate on the *)
(* underlying sequence, we provide a series of lemmas that define their *)
(* interaction with the path and cycle predicates, e.g., the cat_path equation*)
(* can be used to split the path predicate after splitting the underlying *)
(* sequence. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Section Paths.
Variables (n0 : nat) (T : Type).
Section Path.
Variables (x0_cycle : T) (e : rel T).
Fixpoint path x (p : seq T) :=
if p is y :: p' then e x y && path y p' else true.
Lemma cat_path x p1 p2 : path x (p1 ++ p2) = path x p1 && path (last x p1) p2.
Proof. by elim: p1 x => [|y p1 Hrec] x //=; rewrite Hrec -!andbA. Qed.
Lemma rcons_path x p y : path x (rcons p y) = path x p && e (last x p) y.
Proof. by rewrite -cats1 cat_path /= andbT. Qed.
Lemma take_path x p i : path x p -> path x (take i p).
Proof. elim: p x i => [//| x p] IHp x' [//| i] /= /andP[-> ?]; exact: IHp. Qed.
Lemma pathP x p x0 :
reflect (forall i, i < size p -> e (nth x0 (x :: p) i) (nth x0 p i))
(path x p).
Proof.
elim: p x => [|y p IHp] x /=; first by left.
apply: (iffP andP) => [[e_xy /IHp e_p [] //] | e_p].
by split; [apply: (e_p 0) | apply/(IHp y) => i; apply: e_p i.+1].
Qed.
Definition cycle p := if p is x :: p' then path x (rcons p' x) else true.
Lemma cycle_path p : cycle p = path (last x0_cycle p) p.
Proof. by case: p => //= x p; rewrite rcons_path andbC. Qed.
Lemma cycle_catC p q : cycle (p ++ q) = cycle (q ++ p).
Proof.
case: p q => [|x p] [|y q]; rewrite /= ?cats0 //=.
by rewrite !rcons_path !cat_path !last_cat /= -!andbA; do !bool_congr.
Qed.
Lemma rot_cycle p : cycle (rot n0 p) = cycle p.
Proof. by rewrite cycle_catC cat_take_drop. Qed.
Lemma rotr_cycle p : cycle (rotr n0 p) = cycle p.
Proof. by rewrite -rot_cycle rotrK. Qed.
Definition sorted s := if s is x :: s' then path x s' else true.
Lemma sortedP s x :
reflect (forall i, i.+1 < size s -> e (nth x s i) (nth x s i.+1)) (sorted s).
Proof. by case: s => *; [constructor|apply: (iffP (pathP _ _ _)); apply]. Qed.
Lemma path_sorted x s : path x s -> sorted s.
Proof. by case: s => //= y s /andP[]. Qed.
Lemma path_min_sorted x s : all (e x) s -> path x s = sorted s.
Proof. by case: s => //= y s /andP [->]. Qed.
Lemma pairwise_sorted s : pairwise e s -> sorted s.
Proof. by elim: s => //= x s IHs /andP[/path_min_sorted -> /IHs]. Qed.
Lemma sorted_cat_cons s1 x s2 :
sorted (s1 ++ x :: s2) = sorted (rcons s1 x) && path x s2.
Proof.
by case: s1 => [ | e1 s1] //=; rewrite -cat_rcons cat_path last_rcons.
Qed.
End Path.
Section PathEq.
Variables (e e' : rel T).
Lemma rev_path x p :
path e (last x p) (rev (belast x p)) = path (fun z => e^~ z) x p.
Proof.
elim: p x => //= y p IHp x; rewrite rev_cons rcons_path -{}IHp andbC.
by rewrite -(last_cons x) -rev_rcons -lastI rev_cons last_rcons.
Qed.
Lemma rev_cycle p : cycle e (rev p) = cycle (fun z => e^~ z) p.
Proof.
case: p => //= x p; rewrite -rev_path last_rcons belast_rcons rev_cons.
by rewrite -[in LHS]cats1 cycle_catC.
Qed.
Lemma rev_sorted p : sorted e (rev p) = sorted (fun z => e^~ z) p.
Proof. by case: p => //= x p; rewrite -rev_path lastI rev_rcons. Qed.
Lemma path_relI x s :
path [rel x y | e x y && e' x y] x s = path e x s && path e' x s.
Proof. by elim: s x => //= y s IHs x; rewrite andbACA IHs. Qed.
Lemma cycle_relI s :
cycle [rel x y | e x y && e' x y] s = cycle e s && cycle e' s.
Proof. by case: s => [|? ?]; last apply: path_relI. Qed.
Lemma sorted_relI s :
sorted [rel x y | e x y && e' x y] s = sorted e s && sorted e' s.
Proof. by case: s; last apply: path_relI. Qed.
End PathEq.
Section SubPath_in.
Variable (P : {pred T}) (e e' : rel T).
Hypothesis (ee' : {in P &, subrel e e'}).
Lemma sub_in_path x s : all P (x :: s) -> path e x s -> path e' x s.
Proof.
by elim: s x => //= y s ihs x /and3P [? ? ?] /andP [/ee' -> //]; apply/ihs/andP.
Qed.
Lemma sub_in_cycle s : all P s -> cycle e s -> cycle e' s.
Proof.
case: s => //= x s /andP [Px Ps].
by apply: sub_in_path; rewrite /= all_rcons Px.
Qed.
Lemma sub_in_sorted s : all P s -> sorted e s -> sorted e' s.
Proof. by case: s => //; apply: sub_in_path. Qed.
End SubPath_in.
Section EqPath_in.
Variable (P : {pred T}) (e e' : rel T).
Hypothesis (ee' : {in P &, e =2 e'}).
Let e_e' : {in P &, subrel e e'}. Proof. by move=> ? ? ? ?; rewrite ee'. Qed.
Let e'_e : {in P &, subrel e' e}. Proof. by move=> ? ? ? ?; rewrite ee'. Qed.
Lemma eq_in_path x s : all P (x :: s) -> path e x s = path e' x s.
Proof. by move=> Pxs; apply/idP/idP; apply: sub_in_path Pxs. Qed.
Lemma eq_in_cycle s : all P s -> cycle e s = cycle e' s.
Proof. by move=> Ps; apply/idP/idP; apply: sub_in_cycle Ps. Qed.
Lemma eq_in_sorted s : all P s -> sorted e s = sorted e' s.
Proof. by move=> Ps; apply/idP/idP; apply: sub_in_sorted Ps. Qed.
End EqPath_in.
Section SubPath.
Variables e e' : rel T.
Lemma sub_path : subrel e e' -> forall x p, path e x p -> path e' x p.
Proof. by move=> ? ? ?; apply/sub_in_path/all_predT; apply: in2W. Qed.
Lemma sub_cycle : subrel e e' -> subpred (cycle e) (cycle e').
Proof. by move=> ee' [] // ? ?; apply: sub_path. Qed.
Lemma sub_sorted : subrel e e' -> subpred (sorted e) (sorted e').
Proof. by move=> ee' [] //=; apply: sub_path. Qed.
Lemma eq_path : e =2 e' -> path e =2 path e'.
Proof. by move=> ? ? ?; apply/eq_in_path/all_predT; apply: in2W. Qed.
Lemma eq_cycle : e =2 e' -> cycle e =1 cycle e'.
Proof. by move=> ee' [] // ? ?; apply: eq_path. Qed.
Lemma eq_sorted : e =2 e' -> sorted e =1 sorted e'.
Proof. by move=> ee' [] // ? ?; apply: eq_path. Qed.
End SubPath.
Section Transitive_in.
Variables (P : {pred T}) (leT : rel T).
Lemma order_path_min_in x s :
{in P & &, transitive leT} -> all P (x :: s) -> path leT x s -> all (leT x) s.
Proof.
move=> leT_tr; elim: s => //= y s ihs /and3P [Px Py Ps] /andP [xy ys].
rewrite xy {}ihs ?Px //=; case: s Ps ys => //= z s /andP [Pz Ps] /andP [yz ->].
by rewrite (leT_tr _ _ _ Py Px Pz).
Qed.
Hypothesis leT_tr : {in P & &, transitive leT}.
Lemma path_sorted_inE x s :
all P (x :: s) -> path leT x s = all (leT x) s && sorted leT s.
Proof.
move=> Pxs; apply/idP/idP => [xs|/andP[/path_min_sorted<-//]].
by rewrite (order_path_min_in leT_tr) //; apply: path_sorted xs.
Qed.
Lemma sorted_pairwise_in s : all P s -> sorted leT s = pairwise leT s.
Proof.
by elim: s => //= x s IHs /andP [Px Ps]; rewrite path_sorted_inE ?IHs //= Px.
Qed.
Lemma path_pairwise_in x s :
all P (x :: s) -> path leT x s = pairwise leT (x :: s).
Proof. by move=> Pxs; rewrite -sorted_pairwise_in. Qed.
Lemma cat_sorted2 s s' : sorted leT (s ++ s') -> sorted leT s * sorted leT s'.
Proof. by case: s => //= x s; rewrite cat_path => /andP[-> /path_sorted]. Qed.
Lemma sorted_mask_in m s : all P s -> sorted leT s -> sorted leT (mask m s).
Proof.
by move=> Ps; rewrite !sorted_pairwise_in ?all_mask //; exact: pairwise_mask.
Qed.
Lemma sorted_filter_in a s : all P s -> sorted leT s -> sorted leT (filter a s).
Proof. rewrite filter_mask; exact: sorted_mask_in. Qed.
Lemma path_mask_in x m s :
all P (x :: s) -> path leT x s -> path leT x (mask m s).
Proof. exact/(sorted_mask_in (true :: m)). Qed.
Lemma path_filter_in x a s :
all P (x :: s) -> path leT x s -> path leT x (filter a s).
Proof. by move=> Pxs; rewrite filter_mask; exact: path_mask_in. Qed.
Lemma sorted_ltn_nth_in x0 s : all P s -> sorted leT s ->
{in [pred n | n < size s] &, {homo nth x0 s : i j / i < j >-> leT i j}}.
Proof. by move=> Ps; rewrite sorted_pairwise_in //; apply/pairwiseP. Qed.
Hypothesis leT_refl : {in P, reflexive leT}.
