1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From HB Require Import structures.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat.
(******************************************************************************)
(* The seq type is the ssreflect type for sequences; it is an alias for the *)
(* standard Coq list type. The ssreflect library equips it with many *)
(* operations, as well as eqType and predType (and, later, choiceType) *)
(* structures. The operations are geared towards reflection: they generally *)
(* expect and provide boolean predicates, e.g., the membership predicate *)
(* expects an eqType. To avoid any confusion we do not Import the Coq List *)
(* module. *)
(* As there is no true subtyping in Coq, we don't use a type for non-empty *)
(* sequences; rather, we pass explicitly the head and tail of the sequence. *)
(* The empty sequence is especially bothersome for subscripting, since it *)
(* forces us to pass a default value. This default value can often be hidden *)
(* by a notation. *)
(* Here is the list of seq operations: *)
(* ** Constructors: *)
(* seq T == the type of sequences of items of type T. *)
(* bitseq == seq bool. *)
(* [::], nil, Nil T == the empty sequence (of type T). *)
(* x :: s, cons x s, Cons T x s == the sequence x followed by s (of type T). *)
(* [:: x] == the singleton sequence. *)
(* [:: x_0; ...; x_n] == the explicit sequence of the x_i. *)
(* [:: x_0, ..., x_n & s] == the sequence of the x_i, followed by s. *)
(* rcons s x == the sequence s, followed by x. *)
(* All of the above, except rcons, can be used in patterns. We define a view *)
(* lastP and an induction principle last_ind that can be used to decompose *)
(* or traverse a sequence in a right to left order. The view lemma lastP has *)
(* a dependent family type, so the ssreflect tactic case/lastP: p => [|p' x] *)
(* will generate two subgoals in which p has been replaced by [::] and by *)
(* rcons p' x, respectively. *)
(* ** Factories: *)
(* nseq n x == a sequence of n x's. *)
(* ncons n x s == a sequence of n x's, followed by s. *)
(* seqn n x_0 ... x_n-1 == the sequence of the x_i; can be partially applied. *)
(* iota m n == the sequence m, m + 1, ..., m + n - 1. *)
(* mkseq f n == the sequence f 0, f 1, ..., f (n - 1). *)
(* ** Sequential access: *)
(* head x0 s == the head (zero'th item) of s if s is non-empty, else x0. *)
(* ohead s == None if s is empty, else Some x when the head of s is x. *)
(* behead s == s minus its head, i.e., s' if s = x :: s', else [::]. *)
(* last x s == the last element of x :: s (which is non-empty). *)
(* belast x s == x :: s minus its last item. *)
(* ** Dimensions: *)
(* size s == the number of items (length) in s. *)
(* shape ss == the sequence of sizes of the items of the sequence of *)
(* sequences ss. *)
(* ** Random access: *)
(* nth x0 s i == the item i of s (numbered from 0), or x0 if s does *)
(* not have at least i+1 items (i.e., size x <= i) *)
(* s`_i == standard notation for nth x0 s i for a default x0, *)
(* e.g., 0 for rings. *)
(* onth s i == Some x if x is the i^th idem of s (numbered from 0), *)
(* or None if size s <= i) *)
(* set_nth x0 s i y == s where item i has been changed to y; if s does not *)
(* have an item i, it is first padded with copies of x0 *)
(* to size i+1. *)
(* incr_nth s i == the nat sequence s with item i incremented (s is *)
(* first padded with 0's to size i+1, if needed). *)
(* ** Predicates: *)
(* nilp s <=> s is [::]. *)
(* := (size s == 0). *)
(* x \in s == x appears in s (this requires an eqType for T). *)
(* index x s == the first index at which x appears in s, or size s if *)
(* x \notin s. *)
(* has a s <=> a holds for some item in s, where a is an applicative *)
(* bool predicate. *)
(* all a s <=> a holds for all items in s. *)
(* 'has_aP <-> the view reflect (exists2 x, x \in s & A x) (has a s), *)
(* where aP x : reflect (A x) (a x). *)
(* 'all_aP <=> the view for reflect {in s, forall x, A x} (all a s). *)
(* all2 r s t <=> the (bool) relation r holds for all _respective_ items *)
(* in s and t, which must also have the same size, i.e., *)
(* for s := [:: x1; ...; x_m] and t := [:: y1; ...; y_n], *)
(* the condition [&& r x_1 y_1, ..., r x_n y_n & m == n]. *)
(* find p s == the index of the first item in s for which p holds, *)
(* or size s if no such item is found. *)
(* count p s == the number of items of s for which p holds. *)
(* count_mem x s == the multiplicity of x in s, i.e., count (pred1 x) s. *)
(* tally s == a tally of s, i.e., a sequence of (item, multiplicity) *)
(* pairs for all items in sequence s (without duplicates). *)
(* incr_tally bs x == increment the multiplicity of x in the tally bs, or add *)
(* x with multiplicity 1 at then end if x is not in bs. *)
(* bs \is a wf_tally <=> bs is well-formed tally, with no duplicate items or *)
(* null multiplicities. *)
(* tally_seq bs == the expansion of a tally bs into a sequence where each *)
(* (x, n) pair expands into a sequence of n x's. *)
(* constant s <=> all items in s are identical (trivial if s = [::]). *)
(* uniq s <=> all the items in s are pairwise different. *)
(* subseq s1 s2 <=> s1 is a subsequence of s2, i.e., s1 = mask m s2 for *)
(* some m : bitseq (see below). *)
(* infix s1 s2 <=> s1 is a contiguous subsequence of s2, i.e., *)
(* s ++ s1 ++ s' = s2 for some sequences s, s'. *)
(* prefix s1 s2 <=> s1 is a subchain of s2 appearing at the beginning *)
(* of s2. *)
(* suffix s1 s2 <=> s1 is a subchain of s2 appearing at the end of s2. *)
(* infix_index s1 s2 <=> the first index at which s1 appears in s2, *)
(* or (size s2).+1 if infix s1 s2 is false. *)
(* perm_eq s1 s2 <=> s2 is a permutation of s1, i.e., s1 and s2 have the *)
(* items (with the same repetitions), but possibly in a *)
(* different order. *)
(* perm_eql s1 s2 <-> s1 and s2 behave identically on the left of perm_eq. *)
(* perm_eqr s1 s2 <-> s1 and s2 behave identically on the right of perm_eq. *)
(* --> These left/right transitive versions of perm_eq make it easier to *)
(* chain a sequence of equivalences. *)
(* permutations s == a duplicate-free list of all permutations of s. *)
(* ** Filtering: *)
(* filter p s == the subsequence of s consisting of all the items *)
(* for which the (boolean) predicate p holds. *)
(* rem x s == the subsequence of s, where the first occurrence *)
(* of x has been removed (compare filter (predC1 x) s *)
(* where ALL occurrences of x are removed). *)
(* undup s == the subsequence of s containing only the first *)
(* occurrence of each item in s, i.e., s with all *)
(* duplicates removed. *)
(* mask m s == the subsequence of s selected by m : bitseq, with *)
(* item i of s selected by bit i in m (extra items or *)
(* bits are ignored. *)
(* ** Surgery: *)
(* s1 ++ s2, cat s1 s2 == the concatenation of s1 and s2. *)
(* take n s == the sequence containing only the first n items of s *)
(* (or all of s if size s <= n). *)
(* drop n s == s minus its first n items ([::] if size s <= n) *)
(* rot n s == s rotated left n times (or s if size s <= n). *)
(* := drop n s ++ take n s *)
(* rotr n s == s rotated right n times (or s if size s <= n). *)
(* rev s == the (linear time) reversal of s. *)
(* catrev s1 s2 == the reversal of s1 followed by s2 (this is the *)
(* recursive form of rev). *)
(* ** Dependent iterator: for s : seq S and t : S -> seq T *)
(* [seq E | x <- s, y <- t] := flatten [seq [seq E | x <- t] | y <- s] *)
(* == the sequence of all the f x y, with x and y drawn from *)
(* s and t, respectively, in row-major order, *)
(* and where t is possibly dependent in elements of s *)
(* allpairs_dep f s t := self expanding definition for *)
(* [seq f x y | x <- s, y <- t y] *)
(* ** Iterators: for s == [:: x_1, ..., x_n], t == [:: y_1, ..., y_m], *)
(* allpairs f s t := same as allpairs_dep but where t is non dependent, *)
(* i.e. self expanding definition for *)
(* [seq f x y | x <- s, y <- t] *)
(* := [:: f x_1 y_1; ...; f x_1 y_m; f x_2 y_1; ...; f x_n y_m] *)
(* allrel r xs ys := all [pred x | all (r x) ys] xs *)
(* <=> r x y holds whenever x is in xs and y is in ys *)
(* all2rel r xs := allrel r xs xs *)
(* <=> the proposition r x y holds for all possible x, y in xs.*)
(* pairwise r xs <=> the relation r holds for any i-th and j-th element of *)
(* xs such that i < j. *)
(* map f s == the sequence [:: f x_1, ..., f x_n]. *)
(* pmap pf s == the sequence [:: y_i1, ..., y_ik] where i1 < ... < ik, *)
(* pf x_i = Some y_i, and pf x_j = None iff j is not in *)
(* {i1, ..., ik}. *)
(* foldr f a s == the right fold of s by f (i.e., the natural iterator). *)
(* := f x_1 (f x_2 ... (f x_n a)) *)
(* sumn s == x_1 + (x_2 + ... + (x_n + 0)) (when s : seq nat). *)
(* foldl f a s == the left fold of s by f. *)
(* := f (f ... (f a x_1) ... x_n-1) x_n *)
(* scanl f a s == the sequence of partial accumulators of foldl f a s. *)
(* := [:: f a x_1; ...; foldl f a s] *)
(* pairmap f a s == the sequence of f applied to consecutive items in a :: s. *)
(* := [:: f a x_1; f x_1 x_2; ...; f x_n-1 x_n] *)
(* zip s t == itemwise pairing of s and t (dropping any extra items). *)
(* := [:: (x_1, y_1); ...; (x_mn, y_mn)] with mn = minn n m. *)
(* unzip1 s == [:: (x_1).1; ...; (x_n).1] when s : seq (S * T). *)
(* unzip2 s == [:: (x_1).2; ...; (x_n).2] when s : seq (S * T). *)
(* flatten s == x_1 ++ ... ++ x_n ++ [::] when s : seq (seq T). *)
(* reshape r s == s reshaped into a sequence of sequences whose sizes are *)
(* given by r (truncating if s is too long or too short). *)
(* := [:: [:: x_1; ...; x_r1]; *)
(* [:: x_(r1 + 1); ...; x_(r0 + r1)]; *)
(* ...; *)
(* [:: x_(r1 + ... + r(k-1) + 1); ...; x_(r0 + ... rk)]] *)
(* flatten_index sh r c == the index, in flatten ss, of the item of indexes *)
(* (r, c) in any sequence of sequences ss of shape sh *)
(* := sh_1 + sh_2 + ... + sh_r + c *)
(* reshape_index sh i == the index, in reshape sh s, of the sequence *)
(* containing the i-th item of s. *)
(* reshape_offset sh i == the offset, in the (reshape_index sh i)-th *)
(* sequence of reshape sh s of the i-th item of s *)
(* ** Notation for manifest comprehensions: *)
(* [seq x <- s | C] := filter (fun x => C) s. *)
(* [seq E | x <- s] := map (fun x => E) s. *)
(* [seq x <- s | C1 & C2] := [seq x <- s | C1 && C2]. *)
(* [seq E | x <- s & C] := [seq E | x <- [seq x | C]]. *)
(* --> The above allow optional type casts on the eigenvariables, as in *)
(* [seq x : T <- s | C] or [seq E | x : T <- s, y : U <- t]. The cast may be *)
(* needed as type inference considers E or C before s. *)
(* We are quite systematic in providing lemmas to rewrite any composition *)
(* of two operations. "rev", whose simplifications are not natural, is *)
(* protected with simpl never. *)
(* ** The following are equivalent: *)
(* [<-> P0; P1; ..; Pn] <-> P0, P1, ..., Pn are all equivalent. *)
(* := P0 -> P1 -> ... -> Pn -> P0 *)
(* if T : [<-> P0; P1; ..; Pn] is such an equivalence, and i, j are in nat *)
(* then T i j is a proof of the equivalence Pi <-> Pj between Pi and Pj; *)
(* when i (resp. j) is out of bounds, Pi (resp. Pj) defaults to P0. *)
(* The tactic tfae splits the goal into n+1 implications to prove. *)
(* An example of use can be found in fingraph theorem orbitPcycle. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Declare Scope seq_scope.
Reserved Notation "[ '<->' P0 ; P1 ; .. ; Pn ]"
(format "[ '<->' '[' P0 ; '/' P1 ; '/' .. ; '/' Pn ']' ]").
Delimit Scope seq_scope with SEQ.
Open Scope seq_scope.
(* Inductive seq (T : Type) : Type := Nil | Cons of T & seq T. *)
Notation seq := list.
Bind Scope seq_scope with list.
Arguments cons {T%_type} x s%_SEQ : rename.
Arguments nil {T%_type} : rename.
Notation Cons T := (@cons T) (only parsing).
Notation Nil T := (@nil T) (only parsing).
(* As :: and ++ are (improperly) declared in Init.datatypes, we only rebind *)
(* them here. *)
Infix "::" := cons : seq_scope.
Notation "[ :: ]" := nil (format "[ :: ]") : seq_scope.
Notation "[ :: x1 ]" := (x1 :: [::]) (format "[ :: x1 ]") : seq_scope.
Notation "[ :: x & s ]" := (x :: s) (only parsing) : seq_scope.
Notation "[ :: x1 , x2 , .. , xn & s ]" := (x1 :: x2 :: .. (xn :: s) ..)
(format
"'[hv' [ :: '[' x1 , '/' x2 , '/' .. , '/' xn ']' '/ ' & s ] ']'"
) : seq_scope.
Notation "[ :: x1 ; x2 ; .. ; xn ]" := (x1 :: x2 :: .. [:: xn] ..)
(format "[ :: '[' x1 ; '/' x2 ; '/' .. ; '/' xn ']' ]"
) : seq_scope.
Section Sequences.
Variable n0 : nat. (* numerical parameter for take, drop et al *)
Variable T : Type. (* must come before the implicit Type *)
Variable x0 : T. (* default for head/nth *)
Implicit Types x y z : T.
Implicit Types m n : nat.
Implicit Type s : seq T.
Fixpoint size s := if s is _ :: s' then (size s').+1 else 0.
Lemma size0nil s : size s = 0 -> s = [::]. Proof. by case: s. Qed.
Definition nilp s := size s == 0.
Lemma nilP s : reflect (s = [::]) (nilp s).
Proof. by case: s => [|x s]; constructor. Qed.
Definition ohead s := if s is x :: _ then Some x else None.
Definition head s := if s is x :: _ then x else x0.
Definition behead s := if s is _ :: s' then s' else [::].
Lemma size_behead s : size (behead s) = (size s).-1.
Proof. by case: s. Qed.
(* Factories *)
Definition ncons n x := iter n (cons x).
Definition nseq n x := ncons n x [::].
Lemma size_ncons n x s : size (ncons n x s) = n + size s.
Proof. by elim: n => //= n ->. Qed.
Lemma size_nseq n x : size (nseq n x) = n.
Proof. by rewrite size_ncons addn0. Qed.
(* n-ary, dependently typed constructor. *)
Fixpoint seqn_type n := if n is n'.+1 then T -> seqn_type n' else seq T.
Fixpoint seqn_rec f n : seqn_type n :=
if n is n'.+1 return seqn_type n then
fun x => seqn_rec (fun s => f (x :: s)) n'
else f [::].
Definition seqn := seqn_rec id.
(* Sequence catenation "cat". *)
Fixpoint cat s1 s2 := if s1 is x :: s1' then x :: s1' ++ s2 else s2
where "s1 ++ s2" := (cat s1 s2) : seq_scope.
Lemma cat0s s : [::] ++ s = s. Proof. by []. Qed.
Lemma cat1s x s : [:: x] ++ s = x :: s. Proof. by []. Qed.
Lemma cat_cons x s1 s2 : (x :: s1) ++ s2 = x :: s1 ++ s2. Proof. by []. Qed.
Lemma cat_nseq n x s : nseq n x ++ s = ncons n x s.
Proof. by elim: n => //= n ->. Qed.
Lemma nseqD n1 n2 x : nseq (n1 + n2) x = nseq n1 x ++ nseq n2 x.
Proof. by rewrite cat_nseq /nseq /ncons iterD. Qed.
Lemma cats0 s : s ++ [::] = s.
Proof. by elim: s => //= x s ->. Qed.
Lemma catA s1 s2 s3 : s1 ++ s2 ++ s3 = (s1 ++ s2) ++ s3.
Proof. by elim: s1 => //= x s1 ->. Qed.
Lemma size_cat s1 s2 : size (s1 ++ s2) = size s1 + size s2.
Proof. by elim: s1 => //= x s1 ->. Qed.
Lemma cat_nilp s1 s2 : nilp (s1 ++ s2) = nilp s1 && nilp s2.
Proof. by case: s1. Qed.
(* last, belast, rcons, and last induction. *)
Fixpoint rcons s z := if s is x :: s' then x :: rcons s' z else [:: z].
Lemma rcons_cons x s z : rcons (x :: s) z = x :: rcons s z.
Proof. by []. Qed.
Lemma cats1 s z : s ++ [:: z] = rcons s z.
Proof. by elim: s => //= x s ->. Qed.
Fixpoint last x s := if s is x' :: s' then last x' s' else x.
Fixpoint belast x s := if s is x' :: s' then x :: (belast x' s') else [::].
Lemma lastI x s : x :: s = rcons (belast x s) (last x s).
Proof. by elim: s x => [|y s IHs] x //=; rewrite IHs. Qed.
Lemma last_cons x y s : last x (y :: s) = last y s.
Proof. by []. Qed.
Lemma size_rcons s x : size (rcons s x) = (size s).+1.
Proof. by rewrite -cats1 size_cat addnC. Qed.
Lemma size_belast x s : size (belast x s) = size s.
Proof. by elim: s x => [|y s IHs] x //=; rewrite IHs. Qed.