Lemma sorted_leq_nth_in x0 s : all P s -> sorted leT s ->
{in [pred n | n < size s] &, {homo nth x0 s : i j / i <= j >-> leT i j}}.
Proof.
move=> Ps s_sorted x y xs ys; rewrite leq_eqVlt=> /predU1P[->|].
exact/leT_refl/all_nthP.
exact: sorted_ltn_nth_in.
Qed.
End Transitive_in.
Section Transitive.
Variable (leT : rel T).
Lemma order_path_min x s : transitive leT -> path leT x s -> all (leT x) s.
Proof.
by move=> leT_tr; apply/order_path_min_in/all_predT => //; apply: in3W.
Qed.
Hypothesis leT_tr : transitive leT.
Lemma path_le x x' s : leT x x' -> path leT x' s -> path leT x s.
Proof.
by case: s => [//| x'' s xlex' /= /andP[x'lex'' ->]]; rewrite (leT_tr xlex').
Qed.
Let leT_tr' : {in predT & &, transitive leT}. Proof. exact: in3W. Qed.
Lemma path_sortedE x s : path leT x s = all (leT x) s && sorted leT s.
Proof. exact/path_sorted_inE/all_predT. Qed.
Lemma sorted_pairwise s : sorted leT s = pairwise leT s.
Proof. exact/sorted_pairwise_in/all_predT. Qed.
Lemma path_pairwise x s : path leT x s = pairwise leT (x :: s).
Proof. exact/path_pairwise_in/all_predT. Qed.
Lemma sorted_mask m s : sorted leT s -> sorted leT (mask m s).
Proof. exact/sorted_mask_in/all_predT. Qed.
Lemma sorted_filter a s : sorted leT s -> sorted leT (filter a s).
Proof. exact/sorted_filter_in/all_predT. Qed.
Lemma path_mask x m s : path leT x s -> path leT x (mask m s).
Proof. exact/path_mask_in/all_predT. Qed.
Lemma path_filter x a s : path leT x s -> path leT x (filter a s).
Proof. exact/path_filter_in/all_predT. Qed.
Lemma sorted_ltn_nth x0 s : sorted leT s ->
{in [pred n | n < size s] &, {homo nth x0 s : i j / i < j >-> leT i j}}.
Proof. exact/sorted_ltn_nth_in/all_predT. Qed.
Hypothesis leT_refl : reflexive leT.
Lemma sorted_leq_nth x0 s : sorted leT s ->
{in [pred n | n < size s] &, {homo nth x0 s : i j / i <= j >-> leT i j}}.
Proof. exact/sorted_leq_nth_in/all_predT. Qed.
Lemma take_sorted n s : sorted leT s -> sorted leT (take n s).
Proof. by rewrite -[s in sorted _ s](cat_take_drop n) => /cat_sorted2[]. Qed.
Lemma drop_sorted n s : sorted leT s -> sorted leT (drop n s).
Proof. by rewrite -[s in sorted _ s](cat_take_drop n) => /cat_sorted2[]. Qed.
End Transitive.
End Paths.
Arguments pathP {T e x p}.
Arguments sortedP {T e s}.
Arguments path_sorted {T e x s}.
Arguments path_min_sorted {T e x s}.
Arguments order_path_min_in {T P leT x s}.
Arguments path_sorted_inE {T P leT} leT_tr {x s}.
Arguments sorted_pairwise_in {T P leT} leT_tr {s}.
Arguments path_pairwise_in {T P leT} leT_tr {x s}.
Arguments sorted_mask_in {T P leT} leT_tr {m s}.
Arguments sorted_filter_in {T P leT} leT_tr {a s}.
Arguments path_mask_in {T P leT} leT_tr {x m s}.
Arguments path_filter_in {T P leT} leT_tr {x a s}.
Arguments sorted_ltn_nth_in {T P leT} leT_tr x0 {s}.
Arguments sorted_leq_nth_in {T P leT} leT_tr leT_refl x0 {s}.
Arguments order_path_min {T leT x s}.
Arguments path_sortedE {T leT} leT_tr x s.
Arguments sorted_pairwise {T leT} leT_tr s.
Arguments path_pairwise {T leT} leT_tr x s.
Arguments sorted_mask {T leT} leT_tr m {s}.
Arguments sorted_filter {T leT} leT_tr a {s}.
Arguments path_mask {T leT} leT_tr {x} m {s}.
Arguments path_filter {T leT} leT_tr {x} a {s}.
Arguments sorted_ltn_nth {T leT} leT_tr x0 {s}.
Arguments sorted_leq_nth {T leT} leT_tr leT_refl x0 {s}.
Section HomoPath.
Variables (T T' : Type) (P : {pred T}) (f : T -> T') (e : rel T) (e' : rel T').
Lemma path_map x s : path e' (f x) (map f s) = path (relpre f e') x s.
Proof. by elim: s x => //= y s <-. Qed.
Lemma cycle_map s : cycle e' (map f s) = cycle (relpre f e') s.
Proof. by case: s => //= ? ?; rewrite -map_rcons path_map. Qed.
Lemma sorted_map s : sorted e' (map f s) = sorted (relpre f e') s.
Proof. by case: s; last apply: path_map. Qed.
Lemma homo_path_in x s : {in P &, {homo f : x y / e x y >-> e' x y}} ->
all P (x :: s) -> path e x s -> path e' (f x) (map f s).
Proof. by move=> f_mono; rewrite path_map; apply: sub_in_path. Qed.
Lemma homo_cycle_in s : {in P &, {homo f : x y / e x y >-> e' x y}} ->
all P s -> cycle e s -> cycle e' (map f s).
Proof. by move=> f_mono; rewrite cycle_map; apply: sub_in_cycle. Qed.
Lemma homo_sorted_in s : {in P &, {homo f : x y / e x y >-> e' x y}} ->
all P s -> sorted e s -> sorted e' (map f s).
Proof. by move=> f_mono; rewrite sorted_map; apply: sub_in_sorted. Qed.
Lemma mono_path_in x s : {in P &, {mono f : x y / e x y >-> e' x y}} ->
all P (x :: s) -> path e' (f x) (map f s) = path e x s.
Proof. by move=> f_mono; rewrite path_map; apply: eq_in_path. Qed.
Lemma mono_cycle_in s : {in P &, {mono f : x y / e x y >-> e' x y}} ->
all P s -> cycle e' (map f s) = cycle e s.
Proof. by move=> f_mono; rewrite cycle_map; apply: eq_in_cycle. Qed.
Lemma mono_sorted_in s : {in P &, {mono f : x y / e x y >-> e' x y}} ->
all P s -> sorted e' (map f s) = sorted e s.
Proof. by case: s => // x s; apply: mono_path_in. Qed.
Lemma homo_path x s : {homo f : x y / e x y >-> e' x y} ->
path e x s -> path e' (f x) (map f s).
Proof. by move=> f_homo; rewrite path_map; apply: sub_path. Qed.
Lemma homo_cycle : {homo f : x y / e x y >-> e' x y} ->
{homo map f : s / cycle e s >-> cycle e' s}.
Proof. by move=> f_homo s hs; rewrite cycle_map (sub_cycle _ hs). Qed.
Lemma homo_sorted : {homo f : x y / e x y >-> e' x y} ->
{homo map f : s / sorted e s >-> sorted e' s}.
Proof. by move/homo_path => ? []. Qed.
Lemma mono_path x s : {mono f : x y / e x y >-> e' x y} ->
path e' (f x) (map f s) = path e x s.
Proof. by move=> f_mon; rewrite path_map; apply: eq_path. Qed.
Lemma mono_cycle : {mono f : x y / e x y >-> e' x y} ->
{mono map f : s / cycle e s >-> cycle e' s}.
Proof. by move=> ? ?; rewrite cycle_map; apply: eq_cycle. Qed.
Lemma mono_sorted : {mono f : x y / e x y >-> e' x y} ->
{mono map f : s / sorted e s >-> sorted e' s}.
Proof. by move=> f_mon [] //= x s; apply: mono_path. Qed.
End HomoPath.
Arguments path_map {T T' f e'}.
Arguments cycle_map {T T' f e'}.
Arguments sorted_map {T T' f e'}.
Arguments homo_path_in {T T' P f e e' x s}.
Arguments homo_cycle_in {T T' P f e e' s}.
Arguments homo_sorted_in {T T' P f e e' s}.
Arguments mono_path_in {T T' P f e e' x s}.
Arguments mono_cycle_in {T T' P f e e' s}.
Arguments mono_sorted_in {T T' P f e e' s}.
Arguments homo_path {T T' f e e' x s}.
Arguments homo_cycle {T T' f e e'}.
Arguments homo_sorted {T T' f e e'}.
Arguments mono_path {T T' f e e' x s}.
Arguments mono_cycle {T T' f e e'}.
Arguments mono_sorted {T T' f e e'}.
Section CycleAll2Rel.
Lemma cycle_all2rel (T : Type) (leT : rel T) :
transitive leT -> forall s, cycle leT s = all2rel leT s.
Proof.
move=> leT_tr; elim=> //= x s IHs.
rewrite allrel_cons2 -{}IHs // (path_sortedE leT_tr) /= all_rcons -rev_sorted.
rewrite rev_rcons /= (path_sortedE (rev_trans leT_tr)) all_rev !andbA.
case: (boolP (leT x x && _ && _)) => //=.
case: s => //= y s /and3P[/and3P[_ xy _] yx sx].
rewrite rev_sorted rcons_path /= (leT_tr _ _ _ _ xy) ?andbT //.
by case: (lastP s) sx => //= {}s z; rewrite all_rcons last_rcons => /andP [->].
Qed.
Lemma cycle_all2rel_in (T : Type) (P : {pred T}) (leT : rel T) :
{in P & &, transitive leT} ->
forall s, all P s -> cycle leT s = all2rel leT s.
Proof.
move=> /in3_sig leT_tr _ /all_sigP [s ->].
by rewrite cycle_map allrel_mapl allrel_mapr; apply: cycle_all2rel.
Qed.
End CycleAll2Rel.
Section PreInSuffix.
Variables (T : eqType) (e : rel T).
Implicit Type s : seq T.
Local Notation path := (path e).
Local Notation sorted := (sorted e).
Lemma prefix_path x s1 s2 : prefix s1 s2 -> path x s2 -> path x s1.
Proof. by rewrite prefixE => /eqP <-; exact: take_path. Qed.
Lemma prefix_sorted s1 s2 : prefix s1 s2 -> sorted s2 -> sorted s1.
Proof. by rewrite prefixE => /eqP <-; exact: take_sorted. Qed.
Lemma infix_sorted s1 s2 : infix s1 s2 -> sorted s2 -> sorted s1.
Proof. by rewrite infixE => /eqP <- ?; apply/take_sorted/drop_sorted. Qed.
Lemma suffix_sorted s1 s2 : suffix s1 s2 -> sorted s2 -> sorted s1.
Proof. by rewrite suffixE => /eqP <-; exact: drop_sorted. Qed.
End PreInSuffix.
Section EqSorted.
Variables (T : eqType) (leT : rel T).
Implicit Type s : seq T.
Local Notation path := (path leT).
Local Notation sorted := (sorted leT).
Lemma subseq_path_in x s1 s2 :
{in x :: s2 & &, transitive leT} -> subseq s1 s2 -> path x s2 -> path x s1.
Proof. by move=> tr /subseqP [m _ ->]; apply/(path_mask_in tr). Qed.
Lemma subseq_sorted_in s1 s2 :
{in s2 & &, transitive leT} -> subseq s1 s2 -> sorted s2 -> sorted s1.
Proof. by move=> tr /subseqP [m _ ->]; apply/(sorted_mask_in tr). Qed.
Lemma sorted_ltn_index_in s : {in s & &, transitive leT} -> sorted s ->
{in s &, forall x y, index x s < index y s -> leT x y}.
Proof.
case: s => // x0 s' leT_tr s_sorted x y xs ys.
move/(sorted_ltn_nth_in leT_tr x0 (allss (_ :: _)) s_sorted).
by rewrite ?nth_index ?[_ \in gtn _]index_mem //; apply.
Qed.
Lemma sorted_leq_index_in s :
{in s & &, transitive leT} -> {in s, reflexive leT} -> sorted s ->
{in s &, forall x y, index x s <= index y s -> leT x y}.
Proof.
case: s => // x0 s' leT_tr leT_refl s_sorted x y xs ys.
move/(sorted_leq_nth_in leT_tr leT_refl x0 (allss (_ :: _)) s_sorted).
by rewrite ?nth_index ?[_ \in gtn _]index_mem //; apply.
Qed.
Hypothesis leT_tr : transitive leT.
Lemma subseq_path x s1 s2 : subseq s1 s2 -> path x s2 -> path x s1.
Proof. by apply: subseq_path_in; apply: in3W. Qed.
Lemma subseq_sorted s1 s2 : subseq s1 s2 -> sorted s2 -> sorted s1.
Proof. by apply: subseq_sorted_in; apply: in3W. Qed.
Lemma sorted_uniq : irreflexive leT -> forall s, sorted s -> uniq s.
Proof. by move=> irr s; rewrite sorted_pairwise //; apply/pairwise_uniq. Qed.
Lemma sorted_eq : antisymmetric leT ->
forall s1 s2, sorted s1 -> sorted s2 -> perm_eq s1 s2 -> s1 = s2.
Proof.
by move=> leT_asym s1 s2; rewrite !sorted_pairwise //; apply: pairwise_eq.
Qed.
Lemma irr_sorted_eq : irreflexive leT ->
forall s1 s2, sorted s1 -> sorted s2 -> s1 =i s2 -> s1 = s2.
Proof.
move=> leT_irr s1 s2 s1_sort s2_sort eq_s12.
have: antisymmetric leT.
by move=> m n /andP[? ltnm]; case/idP: (leT_irr m); apply: leT_tr ltnm.
by move/sorted_eq; apply=> //; apply: uniq_perm => //; apply: sorted_uniq.
Qed.
Lemma sorted_ltn_index s :
sorted s -> {in s &, forall x y, index x s < index y s -> leT x y}.
Proof.
case: s => // x0 s' s_sorted x y xs ys /(sorted_ltn_nth leT_tr x0 s_sorted).
by rewrite ?nth_index ?[_ \in gtn _]index_mem //; apply.
Qed.
Lemma undup_path x s : path x s -> path x (undup s).
Proof. exact/subseq_path/undup_subseq. Qed.
Lemma undup_sorted s : sorted s -> sorted (undup s).
Proof. exact/subseq_sorted/undup_subseq. Qed.
Hypothesis leT_refl : reflexive leT.
Lemma sorted_leq_index s :
sorted s -> {in s &, forall x y, index x s <= index y s -> leT x y}.
Proof.
case: s => // x0 s' s_sorted x y xs ys.
move/(sorted_leq_nth leT_tr leT_refl x0 s_sorted).
by rewrite ?nth_index ?[_ \in gtn _]index_mem //; apply.
Qed.
End EqSorted.
Arguments sorted_ltn_index_in {T leT s} leT_tr s_sorted.
Arguments sorted_leq_index_in {T leT s} leT_tr leT_refl s_sorted.
Arguments sorted_ltn_index {T leT} leT_tr {s}.
Arguments sorted_leq_index {T leT} leT_tr leT_refl {s}.
Section EqSorted_in.
Variables (T : eqType) (leT : rel T).
Implicit Type s : seq T.
Lemma sorted_uniq_in s :
{in s & &, transitive leT} -> {in s, irreflexive leT} ->
sorted leT s -> uniq s.
Proof.
move=> /in3_sig leT_tr /in1_sig leT_irr; case/all_sigP: (allss s) => s' ->.
by rewrite sorted_map (map_inj_uniq val_inj); exact: sorted_uniq.
Qed.
Lemma sorted_eq_in s1 s2 :
{in s1 & &, transitive leT} -> {in s1 &, antisymmetric leT} ->
sorted leT s1 -> sorted leT s2 -> perm_eq s1 s2 -> s1 = s2.
Proof.
move=> /in3_sig leT_tr /in2_sig/(_ _ _ _)/val_inj leT_anti + + /[dup] s1s2.
have /all_sigP[s1' ->] := allss s1.
have /all_sigP[{s1s2}s2 ->] : all [in s1] s2 by rewrite -(perm_all _ s1s2).
by rewrite !sorted_map => ss1' ss2 /(perm_map_inj val_inj)/(sorted_eq leT_tr)->.
Qed.
Lemma irr_sorted_eq_in s1 s2 :
{in s1 & &, transitive leT} -> {in s1, irreflexive leT} ->
sorted leT s1 -> sorted leT s2 -> s1 =i s2 -> s1 = s2.
Proof.
move=> /in3_sig leT_tr /in1_sig leT_irr + + /[dup] s1s2.
have /all_sigP[s1' ->] := allss s1.
have /all_sigP[s2' ->] : all [in s1] s2 by rewrite -(eq_all_r s1s2).
rewrite !sorted_map => ss1' ss2' {}s1s2; congr map.
by apply: (irr_sorted_eq leT_tr) => // x; rewrite -!(mem_map val_inj).
Qed.
End EqSorted_in.
Section EqPath.
Variables (n0 : nat) (T : eqType) (e : rel T).
Implicit Type p : seq T.
Variant split x : seq T -> seq T -> seq T -> Type :=
Split p1 p2 : split x (rcons p1 x ++ p2) p1 p2.
Lemma splitP p x (i := index x p) :
x \in p -> split x p (take i p) (drop i.+1 p).
Proof. by rewrite -has_pred1 => /split_find[? ? ? /eqP->]; constructor. Qed.
Variant splitl x1 x : seq T -> Type :=
Splitl p1 p2 of last x1 p1 = x : splitl x1 x (p1 ++ p2).
Lemma splitPl x1 p x : x \in x1 :: p -> splitl x1 x p.
Proof.
rewrite inE; case: eqP => [->| _ /splitP[]]; first by rewrite -(cat0s p).
by split; apply: last_rcons.
Qed.
Variant splitr x : seq T -> Type :=
Splitr p1 p2 : splitr x (p1 ++ x :: p2).
Lemma splitPr p x : x \in p -> splitr x p.
Proof. by case/splitP=> p1 p2; rewrite cat_rcons. Qed.
Fixpoint next_at x y0 y p :=
match p with
| [::] => if x == y then y0 else x
| y' :: p' => if x == y then y' else next_at x y0 y' p'
end.
Definition next p x := if p is y :: p' then next_at x y y p' else x.
Fixpoint prev_at x y0 y p :=
match p with
| [::] => if x == y0 then y else x
| y' :: p' => if x == y' then y else prev_at x y0 y' p'
end.
Definition prev p x := if p is y :: p' then prev_at x y y p' else x.
Lemma next_nth p x :
next p x = if x \in p then
if p is y :: p' then nth y p' (index x p) else x
else x.
Proof.
case: p => //= y0 p.
elim: p {2 3 5}y0 => [|y' p IHp] y /=; rewrite (eq_sym y) inE;
by case: ifP => // _; apply: IHp.
Qed.
Lemma prev_nth p x :
prev p x = if x \in p then
if p is y :: p' then nth y p (index x p') else x
else x.
Proof.
case: p => //= y0 p; rewrite inE orbC.
elim: p {2 5}y0 => [|y' p IHp] y; rewrite /= ?inE // (eq_sym y').
by case: ifP => // _; apply: IHp.
Qed.
Lemma mem_next p x : (next p x \in p) = (x \in p).
Proof.
rewrite next_nth; case p_x: (x \in p) => //.
case: p (index x p) p_x => [|y0 p'] //= i _; rewrite inE.
have [lt_ip | ge_ip] := ltnP i (size p'); first by rewrite orbC mem_nth.
by rewrite nth_default ?eqxx.
Qed.
Lemma mem_prev p x : (prev p x \in p) = (x \in p).
Proof.
rewrite prev_nth; case p_x: (x \in p) => //; case: p => [|y0 p] // in p_x *.
by apply mem_nth; rewrite /= ltnS index_size.
Qed.
(* ucycleb is the boolean predicate, but ucycle is defined as a Prop *)
(* so that it can be used as a coercion target. *)
Definition ucycleb p := cycle e p && uniq p.