Lemma last_cat x s1 s2 : last x (s1 ++ s2) = last (last x s1) s2.
Proof. by elim: s1 x => [|y s1 IHs] x //=; rewrite IHs. Qed.
Lemma last_rcons x s z : last x (rcons s z) = z.
Proof. by rewrite -cats1 last_cat. Qed.
Lemma belast_cat x s1 s2 :
belast x (s1 ++ s2) = belast x s1 ++ belast (last x s1) s2.
Proof. by elim: s1 x => [|y s1 IHs] x //=; rewrite IHs. Qed.
Lemma belast_rcons x s z : belast x (rcons s z) = x :: s.
Proof. by rewrite lastI -!cats1 belast_cat. Qed.
Lemma cat_rcons x s1 s2 : rcons s1 x ++ s2 = s1 ++ x :: s2.
Proof. by rewrite -cats1 -catA. Qed.
Lemma rcons_cat x s1 s2 : rcons (s1 ++ s2) x = s1 ++ rcons s2 x.
Proof. by rewrite -!cats1 catA. Qed.
Variant last_spec : seq T -> Type :=
| LastNil : last_spec [::]
| LastRcons s x : last_spec (rcons s x).
Lemma lastP s : last_spec s.
Proof. case: s => [|x s]; [left | rewrite lastI; right]. Qed.
Lemma last_ind P :
P [::] -> (forall s x, P s -> P (rcons s x)) -> forall s, P s.
Proof.
move=> Hnil Hlast s; rewrite -(cat0s s).
elim: s [::] Hnil => [|x s2 IHs] s1 Hs1; first by rewrite cats0.
by rewrite -cat_rcons; apply/IHs/Hlast.
Qed.
(* Sequence indexing. *)
Fixpoint nth s n {struct n} :=
if s is x :: s' then if n is n'.+1 then @nth s' n' else x else x0.
Fixpoint set_nth s n y {struct n} :=
if s is x :: s' then if n is n'.+1 then x :: @set_nth s' n' y else y :: s'
else ncons n x0 [:: y].
Lemma nth0 s : nth s 0 = head s. Proof. by []. Qed.
Lemma nth_default s n : size s <= n -> nth s n = x0.
Proof. by elim: s n => [|x s IHs] []. Qed.
Lemma if_nth s b n : b || (size s <= n) ->
(if b then nth s n else x0) = nth s n.
Proof. by case: leqP; case: ifP => //= *; rewrite nth_default. Qed.
Lemma nth_nil n : nth [::] n = x0.
Proof. by case: n. Qed.
Lemma nth_seq1 n x : nth [:: x] n = if n == 0 then x else x0.
Proof. by case: n => [|[]]. Qed.
Lemma last_nth x s : last x s = nth (x :: s) (size s).
Proof. by elim: s x => [|y s IHs] x /=. Qed.
Lemma nth_last s : nth s (size s).-1 = last x0 s.
Proof. by case: s => //= x s; rewrite last_nth. Qed.
Lemma nth_behead s n : nth (behead s) n = nth s n.+1.
Proof. by case: s n => [|x s] [|n]. Qed.
Lemma nth_cat s1 s2 n :
nth (s1 ++ s2) n = if n < size s1 then nth s1 n else nth s2 (n - size s1).
Proof. by elim: s1 n => [|x s1 IHs] []. Qed.
Lemma nth_rcons s x n :
nth (rcons s x) n =
if n < size s then nth s n else if n == size s then x else x0.
Proof. by elim: s n => [|y s IHs] [] //=; apply: nth_nil. Qed.
Lemma nth_rcons_default s i : nth (rcons s x0) i = nth s i.
Proof.
by rewrite nth_rcons; case: ltngtP => //[/ltnW ?|->]; rewrite nth_default.
Qed.
Lemma nth_ncons m x s n :
nth (ncons m x s) n = if n < m then x else nth s (n - m).
Proof. by elim: m n => [|m IHm] []. Qed.
Lemma nth_nseq m x n : nth (nseq m x) n = (if n < m then x else x0).
Proof. by elim: m n => [|m IHm] []. Qed.
Lemma eq_from_nth s1 s2 :
size s1 = size s2 -> (forall i, i < size s1 -> nth s1 i = nth s2 i) ->
s1 = s2.
Proof.
elim: s1 s2 => [|x1 s1 IHs1] [|x2 s2] //= [eq_sz] eq_s12.
by rewrite [x1](eq_s12 0) // (IHs1 s2) // => i; apply: (eq_s12 i.+1).
Qed.
Lemma size_set_nth s n y : size (set_nth s n y) = maxn n.+1 (size s).
Proof.
rewrite maxnC; elim: s n => [|x s IHs] [|n] //=.
- by rewrite size_ncons addn1.
- by rewrite IHs maxnSS.
Qed.
Lemma set_nth_nil n y : set_nth [::] n y = ncons n x0 [:: y].
Proof. by case: n. Qed.
Lemma nth_set_nth s n y : nth (set_nth s n y) =1 [eta nth s with n |-> y].
Proof.
elim: s n => [|x s IHs] [|n] [|m] //=; rewrite ?nth_nil ?IHs // nth_ncons eqSS.
case: ltngtP => // [lt_nm | ->]; last by rewrite subnn.
by rewrite nth_default // subn_gt0.
Qed.
Lemma set_set_nth s n1 y1 n2 y2 (s2 := set_nth s n2 y2) :
set_nth (set_nth s n1 y1) n2 y2 = if n1 == n2 then s2 else set_nth s2 n1 y1.
Proof.
have [-> | ne_n12] := eqVneq.
apply: eq_from_nth => [|i _]; first by rewrite !size_set_nth maxnA maxnn.
by do 2!rewrite !nth_set_nth /=; case: eqP.
apply: eq_from_nth => [|i _]; first by rewrite !size_set_nth maxnCA.
by do 2!rewrite !nth_set_nth /=; case: eqP => // ->; case: eqVneq ne_n12.
Qed.
(* find, count, has, all. *)
Section SeqFind.
Variable a : pred T.
Fixpoint find s := if s is x :: s' then if a x then 0 else (find s').+1 else 0.
Fixpoint filter s :=
if s is x :: s' then if a x then x :: filter s' else filter s' else [::].
Fixpoint count s := if s is x :: s' then a x + count s' else 0.
Fixpoint has s := if s is x :: s' then a x || has s' else false.
Fixpoint all s := if s is x :: s' then a x && all s' else true.
Lemma size_filter s : size (filter s) = count s.
Proof. by elim: s => //= x s <-; case (a x). Qed.
Lemma has_count s : has s = (0 < count s).
Proof. by elim: s => //= x s ->; case (a x). Qed.
Lemma size_filter_gt0 s : (size (filter s) > 0) = (has s).
Proof. by rewrite size_filter -has_count. Qed.
Lemma count_size s : count s <= size s.
Proof. by elim: s => //= x s; case: (a x); last apply: leqW. Qed.
Lemma all_count s : all s = (count s == size s).
Proof.
elim: s => //= x s; case: (a x) => _ //=.
by rewrite add0n eqn_leq andbC ltnNge count_size.
Qed.
Lemma filter_all s : all (filter s).
Proof. by elim: s => //= x s IHs; case: ifP => //= ->. Qed.
Lemma all_filterP s : reflect (filter s = s) (all s).
Proof.
apply: (iffP idP) => [| <-]; last exact: filter_all.
by elim: s => //= x s IHs /andP[-> Hs]; rewrite IHs.
Qed.
Lemma filter_id s : filter (filter s) = filter s.
Proof. by apply/all_filterP; apply: filter_all. Qed.
Lemma has_find s : has s = (find s < size s).
Proof. by elim: s => //= x s IHs; case (a x); rewrite ?leqnn. Qed.
Lemma find_size s : find s <= size s.
Proof. by elim: s => //= x s IHs; case (a x). Qed.
Lemma find_cat s1 s2 :
find (s1 ++ s2) = if has s1 then find s1 else size s1 + find s2.
Proof.
by elim: s1 => //= x s1 IHs; case: (a x) => //; rewrite IHs (fun_if succn).
Qed.
Lemma has_nil : has [::] = false. Proof. by []. Qed.
Lemma has_seq1 x : has [:: x] = a x.
Proof. exact: orbF. Qed.
Lemma has_nseq n x : has (nseq n x) = (0 < n) && a x.
Proof. by elim: n => //= n ->; apply: andKb. Qed.
Lemma has_seqb (b : bool) x : has (nseq b x) = b && a x.
Proof. by rewrite has_nseq lt0b. Qed.
Lemma all_nil : all [::] = true. Proof. by []. Qed.
Lemma all_seq1 x : all [:: x] = a x.
Proof. exact: andbT. Qed.
Lemma all_nseq n x : all (nseq n x) = (n == 0) || a x.
Proof. by elim: n => //= n ->; apply: orKb. Qed.
Lemma all_nseqb (b : bool) x : all (nseq b x) = b ==> a x.
Proof. by rewrite all_nseq eqb0 implybE. Qed.
Lemma filter_nseq n x : filter (nseq n x) = nseq (a x * n) x.
Proof. by elim: n => /= [|n ->]; case: (a x). Qed.
Lemma count_nseq n x : count (nseq n x) = a x * n.
Proof. by rewrite -size_filter filter_nseq size_nseq. Qed.
Lemma find_nseq n x : find (nseq n x) = ~~ a x * n.
Proof. by elim: n => /= [|n ->]; case: (a x). Qed.
Lemma nth_find s : has s -> a (nth s (find s)).
Proof. by elim: s => //= x s IHs; case a_x: (a x). Qed.
Lemma before_find s i : i < find s -> a (nth s i) = false.
Proof. by elim: s i => //= x s IHs; case: ifP => // a'x [|i] // /(IHs i). Qed.
Lemma hasNfind s : ~~ has s -> find s = size s.
Proof. by rewrite has_find; case: ltngtP (find_size s). Qed.
Lemma filter_cat s1 s2 : filter (s1 ++ s2) = filter s1 ++ filter s2.
Proof. by elim: s1 => //= x s1 ->; case (a x). Qed.
Lemma filter_rcons s x :
filter (rcons s x) = if a x then rcons (filter s) x else filter s.
Proof. by rewrite -!cats1 filter_cat /=; case (a x); rewrite /= ?cats0. Qed.
Lemma count_cat s1 s2 : count (s1 ++ s2) = count s1 + count s2.
Proof. by rewrite -!size_filter filter_cat size_cat. Qed.
Lemma has_cat s1 s2 : has (s1 ++ s2) = has s1 || has s2.
Proof. by elim: s1 => [|x s1 IHs] //=; rewrite IHs orbA. Qed.
Lemma has_rcons s x : has (rcons s x) = a x || has s.
Proof. by rewrite -cats1 has_cat has_seq1 orbC. Qed.
Lemma all_cat s1 s2 : all (s1 ++ s2) = all s1 && all s2.
Proof. by elim: s1 => [|x s1 IHs] //=; rewrite IHs andbA. Qed.
Lemma all_rcons s x : all (rcons s x) = a x && all s.
Proof. by rewrite -cats1 all_cat all_seq1 andbC. Qed.
End SeqFind.
Lemma find_pred0 s : find pred0 s = size s. Proof. by []. Qed.
Lemma find_predT s : find predT s = 0.
Proof. by case: s. Qed.
Lemma eq_find a1 a2 : a1 =1 a2 -> find a1 =1 find a2.
Proof. by move=> Ea; elim=> //= x s IHs; rewrite Ea IHs. Qed.
Lemma eq_filter a1 a2 : a1 =1 a2 -> filter a1 =1 filter a2.
Proof. by move=> Ea; elim=> //= x s IHs; rewrite Ea IHs. Qed.
Lemma eq_count a1 a2 : a1 =1 a2 -> count a1 =1 count a2.
Proof. by move=> Ea s; rewrite -!size_filter (eq_filter Ea). Qed.
Lemma eq_has a1 a2 : a1 =1 a2 -> has a1 =1 has a2.
Proof. by move=> Ea s; rewrite !has_count (eq_count Ea). Qed.
Lemma eq_all a1 a2 : a1 =1 a2 -> all a1 =1 all a2.
Proof. by move=> Ea s; rewrite !all_count (eq_count Ea). Qed.
Lemma all_filter (p q : pred T) xs :
all p (filter q xs) = all [pred i | q i ==> p i] xs.
Proof. by elim: xs => //= x xs <-; case: (q x). Qed.
Section SubPred.
Variable (a1 a2 : pred T).
Hypothesis s12 : subpred a1 a2.
Lemma sub_find s : find a2 s <= find a1 s.
Proof. by elim: s => //= x s IHs; case: ifP => // /(contraFF (@s12 x))->. Qed.
Lemma sub_has s : has a1 s -> has a2 s.
Proof. by rewrite !has_find; apply: leq_ltn_trans (sub_find s). Qed.
Lemma sub_count s : count a1 s <= count a2 s.
Proof.
by elim: s => //= x s; apply: leq_add; case a1x: (a1 x); rewrite // s12.
Qed.
Lemma sub_all s : all a1 s -> all a2 s.
Proof.
by rewrite !all_count !eqn_leq !count_size => /leq_trans-> //; apply: sub_count.
Qed.
End SubPred.
Lemma filter_pred0 s : filter pred0 s = [::]. Proof. by elim: s. Qed.
Lemma filter_predT s : filter predT s = s.
Proof. by elim: s => //= x s ->. Qed.
Lemma filter_predI a1 a2 s : filter (predI a1 a2) s = filter a1 (filter a2 s).
Proof. by elim: s => //= x s ->; rewrite andbC; case: (a2 x). Qed.
Lemma count_pred0 s : count pred0 s = 0.
Proof. by rewrite -size_filter filter_pred0. Qed.
Lemma count_predT s : count predT s = size s.
Proof. by rewrite -size_filter filter_predT. Qed.
Lemma count_predUI a1 a2 s :
count (predU a1 a2) s + count (predI a1 a2) s = count a1 s + count a2 s.
Proof.
elim: s => //= x s IHs; rewrite /= addnACA [RHS]addnACA IHs.
by case: (a1 x) => //; rewrite addn0.
Qed.
Lemma count_predC a s : count a s + count (predC a) s = size s.
Proof. by elim: s => //= x s IHs; rewrite addnACA IHs; case: (a _). Qed.
Lemma count_filter a1 a2 s : count a1 (filter a2 s) = count (predI a1 a2) s.
Proof. by rewrite -!size_filter filter_predI. Qed.
Lemma has_pred0 s : has pred0 s = false.
Proof. by rewrite has_count count_pred0. Qed.
Lemma has_predT s : has predT s = (0 < size s).
Proof. by rewrite has_count count_predT. Qed.
Lemma has_predC a s : has (predC a) s = ~~ all a s.
Proof. by elim: s => //= x s ->; case (a x). Qed.
Lemma has_predU a1 a2 s : has (predU a1 a2) s = has a1 s || has a2 s.
Proof. by elim: s => //= x s ->; rewrite -!orbA; do !bool_congr. Qed.
Lemma all_pred0 s : all pred0 s = (size s == 0).
Proof. by rewrite all_count count_pred0 eq_sym. Qed.
Lemma all_predT s : all predT s.
Proof. by rewrite all_count count_predT. Qed.
Lemma allT (a : pred T) s : (forall x, a x) -> all a s.
Proof. by move/eq_all->; apply/all_predT. Qed.
Lemma all_predC a s : all (predC a) s = ~~ has a s.
Proof. by elim: s => //= x s ->; case (a x). Qed.
Lemma all_predI a1 a2 s : all (predI a1 a2) s = all a1 s && all a2 s.
Proof.
apply: (can_inj negbK); rewrite negb_and -!has_predC -has_predU.
by apply: eq_has => x; rewrite /= negb_and.
Qed.
(* Surgery: drop, take, rot, rotr. *)
Fixpoint drop n s {struct s} :=
match s, n with
| _ :: s', n'.+1 => drop n' s'
| _, _ => s
end.
Lemma drop_behead : drop n0 =1 iter n0 behead.
Proof. by elim: n0 => [|n IHn] [|x s] //; rewrite iterSr -IHn. Qed.
Lemma drop0 s : drop 0 s = s. Proof. by case: s. Qed.
Lemma drop1 : drop 1 =1 behead. Proof. by case=> [|x [|y s]]. Qed.
Lemma drop_oversize n s : size s <= n -> drop n s = [::].
Proof. by elim: s n => [|x s IHs] []. Qed.
Lemma drop_size s : drop (size s) s = [::].
Proof. by rewrite drop_oversize // leqnn. Qed.
Lemma drop_cons x s :
drop n0 (x :: s) = if n0 is n.+1 then drop n s else x :: s.
Proof. by []. Qed.
Lemma size_drop s : size (drop n0 s) = size s - n0.
Proof. by elim: s n0 => [|x s IHs] []. Qed.
Lemma drop_cat s1 s2 :
drop n0 (s1 ++ s2) =
if n0 < size s1 then drop n0 s1 ++ s2 else drop (n0 - size s1) s2.
Proof. by elim: s1 n0 => [|x s1 IHs] []. Qed.
Lemma drop_size_cat n s1 s2 : size s1 = n -> drop n (s1 ++ s2) = s2.
Proof. by move <-; elim: s1 => //=; rewrite drop0. Qed.
Lemma nconsK n x : cancel (ncons n x) (drop n).
Proof. by elim: n => // -[]. Qed.
Lemma drop_drop s n1 n2 : drop n1 (drop n2 s) = drop (n1 + n2) s.
Proof. by elim: s n2 => // x s ihs [|n2]; rewrite ?drop0 ?addn0 ?addnS /=. Qed.
Fixpoint take n s {struct s} :=
match s, n with
| x :: s', n'.+1 => x :: take n' s'
| _, _ => [::]
end.
Lemma take0 s : take 0 s = [::]. Proof. by case: s. Qed.
Lemma take_oversize n s : size s <= n -> take n s = s.
Proof. by elim: s n => [|x s IHs] [|n] //= /IHs->. Qed.
Lemma take_size s : take (size s) s = s.
Proof. exact: take_oversize. Qed.
Lemma take_cons x s :
take n0 (x :: s) = if n0 is n.+1 then x :: (take n s) else [::].
Proof. by []. Qed.