Definition ucycle p : Prop := cycle e p && uniq p.
(* Projections, used for creating local lemmas. *)
Lemma ucycle_cycle p : ucycle p -> cycle e p.
Proof. by case/andP. Qed.
Lemma ucycle_uniq p : ucycle p -> uniq p.
Proof. by case/andP. Qed.
Lemma next_cycle p x : cycle e p -> x \in p -> e x (next p x).
Proof.
case: p => //= y0 p; elim: p {1 3 5}y0 => [|z p IHp] y /=; rewrite inE.
by rewrite andbT; case: (x =P y) => // ->.
by case/andP=> eyz /IHp; case: (x =P y) => // ->.
Qed.
Lemma prev_cycle p x : cycle e p -> x \in p -> e (prev p x) x.
Proof.
case: p => //= y0 p; rewrite inE orbC.
elim: p {1 5}y0 => [|z p IHp] y /=; rewrite ?inE.
by rewrite andbT; case: (x =P y0) => // ->.
by case/andP=> eyz /IHp; case: (x =P z) => // ->.
Qed.
Lemma rot_ucycle p : ucycle (rot n0 p) = ucycle p.
Proof. by rewrite /ucycle rot_uniq rot_cycle. Qed.
Lemma rotr_ucycle p : ucycle (rotr n0 p) = ucycle p.
Proof. by rewrite /ucycle rotr_uniq rotr_cycle. Qed.
(* The "appears no later" partial preorder defined by a path. *)
Definition mem2 p x y := y \in drop (index x p) p.
Lemma mem2l p x y : mem2 p x y -> x \in p.
Proof.
by rewrite /mem2 -!index_mem size_drop ltn_subRL; apply/leq_ltn_trans/leq_addr.
Qed.
Lemma mem2lf {p x y} : x \notin p -> mem2 p x y = false.
Proof. exact/contraNF/mem2l. Qed.
Lemma mem2r p x y : mem2 p x y -> y \in p.
Proof.
by rewrite -[in y \in p](cat_take_drop (index x p) p) mem_cat orbC /mem2 => ->.
Qed.
Lemma mem2rf {p x y} : y \notin p -> mem2 p x y = false.
Proof. exact/contraNF/mem2r. Qed.
Lemma mem2_cat p1 p2 x y :
mem2 (p1 ++ p2) x y = mem2 p1 x y || mem2 p2 x y || (x \in p1) && (y \in p2).
Proof.
rewrite [LHS]/mem2 index_cat fun_if if_arg !drop_cat addKn.
case: ifPn => [p1x | /mem2lf->]; last by rewrite ltnNge leq_addr orbF.
by rewrite index_mem p1x mem_cat -orbA (orb_idl (@mem2r _ _ _)).
Qed.
Lemma mem2_splice p1 p3 x y p2 :
mem2 (p1 ++ p3) x y -> mem2 (p1 ++ p2 ++ p3) x y.
Proof.
by rewrite !mem2_cat mem_cat andb_orr orbC => /or3P[]->; rewrite ?orbT.
Qed.
Lemma mem2_splice1 p1 p3 x y z :
mem2 (p1 ++ p3) x y -> mem2 (p1 ++ z :: p3) x y.
Proof. exact: mem2_splice [::z]. Qed.
Lemma mem2_cons x p y z :
mem2 (x :: p) y z = (if x == y then z \in x :: p else mem2 p y z).
Proof. by rewrite [LHS]/mem2 /=; case: ifP. Qed.
Lemma mem2_seq1 x y z : mem2 [:: x] y z = (y == x) && (z == x).
Proof. by rewrite mem2_cons eq_sym inE. Qed.
Lemma mem2_last y0 p x : mem2 p x (last y0 p) = (x \in p).
Proof.
apply/idP/idP; first exact: mem2l; rewrite -index_mem /mem2 => p_x.
by rewrite -nth_last -(subnKC p_x) -nth_drop mem_nth // size_drop subnSK.
Qed.
Lemma mem2l_cat {p1 p2 x} : x \notin p1 -> mem2 (p1 ++ p2) x =1 mem2 p2 x.
Proof. by move=> p1'x y; rewrite mem2_cat (negPf p1'x) mem2lf ?orbF. Qed.
Lemma mem2r_cat {p1 p2 x y} : y \notin p2 -> mem2 (p1 ++ p2) x y = mem2 p1 x y.
Proof.
by move=> p2'y; rewrite mem2_cat (negPf p2'y) -orbA orbC andbF mem2rf.
Qed.
Lemma mem2lr_splice {p1 p2 p3 x y} :
x \notin p2 -> y \notin p2 -> mem2 (p1 ++ p2 ++ p3) x y = mem2 (p1 ++ p3) x y.
Proof.
move=> p2'x p2'y; rewrite catA !mem2_cat !mem_cat.
by rewrite (negPf p2'x) (negPf p2'y) (mem2lf p2'x) andbF !orbF.
Qed.
Lemma mem2E s x y :
mem2 s x y = subseq (if x == y then [:: x] else [:: x; y]) s.
Proof.
elim: s => [| h s]; first by case: ifP.
rewrite mem2_cons => ->.
do 2 rewrite inE (fun_if subseq) !if_arg !sub1seq /=.
by have [->|] := eqVneq; case: eqVneq.
Qed.
Variant split2r x y : seq T -> Type :=
Split2r p1 p2 of y \in x :: p2 : split2r x y (p1 ++ x :: p2).
Lemma splitP2r p x y : mem2 p x y -> split2r x y p.
Proof.
move=> pxy; have px := mem2l pxy.
have:= pxy; rewrite /mem2 (drop_nth x) ?index_mem ?nth_index //.
by case/splitP: px => p1 p2; rewrite cat_rcons.
Qed.
Fixpoint shorten x p :=
if p is y :: p' then
if x \in p then shorten x p' else y :: shorten y p'
else [::].
Variant shorten_spec x p : T -> seq T -> Type :=
ShortenSpec p' of path e x p' & uniq (x :: p') & {subset p' <= p} :
shorten_spec x p (last x p') p'.
Lemma shortenP x p : path e x p -> shorten_spec x p (last x p) (shorten x p).
Proof.
move=> e_p; have: x \in x :: p by apply: mem_head.
elim: p x {1 3 5}x e_p => [|y2 p IHp] x y1.
by rewrite mem_seq1 => _ /eqP->.
rewrite inE orbC /= => /andP[ey12 {}/IHp IHp].
case: ifPn => [y2p_x _ | not_y2p_x /eqP def_x].
have [p' e_p' Up' p'p] := IHp _ y2p_x.
by split=> // y /p'p; apply: predU1r.
have [p' e_p' Up' p'p] := IHp y2 (mem_head y2 p).
have{} p'p z: z \in y2 :: p' -> z \in y2 :: p.
by rewrite !inE; case: (z == y2) => // /p'p.
rewrite -(last_cons y1) def_x; split=> //=; first by rewrite ey12.
by rewrite (contra (p'p y1)) -?def_x.
Qed.
End EqPath.
(* Ordered paths and sorting. *)
Section SortSeq.
Variables (T : Type) (leT : rel T).
Fixpoint merge s1 :=
if s1 is x1 :: s1' then
let fix merge_s1 s2 :=
if s2 is x2 :: s2' then
if leT x1 x2 then x1 :: merge s1' s2 else x2 :: merge_s1 s2'
else s1 in
merge_s1
else id.
Arguments merge !s1 !s2 : rename.
Fixpoint merge_sort_push s1 ss :=
match ss with
| [::] :: ss' | [::] as ss' => s1 :: ss'
| s2 :: ss' => [::] :: merge_sort_push (merge s2 s1) ss'
end.
Fixpoint merge_sort_pop s1 ss :=
if ss is s2 :: ss' then merge_sort_pop (merge s2 s1) ss' else s1.
Fixpoint merge_sort_rec ss s :=
if s is [:: x1, x2 & s'] then
let s1 := if leT x1 x2 then [:: x1; x2] else [:: x2; x1] in
merge_sort_rec (merge_sort_push s1 ss) s'
else merge_sort_pop s ss.
Definition sort := merge_sort_rec [::].
(* The following definition `sort_rec1` is an auxiliary function for *)
(* inductive reasoning on `sort`. One can rewrite `sort le s` to *)
(* `sort_rec1 le [::] s` by `sortE` and apply the simple structural induction *)
(* on `s` to reason about it. *)
Fixpoint sort_rec1 ss s :=
if s is x :: s then sort_rec1 (merge_sort_push [:: x] ss) s else
merge_sort_pop [::] ss.
Lemma sortE s : sort s = sort_rec1 [::] s.
Proof.
transitivity (sort_rec1 [:: nil] s); last by case: s.
rewrite /sort; move: [::] {2}_.+1 (ltnSn (size s)./2) => ss n.
by elim: n => // n IHn in ss s *; case: s => [|x [|y s]] //= /IHn->.
Qed.
Lemma count_merge (p : pred T) s1 s2 :
count p (merge s1 s2) = count p (s1 ++ s2).
Proof.
rewrite count_cat; elim: s1 s2 => // x s1 IH1.
elim=> //= [|y s2 IH2]; first by rewrite addn0.
by case: leT; rewrite /= ?IH1 ?IH2 !addnA [_ + p y]addnAC [p x + p y]addnC.
Qed.
Lemma size_merge s1 s2 : size (merge s1 s2) = size (s1 ++ s2).
Proof. exact: (count_merge predT). Qed.
Lemma allrel_merge s1 s2 : allrel leT s1 s2 -> merge s1 s2 = s1 ++ s2.
Proof.
elim: s1 s2 => [|x s1 IHs1] [|y s2]; rewrite ?cats0 //=.
by rewrite allrel_consl /= -andbA => /and3P [-> _ /IHs1->].
Qed.
Lemma count_sort (p : pred T) s : count p (sort s) = count p s.
Proof.
rewrite sortE -[RHS]/(sumn [seq count p x | x <- [::]] + count p s).
elim: s [::] => [|x s ihs] ss.
rewrite [LHS]/=; elim: ss [::] => //= s ss ihss t.
by rewrite ihss count_merge count_cat addnCA addnA.
rewrite {}ihs -[in RHS]cat1s count_cat addnA; congr addn; rewrite addnC.
elim: {x s} ss [:: x] => [|[|x s] ss ihss] t //.
by rewrite [LHS]/= add0n ihss count_merge count_cat -addnA addnCA.
Qed.
Lemma pairwise_sort s : pairwise leT s -> sort s = s.
Proof.
pose catss := foldr (fun x => cat ^~ x) (Nil T).
rewrite -{1 3}[s]/(catss [::] ++ s) sortE; elim: s [::] => /= [|x s ihs] ss.
elim: ss [::] => //= s ss ihss t; rewrite -catA => ssst.
rewrite -ihss ?allrel_merge //; move: ssst; rewrite !pairwise_cat.
by case/and4P.
rewrite (catA _ [:: _]) => ssxs.
suff x_ss_E: catss (merge_sort_push [:: x] ss) = catss ([:: x] :: ss).
by rewrite -[catss _ ++ _]/(catss ([:: x] :: ss)) -x_ss_E ihs // x_ss_E.
move: ssxs; rewrite pairwise_cat => /and3P [_ + _].
elim: ss [:: x] => {x s ihs} //= -[|x s] ss ihss t h_pairwise;
rewrite /= cats0 // allrel_merge ?ihss ?catA //.
by move: h_pairwise; rewrite -catA !pairwise_cat => /and4P [].
Qed.
Remark size_merge_sort_push s1 :
let graded ss := forall i, size (nth [::] ss i) \in pred2 0 (2 ^ (i + 1)) in
size s1 = 2 -> {homo merge_sort_push s1 : ss / graded ss}.
Proof.
set n := {2}1; rewrite -[RHS]/(2 ^ n) => graded sz_s1 ss.
elim: ss => [|s2 ss IHss] in (n) graded s1 sz_s1 * => sz_ss i //=.
by case: i => [|[]] //; rewrite sz_s1 inE eqxx orbT.
case: s2 i => [|x s2] [|i] //= in sz_ss *; first by rewrite sz_s1 inE eqxx orbT.
exact: (sz_ss i.+1).
rewrite addSnnS; apply: IHss i => [|i]; last by rewrite -addSnnS (sz_ss i.+1).
by rewrite size_merge size_cat sz_s1 (eqP (sz_ss 0)) addnn expnS mul2n.
Qed.
Section Stability.
Variable leT' : rel T.
Hypothesis (leT_total : total leT) (leT'_tr : transitive leT').
Let leT_lex := [rel x y | leT x y && (leT y x ==> leT' x y)].
Lemma merge_stable_path x s1 s2 :
allrel leT' s1 s2 -> path leT_lex x s1 -> path leT_lex x s2 ->
path leT_lex x (merge s1 s2).
Proof.
elim: s1 s2 x => //= x s1 ih1; elim => //= y s2 ih2 h.
rewrite allrel_cons2 => /and4P [xy' xs2 ys1 s1s2] /andP [hx xs1] /andP [hy ys2].
case: ifP => xy /=; rewrite (hx, hy) /=.
- by apply: ih1; rewrite ?allrel_consr ?ys1 //= xy xy' implybT.
- by apply: ih2; have:= leT_total x y; rewrite ?allrel_consl ?xs2 ?xy //= => ->.
Qed.
Lemma merge_stable_sorted s1 s2 :
allrel leT' s1 s2 -> sorted leT_lex s1 -> sorted leT_lex s2 ->
sorted leT_lex (merge s1 s2).
Proof.
case: s1 s2 => [|x s1] [|y s2] //=; rewrite allrel_consl allrel_consr /= -andbA.
case/and4P => [xy' xs2 ys1 s1s2] xs1 ys2; rewrite -/(merge (_ :: _)).
by case: ifP (leT_total x y) => /= xy yx; apply/merge_stable_path;
rewrite /= ?(allrel_consl, allrel_consr, xs2, ys1, xy, yx, xy', implybT).
Qed.
End Stability.
Hypothesis leT_total : total leT.
Let leElex : leT =2 [rel x y | leT x y && (leT y x ==> true)].
Proof. by move=> ? ? /=; rewrite implybT andbT. Qed.
Lemma merge_path x s1 s2 :
path leT x s1 -> path leT x s2 -> path leT x (merge s1 s2).
Proof. by rewrite !(eq_path leElex); apply/merge_stable_path/allrelT. Qed.
Lemma merge_sorted s1 s2 :
sorted leT s1 -> sorted leT s2 -> sorted leT (merge s1 s2).
Proof. by rewrite !(eq_sorted leElex); apply/merge_stable_sorted/allrelT. Qed.
Hypothesis leT_tr : transitive leT.
Lemma sorted_merge s t : sorted leT (s ++ t) -> merge s t = s ++ t.
Proof. by rewrite sorted_pairwise // pairwise_cat => /and3P[/allrel_merge]. Qed.
Lemma sorted_sort s : sorted leT s -> sort s = s.
Proof. by rewrite sorted_pairwise //; apply/pairwise_sort. Qed.
Lemma mergeA : associative merge.
Proof.
elim=> // x xs IHxs; elim=> // y ys IHys; elim=> [|z zs IHzs] /=.
by case: ifP.
case: ifP; case: ifP => /= lexy leyz.
- by rewrite lexy (leT_tr lexy leyz) -IHxs /= leyz.
- by rewrite lexy leyz -IHys.
- case: ifP => lexz; first by rewrite -IHxs //= leyz.
by rewrite -!/(merge (_ :: _)) IHzs /= lexy.
- suff->: leT x z = false by rewrite leyz // -!/(merge (_ :: _)) IHzs /= lexy.
by apply/contraFF/leT_tr: leyz; have := leT_total x y; rewrite lexy.
Qed.
End SortSeq.
Arguments merge {T} relT !s1 !s2 : rename.
Arguments size_merge {T} leT s1 s2.
Arguments allrel_merge {T leT s1 s2}.
Arguments pairwise_sort {T leT s}.
Arguments merge_path {T leT} leT_total {x s1 s2}.
Arguments merge_sorted {T leT} leT_total {s1 s2}.
Arguments sorted_merge {T leT} leT_tr {s t}.
Arguments sorted_sort {T leT} leT_tr {s}.
Arguments mergeA {T leT} leT_total leT_tr.
Section SortMap.
Variables (T T' : Type) (f : T' -> T).
Section Monotonicity.
Variables (leT' : rel T') (leT : rel T).
Hypothesis f_mono : {mono f : x y / leT' x y >-> leT x y}.
Lemma map_merge : {morph map f : s1 s2 / merge leT' s1 s2 >-> merge leT s1 s2}.
Proof.
elim=> //= x s1 IHs1; elim => [|y s2 IHs2] //=; rewrite f_mono.
by case: leT'; rewrite /= ?IHs1 ?IHs2.
Qed.
Lemma map_sort : {morph map f : s1 / sort leT' s1 >-> sort leT s1}.
Proof.
move=> s; rewrite !sortE -[[::] in RHS]/(map (map f) [::]).
elim: s [::] => /= [|x s ihs] ss; rewrite -/(map f [::]) -/(map f [:: _]);
first by elim: ss [::] => //= x ss ihss ?; rewrite ihss map_merge.
rewrite ihs -/(map f [:: x]); congr sort_rec1.
by elim: ss [:: x] => {x s ihs} [|[|x s] ss ihss] //= ?; rewrite ihss map_merge.
Qed.
End Monotonicity.
Variable leT : rel T.
Lemma merge_map s1 s2 :
merge leT (map f s1) (map f s2) = map f (merge (relpre f leT) s1 s2).
Proof. exact/esym/map_merge. Qed.
Lemma sort_map s : sort leT (map f s) = map f (sort (relpre f leT) s).
Proof. exact/esym/map_sort. Qed.
End SortMap.
Arguments map_merge {T T' f leT' leT}.
Arguments map_sort {T T' f leT' leT}.
Arguments merge_map {T T' f leT}.
Arguments sort_map {T T' f leT}.
Lemma sorted_sort_in T (P : {pred T}) (leT : rel T) :
{in P & &, transitive leT} ->
forall s : seq T, all P s -> sorted leT s -> sort leT s = s.
Proof.
move=> /in3_sig ? _ /all_sigP[s ->].
by rewrite sort_map sorted_map => /sorted_sort->.
Qed.
Arguments sorted_sort_in {T P leT} leT_tr {s}.
Section EqSortSeq.
Variables (T : eqType) (leT : rel T).
Lemma perm_merge s1 s2 : perm_eql (merge leT s1 s2) (s1 ++ s2).
Proof. by apply/permPl/permP => ?; rewrite count_merge. Qed.
Lemma mem_merge s1 s2 : merge leT s1 s2 =i s1 ++ s2.
Proof. by apply: perm_mem; rewrite perm_merge. Qed.
Lemma merge_uniq s1 s2 : uniq (merge leT s1 s2) = uniq (s1 ++ s2).
Proof. by apply: perm_uniq; rewrite perm_merge. Qed.
Lemma perm_sort s : perm_eql (sort leT s) s.
Proof. by apply/permPl/permP => ?; rewrite count_sort. Qed.
Lemma mem_sort s : sort leT s =i s. Proof. exact/perm_mem/permPl/perm_sort. Qed.
Lemma sort_uniq s : uniq (sort leT s) = uniq s.
Proof. exact/perm_uniq/permPl/perm_sort. Qed.
Lemma eq_count_merge (p : pred T) s1 s1' s2 s2' :
count p s1 = count p s1' -> count p s2 = count p s2' ->
count p (merge leT s1 s2) = count p (merge leT s1' s2').
Proof. by rewrite !count_merge !count_cat => -> ->. Qed.
End EqSortSeq.
Lemma perm_iota_sort (T : Type) (leT : rel T) x0 s :
{i_s : seq nat | perm_eq i_s (iota 0 (size s)) &
sort leT s = map (nth x0 s) i_s}.
Proof.
exists (sort (relpre (nth x0 s) leT) (iota 0 (size s))).
by rewrite perm_sort.
by rewrite -[s in LHS](mkseq_nth x0) sort_map.
Qed.
Lemma all_merge (T : Type) (P : {pred T}) (leT : rel T) s1 s2 :
all P (merge leT s1 s2) = all P s1 && all P s2.