Lemma drop_rcons s : n0 <= size s ->
forall x, drop n0 (rcons s x) = rcons (drop n0 s) x.
Proof. by elim: s n0 => [|y s IHs] []. Qed.
Lemma cat_take_drop s : take n0 s ++ drop n0 s = s.
Proof. by elim: s n0 => [|x s IHs] [|n] //=; rewrite IHs. Qed.
Lemma size_takel s : n0 <= size s -> size (take n0 s) = n0.
Proof.
by move/subKn; rewrite -size_drop -[in size s](cat_take_drop s) size_cat addnK.
Qed.
Lemma size_take s : size (take n0 s) = if n0 < size s then n0 else size s.
Proof.
have [le_sn | lt_ns] := leqP (size s) n0; first by rewrite take_oversize.
by rewrite size_takel // ltnW.
Qed.
Lemma size_take_min s : size (take n0 s) = minn n0 (size s).
Proof. exact: size_take. Qed.
Lemma take_cat s1 s2 :
take n0 (s1 ++ s2) =
if n0 < size s1 then take n0 s1 else s1 ++ take (n0 - size s1) s2.
Proof.
elim: s1 n0 => [|x s1 IHs] [|n] //=.
by rewrite ltnS subSS -(fun_if (cons x)) -IHs.
Qed.
Lemma take_size_cat n s1 s2 : size s1 = n -> take n (s1 ++ s2) = s1.
Proof. by move <-; elim: s1 => [|x s1 IHs]; rewrite ?take0 //= IHs. Qed.
Lemma takel_cat s1 s2 : n0 <= size s1 -> take n0 (s1 ++ s2) = take n0 s1.
Proof.
by rewrite take_cat; case: ltngtP => // ->; rewrite subnn take0 take_size cats0.
Qed.
Lemma nth_drop s i : nth (drop n0 s) i = nth s (n0 + i).
Proof.
rewrite -[s in RHS]cat_take_drop nth_cat size_take ltnNge.
case: ltnP => [?|le_s_n0]; rewrite ?(leq_trans le_s_n0) ?leq_addr ?addKn //=.
by rewrite drop_oversize // !nth_default.
Qed.
Lemma find_ltn p s i : has p (take i s) -> find p s < i.
Proof. by elim: s i => [|y s ihs] [|i]//=; case: (p _) => //= /ihs. Qed.
Lemma has_take p s i : has p s -> has p (take i s) = (find p s < i).
Proof. by elim: s i => [|y s ihs] [|i]//=; case: (p _) => //= /ihs ->. Qed.
Lemma has_take_leq (p : pred T) (s : seq T) i : i <= size s ->
has p (take i s) = (find p s < i).
Proof. by elim: s i => [|y s ihs] [|i]//=; case: (p _) => //= /ihs ->. Qed.
Lemma nth_take i : i < n0 -> forall s, nth (take n0 s) i = nth s i.
Proof.
move=> lt_i_n0 s; case lt_n0_s: (n0 < size s).
by rewrite -[s in RHS]cat_take_drop nth_cat size_take lt_n0_s /= lt_i_n0.
by rewrite -[s in LHS]cats0 take_cat lt_n0_s /= cats0.
Qed.
Lemma take_min i j s : take (minn i j) s = take i (take j s).
Proof. by elim: s i j => //= a l IH [|i] [|j] //=; rewrite minnSS IH. Qed.
Lemma take_takel i j s : i <= j -> take i (take j s) = take i s.
Proof. by move=> ?; rewrite -take_min (minn_idPl _). Qed.
Lemma take_taker i j s : j <= i -> take i (take j s) = take j s.
Proof. by move=> ?; rewrite -take_min (minn_idPr _). Qed.
Lemma take_drop i j s : take i (drop j s) = drop j (take (i + j) s).
Proof. by rewrite addnC; elim: s i j => // x s IHs [|i] [|j] /=. Qed.
Lemma takeD i j s : take (i + j) s = take i s ++ take j (drop i s).
Proof.
elim: i j s => [|i IHi] [|j] [|a s] //; first by rewrite take0 addn0 cats0.
by rewrite addSn /= IHi.
Qed.
Lemma takeC i j s : take i (take j s) = take j (take i s).
Proof. by rewrite -!take_min minnC. Qed.
Lemma take_nseq i j x : i <= j -> take i (nseq j x) = nseq i x.
Proof. by move=>/subnKC <-; rewrite nseqD take_size_cat // size_nseq. Qed.
Lemma drop_nseq i j x : drop i (nseq j x) = nseq (j - i) x.
Proof.
case: (leqP i j) => [/subnKC {1}<-|/ltnW j_le_i].
by rewrite nseqD drop_size_cat // size_nseq.
by rewrite drop_oversize ?size_nseq // (eqP j_le_i).
Qed.
(* drop_nth and take_nth below do NOT use the default n0, because the "n" *)
(* can be inferred from the condition, whereas the nth default value x0 *)
(* will have to be given explicitly (and this will provide "d" as well). *)
Lemma drop_nth n s : n < size s -> drop n s = nth s n :: drop n.+1 s.
Proof. by elim: s n => [|x s IHs] [|n] Hn //=; rewrite ?drop0 1?IHs. Qed.
Lemma take_nth n s : n < size s -> take n.+1 s = rcons (take n s) (nth s n).
Proof. by elim: s n => [|x s IHs] //= [|n] Hn /=; rewrite ?take0 -?IHs. Qed.
(* Rotation *)
Definition rot n s := drop n s ++ take n s.
Lemma rot0 s : rot 0 s = s.
Proof. by rewrite /rot drop0 take0 cats0. Qed.
Lemma size_rot s : size (rot n0 s) = size s.
Proof. by rewrite -[s in RHS]cat_take_drop /rot !size_cat addnC. Qed.
Lemma rot_oversize n s : size s <= n -> rot n s = s.
Proof. by move=> le_s_n; rewrite /rot take_oversize ?drop_oversize. Qed.
Lemma rot_size s : rot (size s) s = s.
Proof. exact: rot_oversize. Qed.
Lemma has_rot s a : has a (rot n0 s) = has a s.
Proof. by rewrite has_cat orbC -has_cat cat_take_drop. Qed.
Lemma rot_size_cat s1 s2 : rot (size s1) (s1 ++ s2) = s2 ++ s1.
Proof. by rewrite /rot take_size_cat ?drop_size_cat. Qed.
Definition rotr n s := rot (size s - n) s.
Lemma rotK : cancel (rot n0) (rotr n0).
Proof.
move=> s; rewrite /rotr size_rot -size_drop {2}/rot.
by rewrite rot_size_cat cat_take_drop.
Qed.
Lemma rot_inj : injective (rot n0). Proof. exact (can_inj rotK). Qed.
(* (efficient) reversal *)
Fixpoint catrev s1 s2 := if s1 is x :: s1' then catrev s1' (x :: s2) else s2.
Definition rev s := catrev s [::].
Lemma catrev_catl s t u : catrev (s ++ t) u = catrev t (catrev s u).
Proof. by elim: s u => /=. Qed.
Lemma catrev_catr s t u : catrev s (t ++ u) = catrev s t ++ u.
Proof. by elim: s t => //= x s IHs t; rewrite -IHs. Qed.
Lemma catrevE s t : catrev s t = rev s ++ t.
Proof. by rewrite -catrev_catr. Qed.
Lemma rev_cons x s : rev (x :: s) = rcons (rev s) x.
Proof. by rewrite -cats1 -catrevE. Qed.
Lemma size_rev s : size (rev s) = size s.
Proof. by elim: s => // x s IHs; rewrite rev_cons size_rcons IHs. Qed.
Lemma rev_nilp s : nilp (rev s) = nilp s.
Proof. by rewrite /nilp size_rev. Qed.
Lemma rev_cat s t : rev (s ++ t) = rev t ++ rev s.
Proof. by rewrite -catrev_catr -catrev_catl. Qed.
Lemma rev_rcons s x : rev (rcons s x) = x :: rev s.
Proof. by rewrite -cats1 rev_cat. Qed.
Lemma revK : involutive rev.
Proof. by elim=> //= x s IHs; rewrite rev_cons rev_rcons IHs. Qed.
Lemma nth_rev n s : n < size s -> nth (rev s) n = nth s (size s - n.+1).
Proof.
elim/last_ind: s => // s x IHs in n *.
rewrite rev_rcons size_rcons ltnS subSS -cats1 nth_cat /=.
case: n => [|n] lt_n_s; first by rewrite subn0 ltnn subnn.
by rewrite subnSK //= leq_subr IHs.
Qed.
Lemma filter_rev a s : filter a (rev s) = rev (filter a s).
Proof. by elim: s => //= x s IH; rewrite fun_if !rev_cons filter_rcons IH. Qed.
Lemma count_rev a s : count a (rev s) = count a s.
Proof. by rewrite -!size_filter filter_rev size_rev. Qed.
Lemma has_rev a s : has a (rev s) = has a s.
Proof. by rewrite !has_count count_rev. Qed.
Lemma all_rev a s : all a (rev s) = all a s.
Proof. by rewrite !all_count count_rev size_rev. Qed.
Lemma rev_nseq n x : rev (nseq n x) = nseq n x.
Proof. by elim: n => // n IHn; rewrite -[in LHS]addn1 nseqD rev_cat IHn. Qed.
End Sequences.
Prenex Implicits size ncons nseq head ohead behead last rcons belast.
Arguments seqn {T} n.
Prenex Implicits cat take drop rot rotr catrev.
Prenex Implicits find count nth all has filter.
Arguments rev {T} s : simpl never.
Arguments nth : simpl nomatch.
Arguments set_nth : simpl nomatch.
Arguments take : simpl nomatch.
Arguments drop : simpl nomatch.
Arguments nilP {T s}.
Arguments all_filterP {T a s}.
Arguments rotK n0 {T} s : rename.
Arguments rot_inj {n0 T} [s1 s2] eq_rot_s12 : rename.
Arguments revK {T} s : rename.
Notation count_mem x := (count (pred_of_simpl (pred1 x))).
Infix "++" := cat : seq_scope.
Notation "[ 'seq' x <- s | C ]" := (filter (fun x => C%B) s)
(x at level 99,
format "[ '[hv' 'seq' x <- s '/ ' | C ] ']'") : seq_scope.
Notation "[ 'seq' x <- s | C1 & C2 ]" := [seq x <- s | C1 && C2]
(format "[ '[hv' 'seq' x <- s '/ ' | C1 '/ ' & C2 ] ']'") : seq_scope.
Notation "[ 'seq' ' x <- s | C ]" := (filter (fun x => C%B) s)
(x strict pattern,
format "[ '[hv' 'seq' ' x <- s '/ ' | C ] ']'") : seq_scope.
Notation "[ 'seq' ' x <- s | C1 & C2 ]" := [seq x <- s | C1 && C2]
(x strict pattern,
format "[ '[hv' 'seq' ' x <- s '/ ' | C1 '/ ' & C2 ] ']'") : seq_scope.
Notation "[ 'seq' x : T <- s | C ]" := (filter (fun x : T => C%B) s)
(only parsing).
Notation "[ 'seq' x : T <- s | C1 & C2 ]" := [seq x : T <- s | C1 && C2]
(only parsing).
(* Double induction/recursion. *)
Lemma seq_ind2 {S T} (P : seq S -> seq T -> Type) :
P [::] [::] ->
(forall x y s t, size s = size t -> P s t -> P (x :: s) (y :: t)) ->
forall s t, size s = size t -> P s t.
Proof.
by move=> Pnil Pcons; elim=> [|x s IHs] [|y t] //= [eq_sz]; apply/Pcons/IHs.
Qed.
Section AllIff.
(* The Following Are Equivalent *)
(* We introduce a specific conjunction, used to chain the consecutive *)
(* items in a circular list of implications *)
Inductive all_iff_and (P Q : Prop) : Prop := AllIffConj of P & Q.
Definition all_iff (P0 : Prop) (Ps : seq Prop) : Prop :=
let fix loop (P : Prop) (Qs : seq Prop) : Prop :=
if Qs is Q :: Qs then all_iff_and (P -> Q) (loop Q Qs) else P -> P0 in
loop P0 Ps.
Lemma all_iffLR P0 Ps : all_iff P0 Ps ->
forall m n, nth P0 (P0 :: Ps) m -> nth P0 (P0 :: Ps) n.
Proof.
move=> iffPs; have PsS n: nth P0 Ps n -> nth P0 Ps n.+1.
elim: n P0 Ps iffPs => [|n IHn] P0 [|P [|Q Ps]] //= [iP0P] //; first by case.
by rewrite nth_nil.
by case=> iPQ iffPs; apply: IHn; split=> // /iP0P.
have{PsS} lePs: {homo nth P0 Ps : m n / m <= n >-> (m -> n)}.
by move=> m n /subnK<-; elim: {n}(n - m) => // n IHn /IHn; apply: PsS.
move=> m n P_m; have{m P_m} hP0: P0.
case: m P_m => //= m /(lePs m _ (leq_maxl m (size Ps))).
by rewrite nth_default ?leq_maxr.
case: n =>// n; apply: lePs 0 n (leq0n n) _.
by case: Ps iffPs hP0 => // P Ps [].
Qed.
Lemma all_iffP P0 Ps :
all_iff P0 Ps -> forall m n, nth P0 (P0 :: Ps) m <-> nth P0 (P0 :: Ps) n.
Proof. by move=> /all_iffLR-iffPs m n; split => /iffPs. Qed.
End AllIff.
Arguments all_iffLR {P0 Ps}.
Arguments all_iffP {P0 Ps}.
Coercion all_iffP : all_iff >-> Funclass.
(* This means "the following are all equivalent: P0, ... Pn" *)
Notation "[ '<->' P0 ; P1 ; .. ; Pn ]" :=
(all_iff P0 (@cons Prop P1 (.. (@cons Prop Pn nil) ..))) : form_scope.
Ltac tfae := do !apply: AllIffConj.
Section FindSpec.
Variable (T : Type) (a : {pred T}) (s : seq T).
Variant find_spec : bool -> nat -> Type :=
| NotFound of ~~ has a s : find_spec false (size s)
| Found (i : nat) of i < size s & (forall x0, a (nth x0 s i)) &
(forall x0 j, j < i -> a (nth x0 s j) = false) : find_spec true i.
Lemma findP : find_spec (has a s) (find a s).
Proof.
have [a_s|aNs] := boolP (has a s); last by rewrite hasNfind//; constructor.
by constructor=> [|x0|x0]; rewrite -?has_find ?nth_find//; apply: before_find.
Qed.
End FindSpec.
Arguments findP {T}.
Section RotRcons.
Variable T : Type.
Implicit Types (x : T) (s : seq T).
Lemma rot1_cons x s : rot 1 (x :: s) = rcons s x.
Proof. by rewrite /rot /= take0 drop0 -cats1. Qed.
Lemma rcons_inj s1 s2 x1 x2 :
rcons s1 x1 = rcons s2 x2 :> seq T -> (s1, x1) = (s2, x2).
Proof. by rewrite -!rot1_cons => /rot_inj[-> ->]. Qed.
Lemma rcons_injl x : injective (rcons^~ x).
Proof. by move=> s1 s2 /rcons_inj[]. Qed.
Lemma rcons_injr s : injective (rcons s).
Proof. by move=> x1 x2 /rcons_inj[]. Qed.
End RotRcons.
Arguments rcons_inj {T s1 x1 s2 x2} eq_rcons : rename.
Arguments rcons_injl {T} x [s1 s2] eq_rcons : rename.
Arguments rcons_injr {T} s [x1 x2] eq_rcons : rename.
(* Equality and eqType for seq. *)
Section EqSeq.
Variables (n0 : nat) (T : eqType) (x0 : T).
Local Notation nth := (nth x0).
Implicit Types (x y z : T) (s : seq T).
Fixpoint eqseq s1 s2 {struct s2} :=
match s1, s2 with
| [::], [::] => true
| x1 :: s1', x2 :: s2' => (x1 == x2) && eqseq s1' s2'
| _, _ => false
end.
Lemma eqseqP : Equality.axiom eqseq.
Proof.
move; elim=> [|x1 s1 IHs] [|x2 s2]; do [by constructor | simpl].
have [<-|neqx] := x1 =P x2; last by right; case.
by apply: (iffP (IHs s2)) => [<-|[]].
Qed.
HB.instance Definition _ := hasDecEq.Build (seq T) eqseqP.
Lemma eqseqE : eqseq = eq_op. Proof. by []. Qed.
Lemma eqseq_cons x1 x2 s1 s2 :
(x1 :: s1 == x2 :: s2) = (x1 == x2) && (s1 == s2).
Proof. by []. Qed.
Lemma eqseq_cat s1 s2 s3 s4 :
size s1 = size s2 -> (s1 ++ s3 == s2 ++ s4) = (s1 == s2) && (s3 == s4).
Proof.
elim: s1 s2 => [|x1 s1 IHs] [|x2 s2] //= [sz12].
by rewrite !eqseq_cons -andbA IHs.
Qed.
Lemma eqseq_rcons s1 s2 x1 x2 :
(rcons s1 x1 == rcons s2 x2) = (s1 == s2) && (x1 == x2).
Proof. by rewrite -(can_eq revK) !rev_rcons eqseq_cons andbC (can_eq revK). Qed.
Lemma size_eq0 s : (size s == 0) = (s == [::]).
Proof. exact: (sameP nilP eqP). Qed.
Lemma nilpE s : nilp s = (s == [::]). Proof. by case: s. Qed.
Lemma has_filter a s : has a s = (filter a s != [::]).
Proof. by rewrite -size_eq0 size_filter has_count lt0n. Qed.
(* mem_seq and index. *)
(* mem_seq defines a predType for seq. *)
Fixpoint mem_seq (s : seq T) :=
if s is y :: s' then xpredU1 y (mem_seq s') else xpred0.
Definition seq_eqclass := seq T.
Identity Coercion seq_of_eqclass : seq_eqclass >-> seq.
Coercion pred_of_seq (s : seq_eqclass) : {pred T} := mem_seq s.
Canonical seq_predType := PredType (pred_of_seq : seq T -> pred T).
(* The line below makes mem_seq a canonical instance of topred. *)
Canonical mem_seq_predType := PredType mem_seq.