Proof.
elim: s1 s2 => //= x s1 IHs1; elim=> [|y s2 IHs2]; rewrite ?andbT //=.
by case: ifP => _; rewrite /= ?IHs1 ?IHs2 //=; bool_congr.
Qed.
Lemma all_sort (T : Type) (P : {pred T}) (leT : rel T) s :
all P (sort leT s) = all P s.
Proof.
case: s => // x s; move: (x :: s) => {}s.
by rewrite -(mkseq_nth x s) sort_map !all_map; apply/perm_all/permPl/perm_sort.
Qed.
Lemma size_sort (T : Type) (leT : rel T) s : size (sort leT s) = size s.
Proof. exact: (count_sort _ predT). Qed.
Lemma ltn_sorted_uniq_leq s : sorted ltn s = uniq s && sorted leq s.
Proof.
rewrite (sorted_pairwise leq_trans) (sorted_pairwise ltn_trans) uniq_pairwise.
by rewrite -pairwise_relI; apply/eq_pairwise => ? ?; rewrite ltn_neqAle.
Qed.
Lemma gtn_sorted_uniq_geq s : sorted gtn s = uniq s && sorted geq s.
Proof. by rewrite -rev_sorted ltn_sorted_uniq_leq rev_sorted rev_uniq. Qed.
Lemma iota_sorted i n : sorted leq (iota i n).
Proof. by elim: n i => // [[|n] //= IHn] i; rewrite IHn leqW. Qed.
Lemma iota_ltn_sorted i n : sorted ltn (iota i n).
Proof. by rewrite ltn_sorted_uniq_leq iota_sorted iota_uniq. Qed.
Section Stability_iota.
Variables (leN : rel nat) (leN_total : total leN).
Let lt_lex := [rel n m | leN n m && (leN m n ==> (n < m))].
Let Fixpoint push_invariant (ss : seq (seq nat)) :=
if ss is s :: ss' then
[&& sorted lt_lex s, allrel gtn s (flatten ss') & push_invariant ss']
else
true.
Let push_stable s1 ss :
push_invariant (s1 :: ss) -> push_invariant (merge_sort_push leN s1 ss).
Proof.
elim: ss s1 => [] // [] //= m s2 ss ihss s1; rewrite -cat_cons allrel_catr.
move=> /and5P[sorted_s1 /andP[s1s2 s1ss] sorted_s2 s2ss hss]; apply: ihss.
rewrite /= hss andbT merge_stable_sorted //=; last by rewrite allrelC.
by apply/allrelP => ? ?; rewrite mem_merge mem_cat => /orP[]; apply/allrelP.
Qed.
Let pop_stable s1 ss :
push_invariant (s1 :: ss) -> sorted lt_lex (merge_sort_pop leN s1 ss).
Proof.
elim: ss s1 => [s1 /and3P[]|s2 ss ihss s1] //=; rewrite allrel_catr.
move=> /and5P[sorted_s1 /andP[s1s2 s1ss] sorted_s2 s2ss hss]; apply: ihss.
rewrite /= hss andbT merge_stable_sorted //=; last by rewrite allrelC.
by apply/allrelP => ? ?; rewrite mem_merge mem_cat => /orP[]; apply/allrelP.
Qed.
Lemma sort_iota_stable n : sorted lt_lex (sort leN (iota 0 n)).
Proof.
rewrite sortE.
have/andP[]: all (gtn 0) (flatten [::]) && push_invariant [::] by [].
elim: n 0 [::] => [|n ihn] m ss hss1 hss2; first exact: pop_stable.
apply/ihn/push_stable; last by rewrite /= allrel1l hss1.
have: all (gtn m.+1) (flatten ([:: m] :: ss)).
by rewrite /= leqnn; apply: sub_all hss1 => ? /leqW.
elim: ss [:: _] {hss1 hss2} => [|[|? ?] ? ihss] //= ? ?.
by rewrite ihss //= all_cat all_merge -andbA andbCA -!all_cat.
Qed.
End Stability_iota.
Lemma sort_pairwise_stable T (leT leT' : rel T) :
total leT -> forall s : seq T, pairwise leT' s ->
sorted [rel x y | leT x y && (leT y x ==> leT' x y)] (sort leT s).
Proof.
move=> leT_total s pairwise_s; case Ds: s => // [x s1].
rewrite -{s1}Ds -(mkseq_nth x s) sort_map.
apply/homo_sorted_in/sort_iota_stable/(fun _ _ => leT_total _ _)/allss => y z.
rewrite !mem_sort !mem_iota !leq0n add0n /= => ys zs /andP [->] /=.
by case: (leT _ _); first apply: pairwiseP.
Qed.
Lemma sort_stable T (leT leT' : rel T) :
total leT -> transitive leT' -> forall s : seq T, sorted leT' s ->
sorted [rel x y | leT x y && (leT y x ==> leT' x y)] (sort leT s).
Proof.
move=> leT_total leT'_tr s; rewrite sorted_pairwise //.
exact: sort_pairwise_stable.
Qed.
Lemma sort_stable_in T (P : {pred T}) (leT leT' : rel T) :
{in P &, total leT} -> {in P & &, transitive leT'} ->
forall s : seq T, all P s -> sorted leT' s ->
sorted [rel x y | leT x y && (leT y x ==> leT' x y)] (sort leT s).
Proof.
move=> /in2_sig leT_total /in3_sig leT_tr _ /all_sigP[s ->].
by rewrite sort_map !sorted_map; apply: sort_stable.
Qed.
Lemma filter_sort T (leT : rel T) :
total leT -> transitive leT ->
forall p s, filter p (sort leT s) = sort leT (filter p s).
Proof.
move=> leT_total leT_tr p s; case Ds: s => // [x s1].
pose leN := relpre (nth x s) leT.
pose lt_lex := [rel n m | leN n m && (leN m n ==> (n < m))].
have lt_lex_tr: transitive lt_lex.
rewrite /lt_lex /leN => ? ? ? /= /andP [xy xy'] /andP [yz yz'].
rewrite (leT_tr _ _ _ xy yz); apply/implyP => zx; move: xy' yz'.
by rewrite (leT_tr _ _ _ yz zx) (leT_tr _ _ _ zx xy); apply: ltn_trans.
rewrite -{s1}Ds -(mkseq_nth x s) !(filter_map, sort_map); congr map.
apply/(@irr_sorted_eq _ lt_lex); rewrite /lt_lex /leN //=.
- by move=> ?; rewrite /= ltnn implybF andbN.
- exact/sorted_filter/sort_iota_stable.
- exact/sort_stable/sorted_filter/iota_ltn_sorted/ltn_trans/ltn_trans.
- by move=> ?; rewrite !(mem_filter, mem_sort).
Qed.
Lemma filter_sort_in T (P : {pred T}) (leT : rel T) :
{in P &, total leT} -> {in P & &, transitive leT} ->
forall p s, all P s -> filter p (sort leT s) = sort leT (filter p s).
Proof.
move=> /in2_sig leT_total /in3_sig leT_tr p _ /all_sigP[s ->].
by rewrite !(sort_map, filter_map) filter_sort.
Qed.
Section Stability_mask.
Variables (T : Type) (leT : rel T).
Variables (leT_total : total leT) (leT_tr : transitive leT).
Lemma mask_sort s m :
{m_s : bitseq | mask m_s (sort leT s) = sort leT (mask m s)}.
Proof.
case Ds: {-}s => [|x s1]; [by rewrite Ds; case: m; exists [::] | clear s1 Ds].
rewrite -(mkseq_nth x s) -map_mask !sort_map.
exists [seq i \in mask m (iota 0 (size s)) |
i <- sort (xrelpre (nth x s) leT) (iota 0 (size s))].
rewrite -map_mask -filter_mask [in RHS]mask_filter ?iota_uniq ?filter_sort //.
by move=> ? ? ?; exact: leT_tr.
Qed.
Lemma sorted_mask_sort s m :
sorted leT (mask m s) -> {m_s | mask m_s (sort leT s) = mask m s}.
Proof. by move/(sorted_sort leT_tr) <-; exact: mask_sort. Qed.
End Stability_mask.
Section Stability_mask_in.
Variables (T : Type) (P : {pred T}) (leT : rel T).
Hypothesis leT_total : {in P &, total leT}.
Hypothesis leT_tr : {in P & &, transitive leT}.
Let le_sT := relpre (val : sig P -> _) leT.
Let le_sT_total : total le_sT := in2_sig leT_total.
Let le_sT_tr : transitive le_sT := in3_sig leT_tr.
Lemma mask_sort_in s m :
all P s -> {m_s : bitseq | mask m_s (sort leT s) = sort leT (mask m s)}.
Proof.
move=> /all_sigP [{}s ->]; case: (mask_sort (leT := le_sT) _ _ s m) => //.
by move=> m' m'E; exists m'; rewrite -map_mask !sort_map -map_mask m'E.
Qed.
Lemma sorted_mask_sort_in s m :
all P s -> sorted leT (mask m s) -> {m_s | mask m_s (sort leT s) = mask m s}.
Proof.
move=> ? /(sorted_sort_in leT_tr _) <-; [exact: mask_sort_in | exact: all_mask].
Qed.
End Stability_mask_in.
Section Stability_subseq.
Variables (T : eqType) (leT : rel T).
Variables (leT_total : total leT) (leT_tr : transitive leT).
Lemma subseq_sort : {homo sort leT : t s / subseq t s}.
Proof.
move=> _ s /subseqP [m _ ->]; have [m' <-] := mask_sort leT_total leT_tr s m.
exact: mask_subseq.
Qed.
Lemma sorted_subseq_sort t s :
subseq t s -> sorted leT t -> subseq t (sort leT s).
Proof. by move=> subseq_ts /(sorted_sort leT_tr) <-; exact: subseq_sort. Qed.
Lemma mem2_sort s x y : leT x y -> mem2 s x y -> mem2 (sort leT s) x y.
Proof.
move=> lexy /[!mem2E] /subseq_sort.
by case: eqP => // _; rewrite {1}/sort /= lexy /=.
Qed.
End Stability_subseq.
Section Stability_subseq_in.