Lemma in_cons y s x : (x \in y :: s) = (x == y) || (x \in s).
Proof. by []. Qed.
Lemma in_nil x : (x \in [::]) = false.
Proof. by []. Qed.
Lemma mem_seq1 x y : (x \in [:: y]) = (x == y).
Proof. by rewrite in_cons orbF. Qed.
(* to be repeated after the Section discharge. *)
Let inE := (mem_seq1, in_cons, inE).
Lemma forall_cons {P : T -> Prop} {a s} :
{in a::s, forall x, P x} <-> P a /\ {in s, forall x, P x}.
Proof.
split=> [A|[A B]]; last by move => x /predU1P [-> //|]; apply: B.
by split=> [|b Hb]; apply: A; rewrite !inE ?eqxx ?Hb ?orbT.
Qed.
Lemma exists_cons {P : T -> Prop} {a s} :
(exists2 x, x \in a::s & P x) <-> P a \/ exists2 x, x \in s & P x.
Proof.
split=> [[x /predU1P[->|x_s] Px]|]; [by left| by right; exists x|].
by move=> [?|[x x_s ?]]; [exists a|exists x]; rewrite ?inE ?eqxx ?x_s ?orbT.
Qed.
Lemma mem_seq2 x y z : (x \in [:: y; z]) = xpred2 y z x.
Proof. by rewrite !inE. Qed.
Lemma mem_seq3 x y z t : (x \in [:: y; z; t]) = xpred3 y z t x.
Proof. by rewrite !inE. Qed.
Lemma mem_seq4 x y z t u : (x \in [:: y; z; t; u]) = xpred4 y z t u x.
Proof. by rewrite !inE. Qed.
Lemma mem_cat x s1 s2 : (x \in s1 ++ s2) = (x \in s1) || (x \in s2).
Proof. by elim: s1 => //= y s1 IHs; rewrite !inE /= -orbA -IHs. Qed.
Lemma mem_rcons s y : rcons s y =i y :: s.
Proof. by move=> x; rewrite -cats1 /= mem_cat mem_seq1 orbC in_cons. Qed.
Lemma mem_head x s : x \in x :: s.
Proof. exact: predU1l. Qed.
Lemma mem_last x s : last x s \in x :: s.
Proof. by rewrite lastI mem_rcons mem_head. Qed.
Lemma mem_behead s : {subset behead s <= s}.
Proof. by case: s => // y s x; apply: predU1r. Qed.
Lemma mem_belast s y : {subset belast y s <= y :: s}.
Proof. by move=> x ys'x; rewrite lastI mem_rcons mem_behead. Qed.
Lemma mem_nth s n : n < size s -> nth s n \in s.
Proof.
by elim: s n => // x s IHs [_|n sz_s]; rewrite ?mem_head // mem_behead ?IHs.
Qed.
Lemma mem_take s x : x \in take n0 s -> x \in s.
Proof. by move=> s0x; rewrite -(cat_take_drop n0 s) mem_cat /= s0x. Qed.
Lemma mem_drop s x : x \in drop n0 s -> x \in s.
Proof. by move=> s0'x; rewrite -(cat_take_drop n0 s) mem_cat /= s0'x orbT. Qed.
Lemma last_eq s z x y : x != y -> z != y -> (last x s == y) = (last z s == y).
Proof. by move=> /negPf xz /negPf yz; case: s => [|t s]//; rewrite xz yz. Qed.
Section Filters.
Implicit Type a : pred T.
Lemma hasP {a s} : reflect (exists2 x, x \in s & a x) (has a s).
Proof.
elim: s => [|y s IHs] /=; first by right; case.
exact: equivP (orPP idP IHs) (iff_sym exists_cons).
Qed.
Lemma allP {a s} : reflect {in s, forall x, a x} (all a s).
Proof.
elim: s => [|/= y s IHs]; first by left.
exact: equivP (andPP idP IHs) (iff_sym forall_cons).
Qed.
Lemma hasPn a s : reflect {in s, forall x, ~~ a x} (~~ has a s).
Proof. by rewrite -all_predC; apply: allP. Qed.
Lemma allPn a s : reflect (exists2 x, x \in s & ~~ a x) (~~ all a s).
Proof. by rewrite -has_predC; apply: hasP. Qed.
Lemma allss s : all [in s] s. Proof. exact/allP. Qed.
Lemma mem_filter a x s : (x \in filter a s) = a x && (x \in s).
Proof.
rewrite andbC; elim: s => //= y s IHs.
rewrite (fun_if (fun s' : seq T => x \in s')) !in_cons {}IHs.
by case: eqP => [->|_]; case (a y); rewrite /= ?andbF.
Qed.
Variables (a : pred T) (s : seq T) (A : T -> Prop).
Hypothesis aP : forall x, reflect (A x) (a x).
Lemma hasPP : reflect (exists2 x, x \in s & A x) (has a s).
Proof. by apply: (iffP hasP) => -[x ? /aP]; exists x. Qed.
Lemma allPP : reflect {in s, forall x, A x} (all a s).
Proof. by apply: (iffP allP) => a_s x /a_s/aP. Qed.
End Filters.
Section EqIn.
Variables a1 a2 : pred T.
Lemma eq_in_filter s : {in s, a1 =1 a2} -> filter a1 s = filter a2 s.
Proof. by elim: s => //= x s IHs /forall_cons [-> /IHs ->]. Qed.
Lemma eq_in_find s : {in s, a1 =1 a2} -> find a1 s = find a2 s.
Proof. by elim: s => //= x s IHs /forall_cons [-> /IHs ->]. Qed.
Lemma eq_in_count s : {in s, a1 =1 a2} -> count a1 s = count a2 s.
Proof. by move/eq_in_filter=> eq_a12; rewrite -!size_filter eq_a12. Qed.
Lemma eq_in_all s : {in s, a1 =1 a2} -> all a1 s = all a2 s.
Proof. by move=> eq_a12; rewrite !all_count eq_in_count. Qed.
Lemma eq_in_has s : {in s, a1 =1 a2} -> has a1 s = has a2 s.
Proof. by move/eq_in_filter=> eq_a12; rewrite !has_filter eq_a12. Qed.
End EqIn.
Lemma eq_has_r s1 s2 : s1 =i s2 -> has^~ s1 =1 has^~ s2.
Proof.
by move=> Es a; apply/hasP/hasP=> -[x sx ax]; exists x; rewrite ?Es in sx *.
Qed.
Lemma eq_all_r s1 s2 : s1 =i s2 -> all^~ s1 =1 all^~ s2.
Proof. by move=> Es a; apply/negb_inj; rewrite -!has_predC (eq_has_r Es). Qed.
Lemma has_sym s1 s2 : has [in s1] s2 = has [in s2] s1.
Proof. by apply/hasP/hasP=> -[x]; exists x. Qed.
Lemma has_pred1 x s : has (pred1 x) s = (x \in s).
Proof. by rewrite -(eq_has (mem_seq1^~ x)) (has_sym [:: x]) /= orbF. Qed.
Lemma mem_rev s : rev s =i s.
Proof. by move=> a; rewrite -!has_pred1 has_rev. Qed.
(* Constant sequences, i.e., the image of nseq. *)
Definition constant s := if s is x :: s' then all (pred1 x) s' else true.
Lemma all_pred1P x s : reflect (s = nseq (size s) x) (all (pred1 x) s).
Proof.
elim: s => [|y s IHs] /=; first by left.
case: eqP => [->{y} | ne_xy]; last by right=> [] [? _]; case ne_xy.
by apply: (iffP IHs) => [<- //| []].
Qed.
Lemma all_pred1_constant x s : all (pred1 x) s -> constant s.
Proof. by case: s => //= y s /andP[/eqP->]. Qed.
Lemma all_pred1_nseq x n : all (pred1 x) (nseq n x).
Proof. by rewrite all_nseq /= eqxx orbT. Qed.
Lemma mem_nseq n x y : (y \in nseq n x) = (0 < n) && (y == x).
Proof. by rewrite -has_pred1 has_nseq eq_sym. Qed.
Lemma nseqP n x y : reflect (y = x /\ n > 0) (y \in nseq n x).
Proof. by rewrite mem_nseq andbC; apply: (iffP andP) => -[/eqP]. Qed.
Lemma constant_nseq n x : constant (nseq n x).
Proof. exact: all_pred1_constant (all_pred1_nseq x n). Qed.
(* Uses x0 *)
Lemma constantP s : reflect (exists x, s = nseq (size s) x) (constant s).
Proof.
apply: (iffP idP) => [| [x ->]]; last exact: constant_nseq.
case: s => [|x s] /=; first by exists x0.
by move/all_pred1P=> def_s; exists x; rewrite -def_s.
Qed.
(* Duplicate-freenes. *)
Fixpoint uniq s := if s is x :: s' then (x \notin s') && uniq s' else true.
Lemma cons_uniq x s : uniq (x :: s) = (x \notin s) && uniq s.
Proof. by []. Qed.
Lemma cat_uniq s1 s2 :
uniq (s1 ++ s2) = [&& uniq s1, ~~ has [in s1] s2 & uniq s2].
Proof.
elim: s1 => [|x s1 IHs]; first by rewrite /= has_pred0.
by rewrite has_sym /= mem_cat !negb_or has_sym IHs -!andbA; do !bool_congr.
Qed.
Lemma uniq_catC s1 s2 : uniq (s1 ++ s2) = uniq (s2 ++ s1).
Proof. by rewrite !cat_uniq has_sym andbCA andbA andbC. Qed.
Lemma uniq_catCA s1 s2 s3 : uniq (s1 ++ s2 ++ s3) = uniq (s2 ++ s1 ++ s3).
Proof.
by rewrite !catA -!(uniq_catC s3) !(cat_uniq s3) uniq_catC !has_cat orbC.
Qed.
Lemma rcons_uniq s x : uniq (rcons s x) = (x \notin s) && uniq s.
Proof. by rewrite -cats1 uniq_catC. Qed.
Lemma filter_uniq s a : uniq s -> uniq (filter a s).
Proof.
elim: s => //= x s IHs /andP[s'x]; case: ifP => //= a_x /IHs->.
by rewrite mem_filter a_x s'x.
Qed.
Lemma rot_uniq s : uniq (rot n0 s) = uniq s.
Proof. by rewrite /rot uniq_catC cat_take_drop. Qed.
Lemma rev_uniq s : uniq (rev s) = uniq s.
Proof.
elim: s => // x s IHs.
by rewrite rev_cons -cats1 cat_uniq /= andbT andbC mem_rev orbF IHs.
Qed.
Lemma count_memPn x s : reflect (count_mem x s = 0) (x \notin s).
Proof. by rewrite -has_pred1 has_count -eqn0Ngt; apply: eqP. Qed.
Lemma count_uniq_mem s x : uniq s -> count_mem x s = (x \in s).
Proof.
elim: s => //= y s IHs /andP[/negbTE s'y /IHs-> {IHs}].
by rewrite in_cons; case: (eqVneq y x) => // <-; rewrite s'y.
Qed.
Lemma leq_uniq_countP x s1 s2 : uniq s1 ->
reflect (x \in s1 -> x \in s2) (count_mem x s1 <= count_mem x s2).
Proof.
move/count_uniq_mem->; case: (boolP (_ \in _)) => //= _; last by constructor.
by rewrite -has_pred1 has_count; apply: (iffP idP) => //; apply.
Qed.
Lemma leq_uniq_count s1 s2 : uniq s1 -> {subset s1 <= s2} ->
(forall x, count_mem x s1 <= count_mem x s2).
Proof. by move=> s1_uniq s1_s2 x; apply/leq_uniq_countP/s1_s2. Qed.
Lemma filter_pred1_uniq s x : uniq s -> x \in s -> filter (pred1 x) s = [:: x].
Proof.
move=> uniq_s s_x; rewrite (all_pred1P _ _ (filter_all _ _)).
by rewrite size_filter count_uniq_mem ?s_x.
Qed.
(* Removing duplicates *)
Fixpoint undup s :=
if s is x :: s' then if x \in s' then undup s' else x :: undup s' else [::].
Lemma size_undup s : size (undup s) <= size s.
Proof. by elim: s => //= x s IHs; case: (x \in s) => //=; apply: ltnW. Qed.
Lemma mem_undup s : undup s =i s.
Proof.
move=> x; elim: s => //= y s IHs.
by case s_y: (y \in s); rewrite !inE IHs //; case: eqP => [->|].
Qed.
Lemma undup_uniq s : uniq (undup s).
Proof.
by elim: s => //= x s IHs; case s_x: (x \in s); rewrite //= mem_undup s_x.
Qed.
Lemma undup_id s : uniq s -> undup s = s.
Proof. by elim: s => //= x s IHs /andP[/negbTE-> /IHs->]. Qed.
Lemma ltn_size_undup s : (size (undup s) < size s) = ~~ uniq s.
Proof.
by elim: s => //= x s IHs; case s_x: (x \in s); rewrite //= ltnS size_undup.
Qed.
Lemma filter_undup p s : filter p (undup s) = undup (filter p s).
Proof.
elim: s => //= x s IHs; rewrite (fun_if undup) [_ = _]fun_if /= mem_filter /=.
by rewrite (fun_if (filter p)) /= IHs; case: ifP => -> //=; apply: if_same.
Qed.
Lemma undup_nil s : undup s = [::] -> s = [::].
Proof. by case: s => //= x s; rewrite -mem_undup; case: ifP; case: undup. Qed.
Lemma undup_cat s t :
undup (s ++ t) = [seq x <- undup s | x \notin t] ++ undup t.
Proof. by elim: s => //= x s ->; rewrite mem_cat; do 2 case: in_mem => //=. Qed.
Lemma undup_rcons s x : undup (rcons s x) = rcons [seq y <- undup s | y != x] x.
Proof.
by rewrite -!cats1 undup_cat; congr cat; apply: eq_filter => y; rewrite inE.
Qed.
Lemma count_undup s p : count p (undup s) <= count p s.
Proof. by rewrite -!size_filter filter_undup size_undup. Qed.
Lemma has_undup p s : has p (undup s) = has p s.
Proof. by apply: eq_has_r => x; rewrite mem_undup. Qed.
Lemma all_undup p s : all p (undup s) = all p s.
Proof. by apply: eq_all_r => x; rewrite mem_undup. Qed.
(* Lookup *)
Definition index x := find (pred1 x).
Lemma index_size x s : index x s <= size s.
Proof. by rewrite /index find_size. Qed.
Lemma index_mem x s : (index x s < size s) = (x \in s).
Proof. by rewrite -has_pred1 has_find. Qed.
Lemma memNindex x s : x \notin s -> index x s = size s.
Proof. by rewrite -has_pred1 => /hasNfind. Qed.
Lemma nth_index x s : x \in s -> nth s (index x s) = x.
Proof. by rewrite -has_pred1 => /(nth_find x0)/eqP. Qed.
Lemma index_inj s : {in s &, injective (index ^~ s)}.
Proof.
by move=> x y x_s y_s eidx; rewrite -(nth_index x_s) eidx nth_index.
Qed.
Lemma index_cat x s1 s2 :
index x (s1 ++ s2) = if x \in s1 then index x s1 else size s1 + index x s2.
Proof. by rewrite /index find_cat has_pred1. Qed.
Lemma index_ltn x s i : x \in take i s -> index x s < i.
Proof. by rewrite -has_pred1; apply: find_ltn. Qed.
Lemma in_take x s i : x \in s -> (x \in take i s) = (index x s < i).
Proof. by rewrite -?has_pred1; apply: has_take. Qed.
Lemma in_take_leq x s i : i <= size s -> (x \in take i s) = (index x s < i).
Proof. by rewrite -?has_pred1; apply: has_take_leq. Qed.
Lemma index_nth i s : i < size s -> index (nth s i) s <= i.
Proof.
move=> lti; rewrite -ltnS index_ltn// -(@nth_take i.+1)// mem_nth // size_take.
by case: ifP.
Qed.
Lemma nthK s: uniq s -> {in gtn (size s), cancel (nth s) (index^~ s)}.
Proof.
elim: s => //= x s IHs /andP[s'x Us] i; rewrite inE ltnS eq_sym -if_neg.
by case: i => /= [_|i lt_i_s]; rewrite ?eqxx ?IHs ?(memPn s'x) ?mem_nth.
Qed.
Lemma index_uniq i s : i < size s -> uniq s -> index (nth s i) s = i.
Proof. by move/nthK. Qed.
Lemma index_head x s : index x (x :: s) = 0.
Proof. by rewrite /= eqxx. Qed.
Lemma index_last x s : uniq (x :: s) -> index (last x s) (x :: s) = size s.
Proof.
rewrite lastI rcons_uniq -cats1 index_cat size_belast.
by case: ifP => //=; rewrite eqxx addn0.
Qed.
Lemma nth_uniq s i j :
i < size s -> j < size s -> uniq s -> (nth s i == nth s j) = (i == j).
Proof. by move=> lti ltj /nthK/can_in_eq->. Qed.
Lemma uniqPn s :
reflect (exists i j, [/\ i < j, j < size s & nth s i = nth s j]) (~~ uniq s).
Proof.
apply: (iffP idP) => [|[i [j [ltij ltjs]]]]; last first.
by apply: contra_eqN => Us; rewrite nth_uniq ?ltn_eqF // (ltn_trans ltij).
elim: s => // x s IHs /nandP[/negbNE | /IHs[i [j]]]; last by exists i.+1, j.+1.
by exists 0, (index x s).+1; rewrite !ltnS index_mem /= nth_index.
Qed.
Lemma uniqP s : reflect {in gtn (size s) &, injective (nth s)} (uniq s).
Proof.
apply: (iffP idP) => [/nthK/can_in_inj// | nth_inj].
apply/uniqPn => -[i [j [ltij ltjs /nth_inj/eqP/idPn]]].
by rewrite !inE (ltn_trans ltij ltjs) ltn_eqF //=; case.
Qed.
Lemma mem_rot s : rot n0 s =i s.
Proof. by move=> x; rewrite -[s in RHS](cat_take_drop n0) !mem_cat /= orbC. Qed.
Lemma eqseq_rot s1 s2 : (rot n0 s1 == rot n0 s2) = (s1 == s2).
Proof. exact/inj_eq/rot_inj. Qed.
Lemma drop_index s (n := index x0 s) : x0 \in s -> drop n s = x0 :: drop n.+1 s.
Proof. by move=> xs; rewrite (drop_nth x0) ?index_mem ?nth_index. Qed.
(* lemmas about the pivot pattern [_ ++ _ :: _] *)
Lemma index_pivot x s1 s2 (s := s1 ++ x :: s2) : x \notin s1 ->
index x s = size s1.
Proof. by rewrite index_cat/= eqxx addn0; case: ifPn. Qed.
Lemma take_pivot x s2 s1 (s := s1 ++ x :: s2) : x \notin s1 ->
take (index x s) s = s1.
Proof. by move=> /index_pivot->; rewrite take_size_cat. Qed.
Lemma rev_pivot x s1 s2 : rev (s1 ++ x :: s2) = rev s2 ++ x :: rev s1.
Proof. by rewrite rev_cat rev_cons cat_rcons. Qed.
Lemma eqseq_pivot2l x s1 s2 s3 s4 : x \notin s1 -> x \notin s3 ->
(s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4).
Proof.
move=> xNs1 xNs3; apply/idP/idP => [E|/andP[/eqP-> /eqP->]//].
suff S : size s1 = size s3 by rewrite eqseq_cat// eqseq_cons eqxx in E.
by rewrite -(index_pivot s2 xNs1) (eqP E) index_pivot.
Qed.
Lemma eqseq_pivot2r x s1 s2 s3 s4 : x \notin s2 -> x \notin s4 ->
(s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4).
Proof.
move=> xNs2 xNs4; rewrite -(can_eq revK) !rev_pivot.
by rewrite eqseq_pivot2l ?mem_rev // !(can_eq revK) andbC.
Qed.
Lemma eqseq_pivotl x s1 s2 s3 s4 : x \notin s1 -> x \notin s2 ->
(s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4).
Proof.
move=> xNs1 xNs2; apply/idP/idP => [E|/andP[/eqP-> /eqP->]//].
rewrite -(@eqseq_pivot2l x)//; have /eqP/(congr1 (count_mem x)) := E.
rewrite !count_cat/= eqxx !addnS (count_memPn _ _ xNs1) (count_memPn _ _ xNs2).
by move=> -[/esym/eqP]; rewrite addn_eq0 => /andP[/eqP/count_memPn].
Qed.
Lemma eqseq_pivotr x s1 s2 s3 s4 : x \notin s3 -> x \notin s4 ->
(s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4).
Proof. by move=> *; rewrite eq_sym eqseq_pivotl//; case: eqVneq => /=. Qed.
Lemma uniq_eqseq_pivotl x s1 s2 s3 s4 : uniq (s1 ++ x :: s2) ->
(s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4).
Proof.
by rewrite uniq_catC/= mem_cat => /andP[/norP[? ?] _]; rewrite eqseq_pivotl.
Qed.
Lemma uniq_eqseq_pivotr x s1 s2 s3 s4 : uniq (s3 ++ x :: s4) ->
(s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4).
Proof. by move=> ?; rewrite eq_sym uniq_eqseq_pivotl//; case: eqVneq => /=. Qed.
End EqSeq.
Arguments eqseq : simpl nomatch.
Notation "'has_ view" := (hasPP _ (fun _ => view))
(at level 4, right associativity, format "''has_' view").
Notation "'all_ view" := (allPP _ (fun _ => view))
(at level 4, right associativity, format "''all_' view").
Section RotIndex.
Variables (T : eqType).
Implicit Types x y z : T.
Lemma rot_index s x (i := index x s) : x \in s ->
rot i s = x :: (drop i.+1 s ++ take i s).
Proof. by move=> x_s; rewrite /rot drop_index. Qed.
Variant rot_to_spec s x := RotToSpec i s' of rot i s = x :: s'.
Lemma rot_to s x : x \in s -> rot_to_spec s x.
Proof. by move=> /rot_index /RotToSpec. Qed.
End RotIndex.
Definition inE := (mem_seq1, in_cons, inE).
Prenex Implicits mem_seq1 constant uniq undup index.
Arguments eqseq {T} !_ !_.
Arguments pred_of_seq {T} s x /.
Arguments eqseqP {T x y}.
Arguments hasP {T a s}.
Arguments hasPn {T a s}.
Arguments allP {T a s}.
Arguments allPn {T a s}.
Arguments nseqP {T n x y}.
Arguments count_memPn {T x s}.
Arguments uniqPn {T} x0 {s}.
Arguments uniqP {T} x0 {s}.
Arguments forall_cons {T P a s}.
Arguments exists_cons {T P a s}.
(* Since both `all [in s] s`, `all (mem s) s`, and `all (pred_of_seq s) s` *)
(* may appear in goals, the following hint has to be declared using the *)
(* `Hint Extern` command. Additionally, `mem` and `pred_of_seq` in the above *)
(* terms do not reduce to each other; thus, stating `allss` in the form of *)
(* one of them makes `apply: allss` fail for the other case. Since both `mem` *)
(* and `pred_of_seq` reduce to `mem_seq`, the following explicit type *)
(* annotation for `allss` makes it work for both cases. *)
#[export] Hint Extern 0 (is_true (all _ _)) =>
apply: (allss : forall T s, all (mem_seq s) s) : core.
Section NthTheory.
Lemma nthP (T : eqType) (s : seq T) x x0 :
reflect (exists2 i, i < size s & nth x0 s i = x) (x \in s).
Proof.
apply: (iffP idP) => [|[n Hn <-]]; last exact: mem_nth.
by exists (index x s); [rewrite index_mem | apply nth_index].
Qed.
Variable T : Type.
Implicit Types (a : pred T) (x : T).
Lemma has_nthP a s x0 :
reflect (exists2 i, i < size s & a (nth x0 s i)) (has a s).
Proof.
elim: s => [|x s IHs] /=; first by right; case.
case nax: (a x); first by left; exists 0.
by apply: (iffP IHs) => [[i]|[[|i]]]; [exists i.+1 | rewrite nax | exists i].
Qed.
Lemma all_nthP a s x0 :
reflect (forall i, i < size s -> a (nth x0 s i)) (all a s).
Proof.
rewrite -(eq_all (fun x => negbK (a x))) all_predC.
case: (has_nthP _ _ x0) => [na_s | a_s]; [right=> a_s | left=> i lti].
by case: na_s => i lti; rewrite a_s.
by apply/idPn=> na_si; case: a_s; exists i.
Qed.
Lemma set_nthE s x0 n x :
set_nth x0 s n x = if n < size s
then take n s ++ x :: drop n.+1 s
else s ++ ncons (n - size s) x0 [:: x].
Proof.
elim: s n => [|a s IH] n /=; first by rewrite subn0 set_nth_nil.
case: n => [|n]; first by rewrite drop0.
by rewrite ltnS /=; case: ltnP (IH n) => _ ->.
Qed.
Lemma count_set_nth a s x0 n x :
count a (set_nth x0 s n x) =
count a s + a x - a (nth x0 s n) * (n < size s) + (a x0) * (n - size s).
Proof.
rewrite set_nthE; case: ltnP => [nlts|nges]; last first.
rewrite -cat_nseq !count_cat count_nseq /=.
by rewrite muln0 addn0 subn0 addnAC addnA.
have -> : n - size s = 0 by apply/eqP; rewrite subn_eq0 ltnW.
rewrite -[in count a s](cat_take_drop n s) [drop n s](drop_nth x0)//.
by rewrite !count_cat/= muln1 muln0 addn0 addnAC !addnA [in RHS]addnAC addnK.
Qed.
Lemma count_set_nth_ltn a s x0 n x : n < size s ->
count a (set_nth x0 s n x) = count a s + a x - a (nth x0 s n).
Proof.
move=> nlts; rewrite count_set_nth nlts muln1.
have -> : n - size s = 0 by apply/eqP; rewrite subn_eq0 ltnW.
by rewrite muln0 addn0.
Qed.
Lemma count_set_nthF a s x0 n x : ~~ a x0 ->
count a (set_nth x0 s n x) = count a s + a x - a (nth x0 s n).
Proof.
move=> /negbTE ax0; rewrite count_set_nth ax0 mul0n addn0.
case: ltnP => [_|nges]; first by rewrite muln1.
by rewrite nth_default// ax0 subn0.
Qed.
End NthTheory.
Lemma set_nth_default T s (y0 x0 : T) n : n < size s -> nth x0 s n = nth y0 s n.
Proof. by elim: s n => [|y s' IHs] [|n] //= /IHs. Qed.
Lemma headI T s (x : T) : rcons s x = head x s :: behead (rcons s x).
Proof. by case: s. Qed.
Arguments nthP {T s x}.
Arguments has_nthP {T a s}.
Arguments all_nthP {T a s}.
Definition bitseq := seq bool.
#[hnf] HB.instance Definition _ := Equality.on bitseq.
Canonical bitseq_predType := Eval hnf in [predType of bitseq].
(* Generalizations of splitP (from path.v): split_find_nth and split_find *)
Section FindNth.
Variables (T : Type).
Implicit Types (x : T) (p : pred T) (s : seq T).
Variant split_find_nth_spec p : seq T -> seq T -> seq T -> T -> Type :=
FindNth x s1 s2 of p x & ~~ has p s1 :
split_find_nth_spec p (rcons s1 x ++ s2) s1 s2 x.
Lemma split_find_nth x0 p s (i := find p s) :
has p s -> split_find_nth_spec p s (take i s) (drop i.+1 s) (nth x0 s i).
Proof.
move=> p_s; rewrite -[X in split_find_nth_spec _ X](cat_take_drop i s).
rewrite (drop_nth x0 _) -?has_find// -cat_rcons.
by constructor; [apply: nth_find | rewrite has_take -?leqNgt].
Qed.
Variant split_find_spec p : seq T -> seq T -> seq T -> Type :=
FindSplit x s1 s2 of p x & ~~ has p s1 :
split_find_spec p (rcons s1 x ++ s2) s1 s2.
Lemma split_find p s (i := find p s) :
has p s -> split_find_spec p s (take i s) (drop i.+1 s).
Proof.
by case: s => // x ? in i * => ?; case: split_find_nth => //; constructor.
Qed.
Lemma nth_rcons_cat_find x0 p s1 s2 x (s := rcons s1 x ++ s2) :
p x -> ~~ has p s1 -> nth x0 s (find p s) = x.
Proof.
move=> pz pNs1; rewrite /s cat_rcons find_cat (negPf pNs1).
by rewrite nth_cat/= pz addn0 subnn ltnn.
Qed.
End FindNth.
(* Incrementing the ith nat in a seq nat, padding with 0's if needed. This *)
(* allows us to use nat seqs as bags of nats. *)
Fixpoint incr_nth v i {struct i} :=
if v is n :: v' then if i is i'.+1 then n :: incr_nth v' i' else n.+1 :: v'
else ncons i 0 [:: 1].
Arguments incr_nth : simpl nomatch.
Lemma nth_incr_nth v i j : nth 0 (incr_nth v i) j = (i == j) + nth 0 v j.
Proof.
elim: v i j => [|n v IHv] [|i] [|j] //=; rewrite ?eqSS ?addn0 //; try by case j.
elim: i j => [|i IHv] [|j] //=; rewrite ?eqSS //; by case j.
Qed.
Lemma size_incr_nth v i :
size (incr_nth v i) = if i < size v then size v else i.+1.
Proof.
elim: v i => [|n v IHv] [|i] //=; first by rewrite size_ncons /= addn1.
by rewrite IHv; apply: fun_if.
Qed.
Lemma incr_nth_inj v : injective (incr_nth v).
Proof.
move=> i j /(congr1 (nth 0 ^~ i)); apply: contra_eq => neq_ij.
by rewrite !nth_incr_nth eqn_add2r eqxx /nat_of_bool ifN_eqC.
Qed.
Lemma incr_nthC v i j :
incr_nth (incr_nth v i) j = incr_nth (incr_nth v j) i.
Proof.
apply: (@eq_from_nth _ 0) => [|k _]; last by rewrite !nth_incr_nth addnCA.
by do !rewrite size_incr_nth leqNgt if_neg -/(maxn _ _); apply: maxnAC.
Qed.
(* Equality up to permutation *)
Section PermSeq.
Variable T : eqType.
Implicit Type s : seq T.
Definition perm_eq s1 s2 :=
all [pred x | count_mem x s1 == count_mem x s2] (s1 ++ s2).
Lemma permP s1 s2 : reflect (count^~ s1 =1 count^~ s2) (perm_eq s1 s2).
Proof.
apply: (iffP allP) => /= [eq_cnt1 a | eq_cnt x _]; last exact/eqP.
have [n le_an] := ubnP (count a (s1 ++ s2)); elim: n => // n IHn in a le_an *.
have [/eqP|] := posnP (count a (s1 ++ s2)).
by rewrite count_cat addn_eq0; do 2!case: eqP => // ->.
rewrite -has_count => /hasP[x s12x a_x]; pose a' := predD1 a x.
have cnt_a' s: count a s = count_mem x s + count a' s.
rewrite -count_predUI -[LHS]addn0 -(count_pred0 s).
by congr (_ + _); apply: eq_count => y /=; case: eqP => // ->.
rewrite !cnt_a' (eqnP (eq_cnt1 _ s12x)) (IHn a') // -ltnS.
apply: leq_trans le_an.
by rewrite ltnS cnt_a' -add1n leq_add2r -has_count has_pred1.
Qed.
Lemma perm_refl s : perm_eq s s.
Proof. exact/permP. Qed.
Hint Resolve perm_refl : core.
Lemma perm_sym : symmetric perm_eq.
Proof. by move=> s1 s2; apply/permP/permP=> eq_s12 a. Qed.
Lemma perm_trans : transitive perm_eq.
Proof. by move=> s2 s1 s3 /permP-eq12 /permP/(ftrans eq12)/permP. Qed.
Notation perm_eql s1 s2 := (perm_eq s1 =1 perm_eq s2).
Notation perm_eqr s1 s2 := (perm_eq^~ s1 =1 perm_eq^~ s2).
Lemma permEl s1 s2 : perm_eql s1 s2 -> perm_eq s1 s2. Proof. by move->. Qed.
Lemma permPl s1 s2 : reflect (perm_eql s1 s2) (perm_eq s1 s2).
Proof.
apply: (iffP idP) => [eq12 s3 | -> //]; apply/idP/idP; last exact: perm_trans.
by rewrite -!(perm_sym s3) => /perm_trans; apply.
Qed.
Lemma permPr s1 s2 : reflect (perm_eqr s1 s2) (perm_eq s1 s2).
Proof.
by apply/(iffP idP) => [/permPl eq12 s3| <- //]; rewrite !(perm_sym s3) eq12.
Qed.
Lemma perm_catC s1 s2 : perm_eql (s1 ++ s2) (s2 ++ s1).
Proof. by apply/permPl/permP=> a; rewrite !count_cat addnC. Qed.
Lemma perm_cat2l s1 s2 s3 : perm_eq (s1 ++ s2) (s1 ++ s3) = perm_eq s2 s3.
Proof.
apply/permP/permP=> eq23 a; apply/eqP;
by move/(_ a)/eqP: eq23; rewrite !count_cat eqn_add2l.
Qed.
Lemma perm_catl s t1 t2 : perm_eq t1 t2 -> perm_eql (s ++ t1) (s ++ t2).
Proof. by move=> eq_t12; apply/permPl; rewrite perm_cat2l. Qed.
Lemma perm_cons x s1 s2 : perm_eq (x :: s1) (x :: s2) = perm_eq s1 s2.
Proof. exact: (perm_cat2l [::x]). Qed.
Lemma perm_cat2r s1 s2 s3 : perm_eq (s2 ++ s1) (s3 ++ s1) = perm_eq s2 s3.
Proof. by do 2!rewrite perm_sym perm_catC; apply: perm_cat2l. Qed.
Lemma perm_catr s1 s2 t : perm_eq s1 s2 -> perm_eql (s1 ++ t) (s2 ++ t).
Proof. by move=> eq_s12; apply/permPl; rewrite perm_cat2r. Qed.
Lemma perm_cat s1 s2 t1 t2 :
perm_eq s1 s2 -> perm_eq t1 t2 -> perm_eq (s1 ++ t1) (s2 ++ t2).
Proof. by move=> /perm_catr-> /perm_catl->. Qed.
Lemma perm_catAC s1 s2 s3 : perm_eql ((s1 ++ s2) ++ s3) ((s1 ++ s3) ++ s2).
Proof. by apply/permPl; rewrite -!catA perm_cat2l perm_catC. Qed.
Lemma perm_catCA s1 s2 s3 : perm_eql (s1 ++ s2 ++ s3) (s2 ++ s1 ++ s3).
Proof. by apply/permPl; rewrite !catA perm_cat2r perm_catC. Qed.
Lemma perm_catACA s1 s2 s3 s4 :
perm_eql ((s1 ++ s2) ++ (s3 ++ s4)) ((s1 ++ s3) ++ (s2 ++ s4)).
Proof. by apply/permPl; rewrite perm_catAC !catA perm_catAC. Qed.
Lemma perm_rcons x s : perm_eql (rcons s x) (x :: s).
Proof. by move=> /= s2; rewrite -cats1 perm_catC. Qed.
Lemma perm_rot n s : perm_eql (rot n s) s.
Proof. by move=> /= s2; rewrite perm_catC cat_take_drop. Qed.
Lemma perm_rotr n s : perm_eql (rotr n s) s.
Proof. exact: perm_rot. Qed.
Lemma perm_rev s : perm_eql (rev s) s.
Proof. by apply/permPl/permP=> i; rewrite count_rev. Qed.
Lemma perm_filter s1 s2 a :
perm_eq s1 s2 -> perm_eq (filter a s1) (filter a s2).
Proof. by move/permP=> s12_count; apply/permP=> Q; rewrite !count_filter. Qed.
Lemma perm_filterC a s : perm_eql (filter a s ++ filter (predC a) s) s.
Proof.
apply/permPl; elim: s => //= x s IHs.
by case: (a x); last rewrite /= -cat1s perm_catCA; rewrite perm_cons.
Qed.
Lemma perm_size s1 s2 : perm_eq s1 s2 -> size s1 = size s2.