Variables (T : eqType) (leT : rel T).
Lemma subseq_sort_in t s :
{in s &, total leT} -> {in s & &, transitive leT} ->
subseq t s -> subseq (sort leT t) (sort leT s).
Proof.
move=> leT_total leT_tr /subseqP [m _ ->].
have [m' <-] := mask_sort_in leT_total leT_tr m (allss _).
exact: mask_subseq.
Qed.
Lemma sorted_subseq_sort_in t s :
{in s &, total leT} -> {in s & &, transitive leT} ->
subseq t s -> sorted leT t -> subseq t (sort leT s).
Proof.
move=> ? leT_tr ? /(sorted_sort_in leT_tr) <-; last exact/allP/mem_subseq.
exact: subseq_sort_in.
Qed.
Lemma mem2_sort_in s :
{in s &, total leT} -> {in s & &, transitive leT} ->
forall x y, leT x y -> mem2 s x y -> mem2 (sort leT s) x y.
Proof.
move=> leT_total leT_tr x y lexy; rewrite !mem2E.
by move/subseq_sort_in; case: (_ == _); rewrite /sort /= ?lexy; apply.
Qed.
End Stability_subseq_in.
Lemma sort_sorted T (leT : rel T) :
total leT -> forall s, sorted leT (sort leT s).
Proof.
move=> leT_total s; apply/sub_sorted/sort_stable => //= [? ? /andP[] //|].
by case: s => // x s; elim: s x => /=.
Qed.
Lemma sort_sorted_in T (P : {pred T}) (leT : rel T) :
{in P &, total leT} -> forall s : seq T, all P s -> sorted leT (sort leT s).
Proof.
by move=> /in2_sig ? _ /all_sigP[s ->]; rewrite sort_map sorted_map sort_sorted.
Qed.
Arguments sort_sorted {T leT} leT_total s.
Arguments sort_sorted_in {T P leT} leT_total {s}.
Lemma perm_sortP (T : eqType) (leT : rel T) :
total leT -> transitive leT -> antisymmetric leT ->
forall s1 s2, reflect (sort leT s1 = sort leT s2) (perm_eq s1 s2).
Proof.
move=> leT_total leT_tr leT_asym s1 s2.
apply: (iffP idP) => eq12; last by rewrite -(perm_sort leT) eq12 perm_sort.
apply: (sorted_eq leT_tr leT_asym); rewrite ?sort_sorted //.
by rewrite perm_sort (permPl eq12) -(perm_sort leT).
Qed.
Lemma perm_sort_inP (T : eqType) (leT : rel T) (s1 s2 : seq T) :
{in s1 &, total leT} -> {in s1 & &, transitive leT} ->
{in s1 &, antisymmetric leT} ->
reflect (sort leT s1 = sort leT s2) (perm_eq s1 s2).
Proof.
move=> /in2_sig leT_total /in3_sig leT_tr /in2_sig/(_ _ _ _)/val_inj leT_asym.
apply: (iffP idP) => s1s2; last by rewrite -(perm_sort leT) s1s2 perm_sort.
move: (s1s2); have /all_sigP[s1' ->] := allss s1.
have /all_sigP[{s1s2}s2 ->] : all [in s1] s2 by rewrite -(perm_all _ s1s2).
by rewrite !sort_map => /(perm_map_inj val_inj) /(perm_sortP leT_total)->.
Qed.
Lemma homo_sort_map (T : Type) (T' : eqType) (f : T -> T') leT leT' :
antisymmetric (relpre f leT') -> transitive (relpre f leT') -> total leT ->
{homo f : x y / leT x y >-> leT' x y} ->
forall s : seq T, sort leT' (map f s) = map f (sort leT s).
Proof.
move=> leT'_asym leT'_trans leT_total f_homo s; case Ds: s => // [x s'].
rewrite -{}Ds -(mkseq_nth x s) [in RHS]sort_map -!map_comp /comp.
apply: (@sorted_eq_in _ leT') => [? ? ?|? ?|||]; rewrite ?mem_sort.
- by move=> /mapP[? _ ->] /mapP[? _ ->] /mapP[? _ ->]; apply/leT'_trans.
- by move=> /mapP[? _ ->] /mapP[? _ ->] /leT'_asym ->.
- apply: (sort_sorted_in _ (allss _)) => _ _ /mapP[y _ ->] /mapP[z _ ->].
by case/orP: (leT_total (nth x s y) (nth x s z)) => /f_homo ->; rewrite ?orbT.
- by rewrite map_comp -sort_map; exact/homo_sorted/sort_sorted.
- by rewrite perm_sort perm_map // perm_sym perm_sort.
Qed.
Lemma homo_sort_map_in
(T : Type) (T' : eqType) (P : {pred T}) (f : T -> T') leT leT' :
{in P &, antisymmetric (relpre f leT')} ->
{in P & &, transitive (relpre f leT')} -> {in P &, total leT} ->
{in P &, {homo f : x y / leT x y >-> leT' x y}} ->
forall s : seq T, all P s ->
sort leT' [seq f x | x <- s] = [seq f x | x <- sort leT s].
Proof.
move=> /in2_sig leT'_asym /in3_sig leT'_trans /in2_sig leT_total.
move=> /in2_sig f_homo _ /all_sigP[s ->].
rewrite [in RHS]sort_map -!map_comp /comp.
by apply: homo_sort_map => // ? ? /leT'_asym /val_inj.
Qed.
(* Function trajectories. *)
Notation fpath f := (path (coerced_frel f)).
Notation fcycle f := (cycle (coerced_frel f)).
Notation ufcycle f := (ucycle (coerced_frel f)).
Prenex Implicits path next prev cycle ucycle mem2.
Section Trajectory.
Variables (T : Type) (f : T -> T).
Fixpoint traject x n := if n is n'.+1 then x :: traject (f x) n' else [::].
Lemma trajectS x n : traject x n.+1 = x :: traject (f x) n.
Proof. by []. Qed.
Lemma trajectSr x n : traject x n.+1 = rcons (traject x n) (iter n f x).
Proof. by elim: n x => //= n IHn x; rewrite IHn -iterSr. Qed.
Lemma last_traject x n : last x (traject (f x) n) = iter n f x.
Proof. by case: n => // n; rewrite iterSr trajectSr last_rcons. Qed.
Lemma traject_iteri x n :
traject x n = iteri n (fun i => rcons^~ (iter i f x)) [::].
Proof. by elim: n => //= n <-; rewrite -trajectSr. Qed.
Lemma size_traject x n : size (traject x n) = n.
Proof. by elim: n x => //= n IHn x //=; rewrite IHn. Qed.
Lemma nth_traject i n : i < n -> forall x, nth x (traject x n) i = iter i f x.
Proof.
elim: n => // n IHn; rewrite ltnS => le_i_n x.
rewrite trajectSr nth_rcons size_traject.
by case: ltngtP le_i_n => [? _||->] //; apply: IHn.
Qed.
Lemma trajectD m n x :
traject x (m + n) = traject x m ++ traject (iter m f x) n.
Proof. by elim: m => //m IHm in x *; rewrite addSn !trajectS IHm -iterSr. Qed.
Lemma take_traject n k x : k <= n -> take k (traject x n) = traject x k.
Proof. by move=> /subnKC<-; rewrite trajectD take_size_cat ?size_traject. Qed.
End Trajectory.
Section EqTrajectory.
Variables (T : eqType) (f : T -> T).
Lemma eq_fpath f' : f =1 f' -> fpath f =2 fpath f'.
Proof. by move/eq_frel/eq_path. Qed.
Lemma eq_fcycle f' : f =1 f' -> fcycle f =1 fcycle f'.
Proof. by move/eq_frel/eq_cycle. Qed.
Lemma fpathE x p : fpath f x p -> p = traject f (f x) (size p).
Proof. by elim: p => //= y p IHp in x * => /andP[/eqP{y}<- /IHp<-]. Qed.
Lemma fpathP x p : reflect (exists n, p = traject f (f x) n) (fpath f x p).
Proof.
apply: (iffP idP) => [/fpathE->|[n->]]; first by exists (size p).
by elim: n => //= n IHn in x *; rewrite eqxx IHn.
Qed.
Lemma fpath_traject x n : fpath f x (traject f (f x) n).
Proof. by apply/(fpathP x); exists n. Qed.
Definition looping x n := iter n f x \in traject f x n.
Lemma loopingP x n :
reflect (forall m, iter m f x \in traject f x n) (looping x n).
Proof.
apply: (iffP idP) => loop_n; last exact: loop_n.
case: n => // n in loop_n *; elim=> [|m /= IHm]; first exact: mem_head.
move: (fpath_traject x n) loop_n; rewrite /looping !iterS -last_traject /=.
move: (iter m f x) IHm => y /splitPl[p1 p2 def_y].
rewrite cat_path last_cat def_y; case: p2 => // z p2 /and3P[_ /eqP-> _] _.
by rewrite inE mem_cat mem_head !orbT.
Qed.
Lemma trajectP x n y :
reflect (exists2 i, i < n & y = iter i f x) (y \in traject f x n).
Proof.
elim: n x => [|n IHn] x /=; first by right; case.
rewrite inE; have [-> | /= neq_xy] := eqP; first by left; exists 0.
apply: {IHn}(iffP (IHn _)) => [[i] | [[|i]]] // lt_i_n ->.
by exists i.+1; rewrite ?iterSr.
by exists i; rewrite ?iterSr.
Qed.
Lemma looping_uniq x n : uniq (traject f x n.+1) = ~~ looping x n.
Proof.
rewrite /looping; elim: n x => [|n IHn] x //.
rewrite [n.+1 in LHS]lock [iter]lock /= -!lock {}IHn -iterSr -negb_or inE.
congr (~~ _); apply: orb_id2r => /trajectP no_loop.
apply/idP/eqP => [/trajectP[m le_m_n def_x] | {1}<-]; last first.
by rewrite iterSr -last_traject mem_last.
have loop_m: looping x m.+1 by rewrite /looping iterSr -def_x mem_head.
have/trajectP[[|i] // le_i_m def_fn1x] := loopingP _ _ loop_m n.+1.
by case: no_loop; exists i; rewrite -?iterSr // -ltnS (leq_trans le_i_m).