Proof. by move/permP=> eq12; rewrite -!count_predT eq12. Qed.
Lemma perm_mem s1 s2 : perm_eq s1 s2 -> s1 =i s2.
Proof. by move/permP=> eq12 x; rewrite -!has_pred1 !has_count eq12. Qed.
Lemma perm_nilP s : reflect (s = [::]) (perm_eq s [::]).
Proof. by apply: (iffP idP) => [/perm_size/eqP/nilP | ->]. Qed.
Lemma perm_consP x s t :
reflect (exists i u, rot i t = x :: u /\ perm_eq u s)
(perm_eq t (x :: s)).
Proof.
apply: (iffP idP) => [eq_txs | [i [u [Dt eq_us]]]].
have /rot_to[i u Dt]: x \in t by rewrite (perm_mem eq_txs) mem_head.
by exists i, u; rewrite -(perm_cons x) -Dt perm_rot.
by rewrite -(perm_rot i) Dt perm_cons.
Qed.
Lemma perm_has s1 s2 a : perm_eq s1 s2 -> has a s1 = has a s2.
Proof. by move/perm_mem/eq_has_r. Qed.
Lemma perm_all s1 s2 a : perm_eq s1 s2 -> all a s1 = all a s2.
Proof. by move/perm_mem/eq_all_r. Qed.
Lemma perm_small_eq s1 s2 : size s2 <= 1 -> perm_eq s1 s2 -> s1 = s2.
Proof.
move=> s2_le1 eqs12; move/perm_size: eqs12 s2_le1 (perm_mem eqs12).
by case: s2 s1 => [|x []] // [|y []] // _ _ /(_ x) /[!(inE, eqxx)] /eqP->.
Qed.
Lemma uniq_leq_size s1 s2 : uniq s1 -> {subset s1 <= s2} -> size s1 <= size s2.
Proof.
elim: s1 s2 => //= x s1 IHs s2 /andP[not_s1x Us1] /forall_cons[s2x ss12].
have [i s3 def_s2] := rot_to s2x; rewrite -(size_rot i s2) def_s2.
apply: IHs => // y s1y; have:= ss12 y s1y.
by rewrite -(mem_rot i) def_s2 inE (negPf (memPn _ y s1y)).
Qed.
Lemma leq_size_uniq s1 s2 :
uniq s1 -> {subset s1 <= s2} -> size s2 <= size s1 -> uniq s2.
Proof.
elim: s1 s2 => [[] | x s1 IHs s2] // Us1x; have /andP[not_s1x Us1] := Us1x.
case/forall_cons => /rot_to[i s3 def_s2] ss12 le_s21.
rewrite -(rot_uniq i) -(size_rot i) def_s2 /= in le_s21 *.
have ss13 y (s1y : y \in s1): y \in s3.
by have:= ss12 y s1y; rewrite -(mem_rot i) def_s2 inE (negPf (memPn _ y s1y)).
rewrite IHs // andbT; apply: contraL _ le_s21 => s3x; rewrite -leqNgt.
by apply/(uniq_leq_size Us1x)/allP; rewrite /= s3x; apply/allP.
Qed.
Lemma uniq_size_uniq s1 s2 :
uniq s1 -> s1 =i s2 -> uniq s2 = (size s2 == size s1).
Proof.
move=> Us1 eqs12; apply/idP/idP=> [Us2 | /eqP eq_sz12].
by rewrite eqn_leq !uniq_leq_size // => y; rewrite eqs12.
by apply: (leq_size_uniq Us1) => [y|]; rewrite (eqs12, eq_sz12).
Qed.
Lemma uniq_min_size s1 s2 :
uniq s1 -> {subset s1 <= s2} -> size s2 <= size s1 ->
(size s1 = size s2) * (s1 =i s2).
Proof.
move=> Us1 ss12 le_s21; have Us2: uniq s2 := leq_size_uniq Us1 ss12 le_s21.
suffices: s1 =i s2 by split; first by apply/eqP; rewrite -uniq_size_uniq.
move=> x; apply/idP/idP=> [/ss12// | s2x]; apply: contraLR le_s21 => not_s1x.
rewrite -ltnNge (@uniq_leq_size (x :: s1)) /= ?not_s1x //.
by apply/allP; rewrite /= s2x; apply/allP.
Qed.
Lemma eq_uniq s1 s2 : size s1 = size s2 -> s1 =i s2 -> uniq s1 = uniq s2.
Proof.
move=> eq_sz12 eq_s12.
by apply/idP/idP=> Us; rewrite (uniq_size_uniq Us) ?eq_sz12 ?eqxx.
Qed.
Lemma perm_uniq s1 s2 : perm_eq s1 s2 -> uniq s1 = uniq s2.
Proof. by move=> eq_s12; apply/eq_uniq; [apply/perm_size | apply/perm_mem]. Qed.
Lemma uniq_perm s1 s2 : uniq s1 -> uniq s2 -> s1 =i s2 -> perm_eq s1 s2.
Proof.
move=> Us1 Us2 eq12; apply/allP=> x _; apply/eqP.
by rewrite !count_uniq_mem ?eq12.
Qed.
Lemma perm_undup s1 s2 : s1 =i s2 -> perm_eq (undup s1) (undup s2).
Proof.
by move=> Es12; rewrite uniq_perm ?undup_uniq // => s; rewrite !mem_undup.
Qed.
Lemma count_mem_uniq s : (forall x, count_mem x s = (x \in s)) -> uniq s.
Proof.
move=> count1_s; have Uus := undup_uniq s.
suffices: perm_eq s (undup s) by move/perm_uniq->.
by apply/allP=> x _; apply/eqP; rewrite (count_uniq_mem x Uus) mem_undup.
Qed.
Lemma eq_count_undup a s1 s2 :
{in a, s1 =i s2} -> count a (undup s1) = count a (undup s2).
Proof.
move=> s1_eq_s2; rewrite -!size_filter !filter_undup.
apply/perm_size/perm_undup => x.
by rewrite !mem_filter; case: (boolP (a x)) => //= /s1_eq_s2.
Qed.
Lemma catCA_perm_ind P :
(forall s1 s2 s3, P (s1 ++ s2 ++ s3) -> P (s2 ++ s1 ++ s3)) ->
(forall s1 s2, perm_eq s1 s2 -> P s1 -> P s2).
Proof.
move=> PcatCA s1 s2 eq_s12; rewrite -[s1]cats0 -[s2]cats0.
elim: s2 nil => [|x s2 IHs] s3 in s1 eq_s12 *.
by case: s1 {eq_s12}(perm_size eq_s12).
have /rot_to[i s' def_s1]: x \in s1 by rewrite (perm_mem eq_s12) mem_head.
rewrite -(cat_take_drop i s1) -catA => /PcatCA.
rewrite catA -/(rot i s1) def_s1 /= -cat1s => /PcatCA/IHs/PcatCA; apply.
by rewrite -(perm_cons x) -def_s1 perm_rot.
Qed.
Lemma catCA_perm_subst R F :
(forall s1 s2 s3, F (s1 ++ s2 ++ s3) = F (s2 ++ s1 ++ s3) :> R) ->
(forall s1 s2, perm_eq s1 s2 -> F s1 = F s2).
Proof.
move=> FcatCA s1 s2 /catCA_perm_ind => ind_s12.
by apply: (ind_s12 (eq _ \o F)) => //= *; rewrite FcatCA.
Qed.
End PermSeq.
Notation perm_eql s1 s2 := (perm_eq s1 =1 perm_eq s2).
Notation perm_eqr s1 s2 := (perm_eq^~ s1 =1 perm_eq^~ s2).
Arguments permP {T s1 s2}.
Arguments permPl {T s1 s2}.
Arguments permPr {T s1 s2}.
Prenex Implicits perm_eq.
#[global] Hint Resolve perm_refl : core.
Section RotrLemmas.
Variables (n0 : nat) (T : Type) (T' : eqType).
Implicit Types (x : T) (s : seq T).
Lemma size_rotr s : size (rotr n0 s) = size s.
Proof. by rewrite size_rot. Qed.
Lemma mem_rotr (s : seq T') : rotr n0 s =i s.
Proof. by move=> x; rewrite mem_rot. Qed.
Lemma rotr_size_cat s1 s2 : rotr (size s2) (s1 ++ s2) = s2 ++ s1.
Proof. by rewrite /rotr size_cat addnK rot_size_cat. Qed.
Lemma rotr1_rcons x s : rotr 1 (rcons s x) = x :: s.
Proof. by rewrite -rot1_cons rotK. Qed.
Lemma has_rotr a s : has a (rotr n0 s) = has a s.
Proof. by rewrite has_rot. Qed.
Lemma rotr_uniq (s : seq T') : uniq (rotr n0 s) = uniq s.
Proof. by rewrite rot_uniq. Qed.
Lemma rotrK : cancel (@rotr T n0) (rot n0).
Proof.
move=> s; have [lt_n0s | ge_n0s] := ltnP n0 (size s).
by rewrite -{1}(subKn (ltnW lt_n0s)) -{1}[size s]size_rotr; apply: rotK.
by rewrite -[in RHS](rot_oversize ge_n0s) /rotr (eqnP ge_n0s) rot0.
Qed.
Lemma rotr_inj : injective (@rotr T n0).
Proof. exact (can_inj rotrK). Qed.
Lemma take_rev s : take n0 (rev s) = rev (drop (size s - n0) s).
Proof.
set m := _ - n0; rewrite -[s in LHS](cat_take_drop m) rev_cat take_cat.
rewrite size_rev size_drop -minnE minnC leq_min ltnn /m.
by have [_|/eqnP->] := ltnP; rewrite ?subnn take0 cats0.
Qed.
Lemma rev_take s : rev (take n0 s) = drop (size s - n0) (rev s).
Proof. by rewrite -[s in take _ s]revK take_rev revK size_rev. Qed.
Lemma drop_rev s : drop n0 (rev s) = rev (take (size s - n0) s).
Proof.
set m := _ - n0; rewrite -[s in LHS](cat_take_drop m) rev_cat drop_cat.
rewrite size_rev size_drop -minnE minnC leq_min ltnn /m.
by have [_|/eqnP->] := ltnP; rewrite ?take0 // subnn drop0.
Qed.
Lemma rev_drop s : rev (drop n0 s) = take (size s - n0) (rev s).
Proof. by rewrite -[s in drop _ s]revK drop_rev revK size_rev. Qed.
Lemma rev_rotr s : rev (rotr n0 s) = rot n0 (rev s).
Proof. by rewrite rev_cat -take_rev -drop_rev. Qed.
Lemma rev_rot s : rev (rot n0 s) = rotr n0 (rev s).
Proof. by apply: canLR revK _; rewrite rev_rotr revK. Qed.
End RotrLemmas.
Arguments rotrK n0 {T} s : rename.
Arguments rotr_inj {n0 T} [s1 s2] eq_rotr_s12 : rename.
Section RotCompLemmas.
Variable T : Type.
Implicit Type s : seq T.
Lemma rotD m n s : m + n <= size s -> rot (m + n) s = rot m (rot n s).
Proof.
move=> sz_s; rewrite [LHS]/rot -[take _ s](cat_take_drop n).
rewrite 5!(catA, =^~ rot_size_cat) !cat_take_drop.
by rewrite size_drop !size_takel ?leq_addl ?addnK.
Qed.
Lemma rotS n s : n < size s -> rot n.+1 s = rot 1 (rot n s).
Proof. exact: (@rotD 1). Qed.
Lemma rot_add_mod m n s : n <= size s -> m <= size s ->
rot m (rot n s) = rot (if m + n <= size s then m + n else m + n - size s) s.
Proof.
move=> Hn Hm; case: leqP => [/rotD // | /ltnW Hmn]; symmetry.
by rewrite -{2}(rotK n s) /rotr -rotD size_rot addnBA ?subnK ?addnK.
Qed.
Lemma rot_minn n s : rot n s = rot (minn n (size s)) s.
Proof.
by case: (leqP n (size s)) => // /leqW ?; rewrite rot_size rot_oversize.
Qed.
Definition rot_add s n m (k := size s) (p := minn m k + minn n k) :=
locked (if p <= k then p else p - k).
Lemma leq_rot_add n m s : rot_add s n m <= size s.
Proof.
by unlock rot_add; case: ifP; rewrite // leq_subLR leq_add // geq_minr.
Qed.
Lemma rot_addC n m s : rot_add s n m = rot_add s m n.
Proof. by unlock rot_add; rewrite ![minn n _ + _]addnC. Qed.
Lemma rot_rot_add n m s : rot m (rot n s) = rot (rot_add s n m) s.
Proof.
unlock rot_add.
by rewrite (rot_minn n) (rot_minn m) rot_add_mod ?size_rot ?geq_minr.
Qed.
Lemma rot_rot m n s : rot m (rot n s) = rot n (rot m s).
Proof. by rewrite rot_rot_add rot_addC -rot_rot_add. Qed.
Lemma rot_rotr m n s : rot m (rotr n s) = rotr n (rot m s).
Proof. by rewrite [RHS]/rotr size_rot rot_rot. Qed.
Lemma rotr_rotr m n s : rotr m (rotr n s) = rotr n (rotr m s).
Proof. by rewrite /rotr !size_rot rot_rot. Qed.
End RotCompLemmas.
Section Mask.
Variables (n0 : nat) (T : Type).
Implicit Types (m : bitseq) (s : seq T).
Fixpoint mask m s {struct m} :=
match m, s with
| b :: m', x :: s' => if b then x :: mask m' s' else mask m' s'
| _, _ => [::]
end.
Lemma mask_false s n : mask (nseq n false) s = [::].
Proof. by elim: s n => [|x s IHs] [|n] /=. Qed.
Lemma mask_true s n : size s <= n -> mask (nseq n true) s = s.
Proof. by elim: s n => [|x s IHs] [|n] //= Hn; congr (_ :: _); apply: IHs. Qed.
Lemma mask0 m : mask m [::] = [::].
Proof. by case: m. Qed.
Lemma mask0s s : mask [::] s = [::]. Proof. by []. Qed.
Lemma mask1 b x : mask [:: b] [:: x] = nseq b x.
Proof. by case: b. Qed.
Lemma mask_cons b m x s : mask (b :: m) (x :: s) = nseq b x ++ mask m s.
Proof. by case: b. Qed.
Lemma size_mask m s : size m = size s -> size (mask m s) = count id m.
Proof. by move: m s; apply: seq_ind2 => // -[] x m s /= _ ->. Qed.
Lemma mask_cat m1 m2 s1 s2 :
size m1 = size s1 -> mask (m1 ++ m2) (s1 ++ s2) = mask m1 s1 ++ mask m2 s2.
Proof. by move: m1 s1; apply: seq_ind2 => // -[] m1 x1 s1 /= _ ->. Qed.
Lemma mask_rcons b m x s : size m = size s ->
mask (rcons m b) (rcons s x) = mask m s ++ nseq b x.
Proof. by move=> ms; rewrite -!cats1 mask_cat//; case: b. Qed.
Lemma all_mask a m s : all a s -> all a (mask m s).
Proof. by elim: s m => [|x s IHs] [|[] m]//= /andP[ax /IHs->]; rewrite ?ax. Qed.
Lemma has_mask_cons a b m x s :
has a (mask (b :: m) (x :: s)) = b && a x || has a (mask m s).
Proof. by case: b. Qed.
Lemma has_mask a m s : has a (mask m s) -> has a s.
Proof. by apply/contraTT; rewrite -!all_predC; apply: all_mask. Qed.
Lemma rev_mask m s : size m = size s -> rev (mask m s) = mask (rev m) (rev s).
Proof.
move: m s; apply: seq_ind2 => //= b x m s eq_size_sm IH.
by case: b; rewrite !rev_cons mask_rcons ?IH ?size_rev// (cats1, cats0).
Qed.
Lemma mask_rot m s : size m = size s ->
mask (rot n0 m) (rot n0 s) = rot (count id (take n0 m)) (mask m s).
Proof.
move=> Ems; rewrite mask_cat ?size_drop ?Ems // -rot_size_cat.
by rewrite size_mask -?mask_cat ?size_take ?Ems // !cat_take_drop.
Qed.
Lemma resize_mask m s : {m1 | size m1 = size s & mask m s = mask m1 s}.
Proof.
exists (take (size s) m ++ nseq (size s - size m) false).
by elim: s m => [|x s IHs] [|b m] //=; rewrite (size_nseq, IHs).
by elim: s m => [|x s IHs] [|b m] //=; rewrite (mask_false, IHs).
Qed.
Lemma takeEmask i s : take i s = mask (nseq i true) s.
Proof. by elim: i s => [s|i IHi []// ? ?]; rewrite ?take0 //= IHi. Qed.
Lemma dropEmask i s :
drop i s = mask (nseq i false ++ nseq (size s - i) true) s.
Proof. by elim: i s => [s|? ? []//]; rewrite drop0/= mask_true// subn0. Qed.
End Mask.
Arguments mask _ !_ !_.
Section EqMask.
Variables (n0 : nat) (T : eqType).
Implicit Types (s : seq T) (m : bitseq).
Lemma mem_mask_cons x b m y s :
(x \in mask (b :: m) (y :: s)) = b && (x == y) || (x \in mask m s).
Proof. by case: b. Qed.
Lemma mem_mask x m s : x \in mask m s -> x \in s.
Proof. by rewrite -!has_pred1 => /has_mask. Qed.
Lemma in_mask x m s :
uniq s -> x \in mask m s = (x \in s) && nth false m (index x s).
Proof.
elim: s m => [|y s IHs] [|[] m]//= /andP[yNs ?]; rewrite ?in_cons ?IHs //=;
by have [->|neq_xy] //= := eqVneq; rewrite ?andbF // (negPf yNs).
Qed.
Lemma mask_uniq s : uniq s -> forall m, uniq (mask m s).
Proof.
elim: s => [|x s IHs] Uxs [|b m] //=.
case: b Uxs => //= /andP[s'x Us]; rewrite {}IHs // andbT.
by apply: contra s'x; apply: mem_mask.
Qed.
Lemma mem_mask_rot m s :
size m = size s -> mask (rot n0 m) (rot n0 s) =i mask m s.
Proof. by move=> Ems x; rewrite mask_rot // mem_rot. Qed.
End EqMask.