Qed.
End EqTrajectory.
Arguments fpathP {T f x p}.
Arguments loopingP {T f x n}.
Arguments trajectP {T f x n y}.
Prenex Implicits traject.
Section Fcycle.
Variables (T : eqType) (f : T -> T) (p : seq T) (f_p : fcycle f p).
Lemma nextE (x : T) (p_x : x \in p) : next p x = f x.
Proof. exact/esym/eqP/(next_cycle f_p). Qed.
Lemma mem_fcycle : {homo f : x / x \in p}.
Proof. by move=> x xp; rewrite -nextE// mem_next. Qed.
Lemma inj_cycle : {in p &, injective f}.
Proof.
apply: can_in_inj (iter (size p).-1 f) _ => x /rot_to[i q rip].
have /fpathE qxE : fcycle f (x :: q) by rewrite -rip rot_cycle.
have -> : size p = size (rcons q x) by rewrite size_rcons -(size_rot i) rip.
by rewrite -iterSr -last_traject prednK -?qxE ?size_rcons// last_rcons.
Qed.
End Fcycle.
Section UniqCycle.
Variables (n0 : nat) (T : eqType) (e : rel T) (p : seq T).
Hypothesis Up : uniq p.
Lemma prev_next : cancel (next p) (prev p).
Proof.
move=> x; rewrite prev_nth mem_next next_nth; case p_x: (x \in p) => //.
case Dp: p Up p_x => // [y q]; rewrite [uniq _]/= -Dp => /andP[q'y Uq] p_x.
rewrite -[RHS](nth_index y p_x); congr (nth y _ _); set i := index x p.
have: i <= size q by rewrite -index_mem -/i Dp in p_x.
case: ltngtP => // [lt_i_q|->] _; first by rewrite index_uniq.
by apply/eqP; rewrite nth_default // eqn_leq index_size leqNgt index_mem.
Qed.
Lemma next_prev : cancel (prev p) (next p).
Proof.
move=> x; rewrite next_nth mem_prev prev_nth; case p_x: (x \in p) => //.
case def_p: p p_x => // [y q]; rewrite -def_p => p_x.
rewrite index_uniq //; last by rewrite def_p ltnS index_size.
case q_x: (x \in q); first exact: nth_index.
rewrite nth_default; last by rewrite leqNgt index_mem q_x.
by apply/eqP; rewrite def_p inE q_x orbF eq_sym in p_x.
Qed.
Lemma cycle_next : fcycle (next p) p.
Proof.
case def_p: p Up => [|x q] Uq //; rewrite -[in next _]def_p.
apply/(pathP x)=> i; rewrite size_rcons => le_i_q.
rewrite -cats1 -cat_cons nth_cat le_i_q /= next_nth {}def_p mem_nth //.
rewrite index_uniq // nth_cat /= ltn_neqAle andbC -ltnS le_i_q.
by case: (i =P _) => //= ->; rewrite subnn nth_default.
Qed.
Lemma cycle_prev : cycle (fun x y => x == prev p y) p.
Proof.
apply: etrans cycle_next; symmetry; case def_p: p => [|x q] //.
by apply: eq_path; rewrite -def_p; apply: (can2_eq prev_next next_prev).
Qed.
Lemma cycle_from_next : (forall x, x \in p -> e x (next p x)) -> cycle e p.
Proof.
case: p (next p) cycle_next => //= [x q] n; rewrite -(belast_rcons x q x).
move: {q}(rcons q x) => q n_q /allP.
by elim: q x n_q => //= _ q IHq x /andP[/eqP <- n_q] /andP[-> /IHq->].
Qed.
Lemma cycle_from_prev : (forall x, x \in p -> e (prev p x) x) -> cycle e p.
Proof.
move=> e_p; apply: cycle_from_next => x.
by rewrite -mem_next => /e_p; rewrite prev_next.
Qed.
Lemma next_rot : next (rot n0 p) =1 next p.
Proof.
move=> x; have n_p := cycle_next; rewrite -(rot_cycle n0) in n_p.
case p_x: (x \in p); last by rewrite !next_nth mem_rot p_x.
by rewrite (eqP (next_cycle n_p _)) ?mem_rot.
Qed.
Lemma prev_rot : prev (rot n0 p) =1 prev p.
Proof.
move=> x; have p_p := cycle_prev; rewrite -(rot_cycle n0) in p_p.
case p_x: (x \in p); last by rewrite !prev_nth mem_rot p_x.
by rewrite (eqP (prev_cycle p_p _)) ?mem_rot.
Qed.
End UniqCycle.
Section UniqRotrCycle.
Variables (n0 : nat) (T : eqType) (p : seq T).
Hypothesis Up : uniq p.
Lemma next_rotr : next (rotr n0 p) =1 next p. Proof. exact: next_rot. Qed.
Lemma prev_rotr : prev (rotr n0 p) =1 prev p. Proof. exact: prev_rot. Qed.
End UniqRotrCycle.
Section UniqCycleRev.
Variable T : eqType.
Implicit Type p : seq T.
Lemma prev_rev p : uniq p -> prev (rev p) =1 next p.
Proof.
move=> Up x; case p_x: (x \in p); last first.
by rewrite next_nth prev_nth mem_rev p_x.
case/rot_to: p_x (Up) => [i q def_p] Urp; rewrite -rev_uniq in Urp.
rewrite -(prev_rotr i Urp); do 2 rewrite -(prev_rotr 1) ?rotr_uniq //.
rewrite -rev_rot -(next_rot i Up) {i p Up Urp}def_p.
by case: q => // y q; rewrite !rev_cons !(=^~ rcons_cons, rotr1_rcons) /= eqxx.
Qed.
Lemma next_rev p : uniq p -> next (rev p) =1 prev p.
Proof. by move=> Up x; rewrite -[p in RHS]revK prev_rev // rev_uniq. Qed.
End UniqCycleRev.
Section MapPath.
Variables (T T' : Type) (h : T' -> T) (e : rel T) (e' : rel T').
Definition rel_base (b : pred T) :=
forall x' y', ~~ b (h x') -> e (h x') (h y') = e' x' y'.
Lemma map_path b x' p' (Bb : rel_base b) :
~~ has (preim h b) (belast x' p') ->
path e (h x') (map h p') = path e' x' p'.
Proof. by elim: p' x' => [|y' p' IHp'] x' //= /norP[/Bb-> /IHp'->]. Qed.
End MapPath.
Section MapEqPath.
Variables (T T' : eqType) (h : T' -> T) (e : rel T) (e' : rel T').
Hypothesis Ih : injective h.
Lemma mem2_map x' y' p' : mem2 (map h p') (h x') (h y') = mem2 p' x' y'.
Proof. by rewrite [LHS]/mem2 (index_map Ih) -map_drop mem_map. Qed.
Lemma next_map p : uniq p -> forall x, next (map h p) (h x) = h (next p x).
Proof.
move=> Up x; case p_x: (x \in p); last by rewrite !next_nth (mem_map Ih) p_x.
case/rot_to: p_x => i p' def_p.
rewrite -(next_rot i Up); rewrite -(map_inj_uniq Ih) in Up.
rewrite -(next_rot i Up) -map_rot {i p Up}def_p /=.
by case: p' => [|y p''] //=; rewrite !eqxx.
Qed.
Lemma prev_map p : uniq p -> forall x, prev (map h p) (h x) = h (prev p x).
Proof.
move=> Up x; rewrite -[x in LHS](next_prev Up) -(next_map Up).
by rewrite prev_next ?map_inj_uniq.
Qed.
End MapEqPath.
Definition fun_base (T T' : eqType) (h : T' -> T) f f' :=
rel_base h (frel f) (frel f').
Section CycleArc.
Variable T : eqType.
Implicit Type p : seq T.
Definition arc p x y := let px := rot (index x p) p in take (index y px) px.
Lemma arc_rot i p : uniq p -> {in p, arc (rot i p) =2 arc p}.
Proof.
move=> Up x p_x y; congr (fun q => take (index y q) q); move: Up p_x {y}.
rewrite -{1 2 5 6}(cat_take_drop i p) /rot cat_uniq => /and3P[_ Up12 _].
rewrite !drop_cat !take_cat !index_cat mem_cat orbC.
case p2x: (x \in drop i p) => /= => [_ | p1x].
rewrite index_mem p2x [x \in _](negbTE (hasPn Up12 _ p2x)) /= addKn.
by rewrite ltnNge leq_addr catA.
by rewrite p1x index_mem p1x addKn ltnNge leq_addr /= catA.
Qed.
Lemma left_arc x y p1 p2 (p := x :: p1 ++ y :: p2) :
uniq p -> arc p x y = x :: p1.
Proof.
rewrite /arc /p [index x _]/= eqxx rot0 -cat_cons cat_uniq index_cat.
move: (x :: p1) => xp1 /and3P[_ /norP[/= /negbTE-> _] _].
by rewrite eqxx addn0 take_size_cat.
Qed.
Lemma right_arc x y p1 p2 (p := x :: p1 ++ y :: p2) :
uniq p -> arc p y x = y :: p2.
Proof.
rewrite -[p]cat_cons -rot_size_cat rot_uniq => Up.
by rewrite arc_rot ?left_arc ?mem_head.
Qed.
Variant rot_to_arc_spec p x y :=
RotToArcSpec i p1 p2 of x :: p1 = arc p x y
& y :: p2 = arc p y x
& rot i p = x :: p1 ++ y :: p2 :
rot_to_arc_spec p x y.
Lemma rot_to_arc p x y :
uniq p -> x \in p -> y \in p -> x != y -> rot_to_arc_spec p x y.
Proof.
move=> Up p_x p_y ne_xy; case: (rot_to p_x) (p_y) (Up) => [i q def_p] q_y.
rewrite -(mem_rot i) def_p inE eq_sym (negbTE ne_xy) in q_y.
rewrite -(rot_uniq i) def_p.
case/splitPr: q / q_y def_p => q1 q2 def_p Uq12; exists i q1 q2 => //.
by rewrite -(arc_rot i Up p_x) def_p left_arc.
by rewrite -(arc_rot i Up p_y) def_p right_arc.
Qed.
End CycleArc.
Prenex Implicits arc.
|