Section Subseq.
Variable T : eqType.
Implicit Type s : seq T.
Fixpoint subseq s1 s2 :=
if s2 is y :: s2' then
if s1 is x :: s1' then subseq (if x == y then s1' else s1) s2' else true
else s1 == [::].
Lemma sub0seq s : subseq [::] s. Proof. by case: s. Qed.
Lemma subseq0 s : subseq s [::] = (s == [::]). Proof. by []. Qed.
Lemma subseq_refl s : subseq s s.
Proof. by elim: s => //= x s IHs; rewrite eqxx. Qed.
Hint Resolve subseq_refl : core.
Lemma subseqP s1 s2 :
reflect (exists2 m, size m = size s2 & s1 = mask m s2) (subseq s1 s2).
Proof.
elim: s2 s1 => [|y s2 IHs2] [|x s1].
- by left; exists [::].
- by right=> -[m /eqP/nilP->].
- by left; exists (nseq (size s2).+1 false); rewrite ?size_nseq //= mask_false.
apply: {IHs2}(iffP (IHs2 _)) => [] [m sz_m def_s1].
by exists ((x == y) :: m); rewrite /= ?sz_m // -def_s1; case: eqP => // ->.
case: eqP => [_ | ne_xy]; last first.
by case: m def_s1 sz_m => [|[] m] //; [case | move=> -> [<-]; exists m].
pose i := index true m; have def_m_i: take i m = nseq (size (take i m)) false.
apply/all_pred1P; apply/(all_nthP true) => j.
rewrite size_take ltnNge geq_min negb_or -ltnNge => /andP[lt_j_i _].
rewrite nth_take //= -negb_add addbF -addbT -negb_eqb.
by rewrite [_ == _](before_find _ lt_j_i).
have lt_i_m: i < size m.
rewrite ltnNge; apply/negP=> le_m_i; rewrite take_oversize // in def_m_i.
by rewrite def_m_i mask_false in def_s1.
rewrite size_take lt_i_m in def_m_i.
exists (take i m ++ drop i.+1 m).
rewrite size_cat size_take size_drop lt_i_m.
by rewrite sz_m in lt_i_m *; rewrite subnKC.
rewrite {s1 def_s1}[s1](congr1 behead def_s1).
rewrite -[s2](cat_take_drop i) -[m in LHS](cat_take_drop i) {}def_m_i -cat_cons.
have sz_i_s2: size (take i s2) = i by apply: size_takel; rewrite sz_m in lt_i_m.
rewrite lastI cat_rcons !mask_cat ?size_nseq ?size_belast ?mask_false //=.
by rewrite (drop_nth true) // nth_index -?index_mem.
Qed.
Lemma mask_subseq m s : subseq (mask m s) s.
Proof. by apply/subseqP; have [m1] := resize_mask m s; exists m1. Qed.
Lemma subseq_trans : transitive subseq.
Proof.
move=> _ _ s /subseqP[m2 _ ->] /subseqP[m1 _ ->].
elim: s => [|x s IHs] in m2 m1 *; first by rewrite !mask0.
case: m1 => [|[] m1]; first by rewrite mask0.
case: m2 => [|[] m2] //; first by rewrite /= eqxx IHs.
case/subseqP: (IHs m2 m1) => m sz_m def_s; apply/subseqP.
by exists (false :: m); rewrite //= sz_m.
case/subseqP: (IHs m2 m1) => m sz_m def_s; apply/subseqP.
by exists (false :: m); rewrite //= sz_m.
Qed.
Lemma cat_subseq s1 s2 s3 s4 :
subseq s1 s3 -> subseq s2 s4 -> subseq (s1 ++ s2) (s3 ++ s4).
Proof.
case/subseqP=> m1 sz_m1 -> /subseqP [m2 sz_m2 ->]; apply/subseqP.
by exists (m1 ++ m2); rewrite ?size_cat ?mask_cat ?sz_m1 ?sz_m2.
Qed.
Lemma prefix_subseq s1 s2 : subseq s1 (s1 ++ s2).
Proof. by rewrite -[s1 in subseq s1]cats0 cat_subseq ?sub0seq. Qed.
Lemma suffix_subseq s1 s2 : subseq s2 (s1 ++ s2).
Proof. exact: cat_subseq (sub0seq s1) _. Qed.
Lemma take_subseq s i : subseq (take i s) s.
Proof. by rewrite -[s in X in subseq _ X](cat_take_drop i) prefix_subseq. Qed.
Lemma drop_subseq s i : subseq (drop i s) s.
Proof. by rewrite -[s in X in subseq _ X](cat_take_drop i) suffix_subseq. Qed.
Lemma mem_subseq s1 s2 : subseq s1 s2 -> {subset s1 <= s2}.
Proof. by case/subseqP=> m _ -> x; apply: mem_mask. Qed.
Lemma sub1seq x s : subseq [:: x] s = (x \in s).
Proof. by elim: s => //= y s /[1!inE]; case: ifP; rewrite ?sub0seq. Qed.
Lemma size_subseq s1 s2 : subseq s1 s2 -> size s1 <= size s2.
Proof. by case/subseqP=> m sz_m ->; rewrite size_mask -sz_m ?count_size. Qed.
Lemma size_subseq_leqif s1 s2 :
subseq s1 s2 -> size s1 <= size s2 ?= iff (s1 == s2).
Proof.
move=> sub12; split; first exact: size_subseq.
apply/idP/eqP=> [|-> //]; case/subseqP: sub12 => m sz_m ->{s1}.
rewrite size_mask -sz_m // -all_count -(eq_all eqb_id).
by move/(@all_pred1P _ true)->; rewrite sz_m mask_true.
Qed.
Lemma subseq_anti : antisymmetric subseq.
Proof.
move=> s1 s2 /andP[] /size_subseq_leqif /leqifP.
by case: eqP => [//|_] + /size_subseq; rewrite ltnNge => /negP.
Qed.
Lemma subseq_cons s x : subseq s (x :: s).
Proof. exact: suffix_subseq [:: x] s. Qed.
Lemma cons_subseq s1 s2 x : subseq (x :: s1) s2 -> subseq s1 s2.
Proof. exact/subseq_trans/subseq_cons. Qed.
Lemma subseq_rcons s x : subseq s (rcons s x).
Proof. by rewrite -cats1 prefix_subseq. Qed.
Lemma subseq_uniq s1 s2 : subseq s1 s2 -> uniq s2 -> uniq s1.
Proof. by case/subseqP=> m _ -> Us2; apply: mask_uniq. Qed.
Lemma take_uniq s n : uniq s -> uniq (take n s).
Proof. exact/subseq_uniq/take_subseq. Qed.
Lemma drop_uniq s n : uniq s -> uniq (drop n s).
Proof. exact/subseq_uniq/drop_subseq. Qed.
Lemma undup_subseq s : subseq (undup s) s.
Proof.
elim: s => //= x s; case: (_ \in _); last by rewrite eqxx.
by case: (undup s) => //= y u; case: (_ == _) => //=; apply: cons_subseq.
Qed.
Lemma subseq_rev s1 s2 : subseq (rev s1) (rev s2) = subseq s1 s2.
Proof.
wlog suff W : s1 s2 / subseq s1 s2 -> subseq (rev s1) (rev s2).
by apply/idP/idP => /W //; rewrite !revK.
by case/subseqP => m size_m ->; rewrite rev_mask // mask_subseq.
Qed.
Lemma subseq_cat2l s s1 s2 : subseq (s ++ s1) (s ++ s2) = subseq s1 s2.
Proof. by elim: s => // x s IHs; rewrite !cat_cons /= eqxx. Qed.
Lemma subseq_cat2r s s1 s2 : subseq (s1 ++ s) (s2 ++ s) = subseq s1 s2.
Proof. by rewrite -subseq_rev !rev_cat subseq_cat2l subseq_rev. Qed.
Lemma subseq_rot p s n :
subseq p s -> exists2 k, k <= n & subseq (rot k p) (rot n s).
Proof.
move=> /subseqP[m size_m ->].
exists (count id (take n m)); last by rewrite -mask_rot // mask_subseq.
by rewrite (leq_trans (count_size _ _))// size_take_min geq_minl.
Qed.
End Subseq.
Prenex Implicits subseq.
Arguments subseqP {T s1 s2}.
#[global] Hint Resolve subseq_refl : core.
Section Rem.
Variables (T : eqType) (x : T).
Fixpoint rem s := if s is y :: t then (if y == x then t else y :: rem t) else s.
Lemma rem_cons y s : rem (y :: s) = if y == x then s else y :: rem s.
Proof. by []. Qed.
Lemma remE s : rem s = take (index x s) s ++ drop (index x s).+1 s.
Proof. by elim: s => //= y s ->; case: eqVneq; rewrite ?drop0. Qed.
Lemma rem_id s : x \notin s -> rem s = s.
Proof. by elim: s => //= y s IHs /norP[neq_yx /IHs->]; case: eqVneq neq_yx. Qed.
Lemma perm_to_rem s : x \in s -> perm_eq s (x :: rem s).
Proof.
move=> xs; rewrite remE -[X in perm_eq X](cat_take_drop (index x s)).
by rewrite drop_index// -cat1s perm_catCA cat1s.
Qed.
Lemma size_rem s : x \in s -> size (rem s) = (size s).-1.
Proof. by move/perm_to_rem/perm_size->. Qed.
Lemma rem_subseq s : subseq (rem s) s.
Proof.
elim: s => //= y s IHs; rewrite eq_sym.
by case: ifP => _; [apply: subseq_cons | rewrite eqxx].
Qed.
Lemma rem_uniq s : uniq s -> uniq (rem s).
Proof. by apply: subseq_uniq; apply: rem_subseq. Qed.
Lemma mem_rem s : {subset rem s <= s}.
Proof. exact: mem_subseq (rem_subseq s). Qed.
Lemma rem_mem y s : y != x -> y \in s -> y \in rem s.
Proof.
move=> yx; elim: s => [//|z s IHs] /=.
rewrite inE => /orP[/eqP<-|ys]; first by rewrite (negbTE yx) inE eqxx.
by case: ifP => _ //; rewrite inE IHs ?orbT.
Qed.
Lemma rem_filter s : uniq s -> rem s = filter (predC1 x) s.
Proof.
elim: s => //= y s IHs /andP[not_s_y /IHs->].
by case: eqP => //= <-; apply/esym/all_filterP; rewrite all_predC has_pred1.
Qed.
Lemma mem_rem_uniq s : uniq s -> rem s =i [predD1 s & x].
Proof. by move/rem_filter=> -> y; rewrite mem_filter. Qed.
Lemma mem_rem_uniqF s : uniq s -> x \in rem s = false.
Proof. by move/mem_rem_uniq->; rewrite inE eqxx. Qed.
Lemma count_rem P s : count P (rem s) = count P s - (x \in s) && P x.
Proof.
have [/perm_to_rem/permP->|xNs]/= := boolP (x \in s); first by rewrite addKn.
by rewrite subn0 rem_id.
Qed.
Lemma count_mem_rem y s : count_mem y (rem s) = count_mem y s - (x == y).
Proof.
rewrite count_rem; have []//= := boolP (x \in s).
by case: eqP => // <- /count_memPn->.
Qed.
End Rem.
Section Map.
Variables (n0 : nat) (T1 : Type) (x1 : T1).
Variables (T2 : Type) (x2 : T2) (f : T1 -> T2).
Fixpoint map s := if s is x :: s' then f x :: map s' else [::].
Lemma map_cons x s : map (x :: s) = f x :: map s.
Proof. by []. Qed.
Lemma map_nseq x : map (nseq n0 x) = nseq n0 (f x).
Proof. by elim: n0 => // *; congr (_ :: _). Qed.
Lemma map_cat s1 s2 : map (s1 ++ s2) = map s1 ++ map s2.
Proof. by elim: s1 => [|x s1 IHs] //=; rewrite IHs. Qed.
Lemma size_map s : size (map s) = size s.
Proof. by elim: s => //= x s ->. Qed.
Lemma behead_map s : behead (map s) = map (behead s).
Proof. by case: s. Qed.
Lemma nth_map n s : n < size s -> nth x2 (map s) n = f (nth x1 s n).
Proof. by elim: s n => [|x s IHs] []. Qed.
Lemma map_rcons s x : map (rcons s x) = rcons (map s) (f x).
Proof. by rewrite -!cats1 map_cat. Qed.
Lemma last_map s x : last (f x) (map s) = f (last x s).
Proof. by elim: s x => /=. Qed.
Lemma belast_map s x : belast (f x) (map s) = map (belast x s).
Proof. by elim: s x => //= y s IHs x; rewrite IHs. Qed.
Lemma filter_map a s : filter a (map s) = map (filter (preim f a) s).
Proof. by elim: s => //= x s IHs; rewrite (fun_if map) /= IHs. Qed.
Lemma find_map a s : find a (map s) = find (preim f a) s.
Proof. by elim: s => //= x s ->. Qed.
Lemma has_map a s : has a (map s) = has (preim f a) s.
Proof. by elim: s => //= x s ->. Qed.
Lemma all_map a s : all a (map s) = all (preim f a) s.
Proof. by elim: s => //= x s ->. Qed.
Lemma all_mapT (a : pred T2) s : (forall x, a (f x)) -> all a (map s).
Proof. by rewrite all_map => /allT->. Qed.
Lemma count_map a s : count a (map s) = count (preim f a) s.
Proof. by elim: s => //= x s ->. Qed.
Lemma map_take s : map (take n0 s) = take n0 (map s).
Proof. by elim: n0 s => [|n IHn] [|x s] //=; rewrite IHn. Qed.
Lemma map_drop s : map (drop n0 s) = drop n0 (map s).
Proof. by elim: n0 s => [|n IHn] [|x s] //=; rewrite IHn. Qed.
Lemma map_rot s : map (rot n0 s) = rot n0 (map s).
Proof. by rewrite /rot map_cat map_take map_drop. Qed.
Lemma map_rotr s : map (rotr n0 s) = rotr n0 (map s).
Proof. by apply: canRL (rotK n0) _; rewrite -map_rot rotrK. Qed.
Lemma map_rev s : map (rev s) = rev (map s).
Proof. by elim: s => //= x s IHs; rewrite !rev_cons -!cats1 map_cat IHs. Qed.
Lemma map_mask m s : map (mask m s) = mask m (map s).
Proof. by elim: m s => [|[|] m IHm] [|x p] //=; rewrite IHm. Qed.
Lemma inj_map : injective f -> injective map.
Proof. by move=> injf; elim=> [|x s IHs] [|y t] //= [/injf-> /IHs->]. Qed.
Lemma inj_in_map (A : {pred T1}) :
{in A &, injective f} -> {in [pred s | all [in A] s] &, injective map}.
Proof.
move=> injf; elim=> [|x s IHs] [|y t] //= /andP[Ax As] /andP[Ay At].
by case=> /injf-> // /IHs->.
Qed.
End Map.
(* Sequence indexing with error. *)
Section onth.
Variable T : Type.
Implicit Types x y z : T.
Implicit Types m n : nat.
Implicit Type s : seq T.
Fixpoint onth s n {struct n} : option T :=
if s isn't x :: s then None else
if n isn't n.+1 then Some x else onth s n.
Lemma odflt_onth x0 s n : odflt x0 (onth s n) = nth x0 s n.
Proof. by elim: n s => [|? ?] []. Qed.
Lemma onthE s : onth s =1 nth None (map Some s).
Proof. by move=> n; elim: n s => [|? ?] []. Qed.
Lemma onth_nth x0 x t n : onth t n = Some x -> nth x0 t n = x.
Proof. by move=> tn; rewrite -odflt_onth tn. Qed.
Lemma onth0n n : onth [::] n = None. Proof. by case: n. Qed.
Lemma onth1P x y n : onth [:: x] n = Some y <-> n = 0 /\ x = y.
Proof. by case: n => [|[]]; split=> // -[] // _ ->. Qed.
Lemma onthTE s n : onth s n = (n < size s) :> bool.
Proof. by elim: n s => [|? ?] []. Qed.
Lemma onthNE s n: ~~ onth s n = (size s <= n).
Proof. by rewrite onthTE -leqNgt. Qed.
Lemma onth_default n s : size s <= n -> onth s n = None.
Proof. by rewrite -onthNE; case: onth. Qed.
Lemma onth_cat s1 s2 n :
onth (s1 ++ s2) n = if n < size s1 then onth s1 n else onth s2 (n - size s1).
Proof. by elim: n s1 => [|? ?] []. Qed.
Lemma onth_nseq x n m : onth (nseq n x) m = if m < n then Some x else None.
Proof. by rewrite onthE/= -nth_nseq map_nseq. Qed.
Lemma eq_onthP {s1 s2} :
[<-> s1 = s2;
forall i : nat, i < maxn (size s1) (size s2) -> onth s1 i = onth s2 i;
forall i : nat, onth s1 i = onth s2 i].
Proof.
tfae=> [->//|eqs12 i|eqs12].
have := eqs12 i; case: ltnP => [_ ->//|].
by rewrite geq_max => /andP[is1 is2] _; rewrite !onth_default.
have /eqP eq_size_12 : size s1 == size s2.
by rewrite eqn_leq -!onthNE eqs12 onthNE -eqs12 onthNE !leqnn.
apply/(inj_map Some_inj)/(@eq_from_nth _ None); rewrite !size_map//.
by move=> i _; rewrite -!onthE eqs12.
Qed.
Lemma eq_from_onth [s1 s2 : seq T] :
(forall i : nat, onth s1 i = onth s2 i) -> s1 = s2.
Proof. by move/(eq_onthP 0 2). Qed.
Lemma eq_from_onth_le [s1 s2 : seq T] :
(forall i : nat, i < maxn (size s1) (size s2) -> onth s1 i = onth s2 i) ->
s1 = s2.
Proof. by move/(eq_onthP 0 1). Qed.
End onth.
Lemma onth_map {T S} n (s : seq T) (f : T -> S) :
onth (map f s) n = omap f (onth s n).
Proof. by elim: s n => [|x s IHs] []. Qed.
Lemma inj_onth_map {T S} n (s : seq T) (f : T -> S) x :
injective f -> onth (map f s) n = Some (f x) -> onth s n = Some x.
Proof. by rewrite onth_map => /inj_omap + fs; apply. Qed.
Section onthEqType.
Variables T : eqType.
Implicit Types x y z : T.
Implicit Types i m n : nat.
Implicit Type s : seq T.
Lemma onthP s x : reflect (exists i, onth s i = Some x) (x \in s).
Proof.
elim: s => [|y s IHs]; first by constructor=> -[] [].
rewrite in_cons; case: eqVneq => [->|/= Nxy]; first by constructor; exists 0.
apply: (iffP idP) => [/IHs[i <-]|[[|i]//=]]; first by exists i.+1.
by move=> [eq_xy]; rewrite eq_xy eqxx in Nxy.
by move=> six; apply/IHs; exists i.
Qed.
Lemma onthPn s x : reflect (forall i, onth s i != Some x) (x \notin s).
Proof.
apply: (iffP idP); first by move=> /onthP + i; apply: contra_not_neq; exists i.
by move=> nsix; apply/onthP => -[n /eqP/negPn]; rewrite nsix.
Qed.
Lemma onth_inj s n m : uniq s -> minn m n < size s ->
onth s n = onth s m -> n = m.
Proof.
elim: s m n => [|x s IHs]//= [|m] [|n]//=; rewrite ?minnSS !ltnS.
- by move=> /andP[+ _] _ /eqP => /onthPn/(_ _)/negPf->.
- by move=> /andP[+ _] _ /esym /eqP => /onthPn/(_ _)/negPf->.
by move=> /andP[xNs /IHs]/[apply]/[apply]->.
Qed.
End onthEqType.
Arguments onthP {T s x}.
Arguments onthPn {T s x}.
Arguments onth_nth {T}.
Arguments onth_inj {T}.
Notation "[ 'seq' E | i <- s ]" := (map (fun i => E) s)
(i binder, format "[ '[hv' 'seq' E '/ ' | i <- s ] ']'") : seq_scope.
Notation "[ 'seq' E | i <- s & C ]" := [seq E | i <- [seq i <- s | C]]
(i binder,
format "[ '[hv' 'seq' E '/ ' | i <- s '/ ' & C ] ']'") : seq_scope.
Notation "[ 'seq' E : R | i <- s ]" := (@map _ R (fun i => E) s)
(i binder, only parsing) : seq_scope.
Notation "[ 'seq' E : R | i <- s & C ]" := [seq E : R | i <- [seq i <- s | C]]
(i binder, only parsing) : seq_scope.
Lemma filter_mask T a (s : seq T) : filter a s = mask (map a s) s.
Proof. by elim: s => //= x s <-; case: (a x). Qed.
Lemma all_sigP T a (s : seq T) : all a s -> {s' : seq (sig a) | s = map sval s'}.
Proof.
elim: s => /= [_|x s ihs /andP [ax /ihs [s' ->]]]; first by exists [::].
by exists (exist a x ax :: s').
Qed.
Section MiscMask.
Lemma leq_count_mask T (P : {pred T}) m s : count P (mask m s) <= count P s.
Proof.
by elim: s m => [|x s IHs] [|[] m]//=;
rewrite ?leq_add2l (leq_trans (IHs _)) ?leq_addl.
Qed.
Variable (T : eqType).
Implicit Types (s : seq T) (m : bitseq).
Lemma mask_filter s m : uniq s -> mask m s = [seq i <- s | i \in mask m s].
Proof.
elim: m s => [|[] m IH] [|x s /= /andP[/negP xS uS]]; rewrite ?filter_pred0 //.
rewrite inE eqxx /=; congr cons; rewrite [LHS]IH//.
by apply/eq_in_filter => ? /[1!inE]; case: eqP => [->|].
by case: ifP => [/mem_mask //|_]; apply: IH.
Qed.
Lemma leq_count_subseq P s1 s2 : subseq s1 s2 -> count P s1 <= count P s2.
Proof. by move=> /subseqP[m _ ->]; rewrite leq_count_mask. Qed.
Lemma count_maskP s1 s2 :
(forall x, count_mem x s1 <= count_mem x s2) <->
exists2 m : bitseq, size m = size s2 & perm_eq s1 (mask m s2).
Proof.
split=> [s1_le|[m _ /permP s1ms2 x]]; last by rewrite s1ms2 leq_count_mask.
suff [m mP]: exists m, perm_eq s1 (mask m s2).
by have [m' sm' eqm] := resize_mask m s2; exists m'; rewrite -?eqm.
elim: s2 => [|x s2 IHs]//= in s1 s1_le *.
by exists [::]; apply/allP => x _/=; rewrite eqn_leq s1_le.
have [y|m s1s2] := IHs (rem x s1); first by rewrite count_mem_rem leq_subLR.
exists ((x \in s1) :: m); have [|/rem_id<-//] := boolP (x \in s1).
by move/perm_to_rem/permPl->; rewrite perm_cons.
Qed.
Lemma count_subseqP s1 s2 :
(forall x, count_mem x s1 <= count_mem x s2) <->
exists2 s, subseq s s2 & perm_eq s1 s.
Proof.
split=> [/count_maskP[m _]|]; first by exists (mask m s2); rewrite ?mask_subseq.
by move=> -[_/subseqP[m sm ->] ?]; apply/count_maskP; exists m.
Qed.
End MiscMask.
Section FilterSubseq.
Variable T : eqType.
Implicit Types (s : seq T) (a : pred T).
Lemma filter_subseq a s : subseq (filter a s) s.
Proof. by apply/subseqP; exists (map a s); rewrite ?size_map ?filter_mask. Qed.
Lemma subseq_filter s1 s2 a :
subseq s1 (filter a s2) = all a s1 && subseq s1 s2.
Proof.
elim: s2 s1 => [|x s2 IHs] [|y s1] //=; rewrite ?andbF ?sub0seq //.
by case a_x: (a x); rewrite /= !IHs /=; case: eqP => // ->; rewrite a_x.
Qed.
Lemma subseq_uniqP s1 s2 :
uniq s2 -> reflect (s1 = filter [in s1] s2) (subseq s1 s2).
Proof.
move=> uniq_s2; apply: (iffP idP) => [ss12 | ->]; last exact: filter_subseq.
apply/eqP; rewrite -size_subseq_leqif ?subseq_filter ?(introT allP) //.
apply/eqP/esym/perm_size.
rewrite uniq_perm ?filter_uniq ?(subseq_uniq ss12) // => x.
by rewrite mem_filter; apply: andb_idr; apply: (mem_subseq ss12).
Qed.
Lemma uniq_subseq_pivot x (s1 s2 s3 s4 : seq T) (s := s3 ++ x :: s4) :
uniq s -> subseq (s1 ++ x :: s2) s = (subseq s1 s3 && subseq s2 s4).
Proof.
move=> uniq_s; apply/idP/idP => [sub_s'_s|/andP[? ?]]; last first.
by rewrite cat_subseq //= eqxx.
have uniq_s' := subseq_uniq sub_s'_s uniq_s.
have/eqP {sub_s'_s uniq_s} := subseq_uniqP _ uniq_s sub_s'_s.
rewrite !filter_cat /= mem_cat inE eqxx orbT /=.
rewrite uniq_eqseq_pivotl // => /andP [/eqP -> /eqP ->].
by rewrite !filter_subseq.
Qed.
Lemma perm_to_subseq s1 s2 :
subseq s1 s2 -> {s3 | perm_eq s2 (s1 ++ s3)}.
Proof.
elim Ds2: s2 s1 => [|y s2' IHs] [|x s1] //=; try by exists s2; rewrite Ds2.
case: eqP => [-> | _] /IHs[s3 perm_s2] {IHs}.
by exists s3; rewrite perm_cons.
by exists (rcons s3 y); rewrite -cat_cons -perm_rcons -!cats1 catA perm_cat2r.
Qed.
Lemma subseq_rem x : {homo rem x : s1 s2 / @subseq T s1 s2}.
Proof.
move=> s1 s2; elim: s2 s1 => [|x2 s2 IHs2] [|x1 s1]; rewrite ?sub0seq //=.
have [->|_] := eqVneq x1 x2; first by case: eqP => //= _ /IHs2; rewrite eqxx.
move=> /IHs2/subseq_trans->//.
by have [->|_] := eqVneq x x2; [apply: rem_subseq|apply: subseq_cons].
Qed.
End FilterSubseq.
Arguments subseq_uniqP [T s1 s2].
Section EqMap.
Variables (n0 : nat) (T1 : eqType) (x1 : T1).
Variables (T2 : eqType) (x2 : T2) (f : T1 -> T2).
Implicit Type s : seq T1.
Lemma map_f s x : x \in s -> f x \in map f s.
Proof.
by elim: s => //= y s IHs /predU1P[->|/IHs]; [apply: predU1l | apply: predU1r].
Qed.
Lemma mapP s y : reflect (exists2 x, x \in s & y = f x) (y \in map f s).
Proof.
elim: s => [|x s IHs]; [by right; case|rewrite /= inE].
exact: equivP (orPP eqP IHs) (iff_sym exists_cons).
Qed.
Lemma subset_mapP (s : seq T1) (s' : seq T2) :
{subset s' <= map f s} <-> exists2 t, all (mem s) t & s' = map f t.
Proof.
split => [|[r /allP/= rE ->] _ /mapP[x xr ->]]; last by rewrite map_f ?rE.
elim: s' => [|x s' IHs'] subss'; first by exists [::].
have /mapP[y ys ->] := subss' _ (mem_head _ _).
have [x' x's'|t st ->] := IHs'; first by rewrite subss'// inE x's' orbT.
by exists (y :: t); rewrite //= ys st.
Qed.
Lemma map_uniq s : uniq (map f s) -> uniq s.
Proof.
elim: s => //= x s IHs /andP[not_sfx /IHs->]; rewrite andbT.
by apply: contra not_sfx => sx; apply/mapP; exists x.
Qed.
Lemma map_inj_in_uniq s : {in s &, injective f} -> uniq (map f s) = uniq s.
Proof.
elim: s => //= x s IHs //= injf; congr (~~ _ && _).
apply/mapP/idP=> [[y sy /injf] | ]; last by exists x.
by rewrite mem_head mem_behead // => ->.
by apply: IHs => y z sy sz; apply: injf => //; apply: predU1r.
Qed.
Lemma map_subseq s1 s2 : subseq s1 s2 -> subseq (map f s1) (map f s2).
Proof.
case/subseqP=> m sz_m ->; apply/subseqP.
by exists m; rewrite ?size_map ?map_mask.
Qed.
Lemma nth_index_map s x0 x :
{in s &, injective f} -> x \in s -> nth x0 s (index (f x) (map f s)) = x.
Proof.
elim: s => //= y s IHs inj_f s_x; rewrite (inj_in_eq inj_f) ?mem_head //.
move: s_x; rewrite inE; have [-> // | _] := eqVneq; apply: IHs.
by apply: sub_in2 inj_f => z; apply: predU1r.
Qed.
Lemma perm_map s t : perm_eq s t -> perm_eq (map f s) (map f t).
Proof. by move/permP=> Est; apply/permP=> a; rewrite !count_map Est. Qed.
Lemma sub_map s1 s2 : {subset s1 <= s2} -> {subset map f s1 <= map f s2}.
Proof. by move=> sub_s ? /mapP[x x_s ->]; rewrite map_f ?sub_s. Qed.
Lemma eq_mem_map s1 s2 : s1 =i s2 -> map f s1 =i map f s2.
Proof. by move=> Es x; apply/idP/idP; apply: sub_map => ?; rewrite Es. Qed.
Hypothesis Hf : injective f.
Lemma mem_map s x : (f x \in map f s) = (x \in s).
Proof. by apply/mapP/idP=> [[y Hy /Hf->] //|]; exists x. Qed.
Lemma index_map s x : index (f x) (map f s) = index x s.
Proof. by rewrite /index; elim: s => //= y s IHs; rewrite (inj_eq Hf) IHs. Qed.
Lemma map_inj_uniq s : uniq (map f s) = uniq s.
Proof. by apply: map_inj_in_uniq; apply: in2W. Qed.
Lemma undup_map_inj s : undup (map f s) = map f (undup s).
Proof. by elim: s => //= s0 s ->; rewrite mem_map //; case: (_ \in _). Qed.
Lemma perm_map_inj s t : perm_eq (map f s) (map f t) -> perm_eq s t.
Proof.
move/permP=> Est; apply/allP=> x _ /=.
have Dx: pred1 x =1 preim f (pred1 (f x)) by move=> y /=; rewrite inj_eq.
by rewrite !(eq_count Dx) -!count_map Est.
Qed.
End EqMap.
Arguments mapP {T1 T2 f s y}.
Arguments subset_mapP {T1 T2}.
Lemma map_of_seq (T1 : eqType) T2 (s : seq T1) (fs : seq T2) (y0 : T2) :
{f | uniq s -> size fs = size s -> map f s = fs}.
Proof.
exists (fun x => nth y0 fs (index x s)) => uAs eq_sz.
apply/esym/(@eq_from_nth _ y0); rewrite ?size_map eq_sz // => i ltis.
by have x0 : T1 by [case: (s) ltis]; rewrite (nth_map x0) // index_uniq.
Qed.
Section MapComp.
Variable S T U : Type.
Lemma map_id (s : seq T) : map id s = s.
Proof. by elim: s => //= x s ->. Qed.
Lemma eq_map (f g : S -> T) : f =1 g -> map f =1 map g.
Proof. by move=> Ef; elim=> //= x s ->; rewrite Ef. Qed.
Lemma map_comp (f : T -> U) (g : S -> T) s : map (f \o g) s = map f (map g s).
Proof. by elim: s => //= x s ->. Qed.
Lemma mapK (f : S -> T) (g : T -> S) : cancel f g -> cancel (map f) (map g).
Proof. by move=> fK; elim=> //= x s ->; rewrite fK. Qed.
Lemma mapK_in (A : {pred S}) (f : S -> T) (g : T -> S) :
{in A, cancel f g} -> {in [pred s | all [in A] s], cancel (map f) (map g)}.
Proof. by move=> fK; elim=> //= x s IHs /andP[/fK-> /IHs->]. Qed.
End MapComp.
Lemma eq_in_map (S : eqType) T (f g : S -> T) (s : seq S) :
{in s, f =1 g} <-> map f s = map g s.
Proof.
elim: s => //= x s IHs; split=> [/forall_cons[-> ?]|]; first by rewrite IHs.1.
by move=> -[? ?]; apply/forall_cons; split=> [//|]; apply: IHs.2.
Qed.
Lemma map_id_in (T : eqType) f (s : seq T) : {in s, f =1 id} -> map f s = s.
Proof. by move/eq_in_map->; apply: map_id. Qed.
(* Map a partial function *)
Section Pmap.
Variables (aT rT : Type) (f : aT -> option rT) (g : rT -> aT).
Fixpoint pmap s :=
if s is x :: s' then let r := pmap s' in oapp (cons^~ r) r (f x) else [::].
Lemma map_pK : pcancel g f -> cancel (map g) pmap.
Proof. by move=> gK; elim=> //= x s ->; rewrite gK. Qed.
Lemma size_pmap s : size (pmap s) = count [eta f] s.
Proof. by elim: s => //= x s <-; case: (f _). Qed.
Lemma pmapS_filter s : map some (pmap s) = map f (filter [eta f] s).
Proof. by elim: s => //= x s; case fx: (f x) => //= [u] <-; congr (_ :: _). Qed.
Hypothesis fK : ocancel f g.
Lemma pmap_filter s : map g (pmap s) = filter [eta f] s.
Proof. by elim: s => //= x s <-; rewrite -{3}(fK x); case: (f _). Qed.
Lemma pmap_cat s t : pmap (s ++ t) = pmap s ++ pmap t.
Proof. by elim: s => //= x s ->; case/f: x. Qed.
Lemma all_pmap (p : pred rT) s :
all p (pmap s) = all [pred i | oapp p true (f i)] s.
Proof. by elim: s => //= x s <-; case: f. Qed.
End Pmap.
Lemma eq_in_pmap (aT : eqType) rT (f1 f2 : aT -> option rT) s :
{in s, f1 =1 f2} -> pmap f1 s = pmap f2 s.
Proof. by elim: s => //= a s IHs /forall_cons [-> /IHs ->]. Qed.
Lemma eq_pmap aT rT (f1 f2 : aT -> option rT) :
f1 =1 f2 -> pmap f1 =1 pmap f2.
Proof. by move=> Ef; elim => //= a s ->; rewrite Ef. Qed.
Section EqPmap.
Variables (aT rT : eqType) (f : aT -> option rT) (g : rT -> aT).
Lemma mem_pmap s u : (u \in pmap f s) = (Some u \in map f s).
Proof. by elim: s => //= x s IHs; rewrite in_cons -IHs; case: (f x). Qed.
Hypothesis fK : ocancel f g.
Lemma can2_mem_pmap : pcancel g f -> forall s u, (u \in pmap f s) = (g u \in s).
Proof.
by move=> gK s u; rewrite -(mem_map (pcan_inj gK)) pmap_filter // mem_filter gK.
Qed.
Lemma pmap_uniq s : uniq s -> uniq (pmap f s).
Proof. move/(filter_uniq f); rewrite -(pmap_filter fK); exact: map_uniq. Qed.
Lemma perm_pmap s t : perm_eq s t -> perm_eq (pmap f s) (pmap f t).
Proof.
move=> eq_st; apply/(perm_map_inj Some_inj); rewrite !pmapS_filter.
exact/perm_map/perm_filter.
Qed.
End EqPmap.
Section PmapSub.
Variables (T : Type) (p : pred T) (sT : subType p).
Lemma size_pmap_sub s : size (pmap (insub : T -> option sT) s) = count p s.
Proof. by rewrite size_pmap (eq_count (isSome_insub _)). Qed.
End PmapSub.
Section EqPmapSub.
Variables (T : eqType) (p : pred T) (sT : subEqType p).
Let insT : T -> option sT := insub.
Lemma mem_pmap_sub s u : (u \in pmap insT s) = (val u \in s).
Proof. exact/(can2_mem_pmap (insubK _))/valK. Qed.
Lemma pmap_sub_uniq s : uniq s -> uniq (pmap insT s).
Proof. exact: (pmap_uniq (insubK _)). Qed.
End EqPmapSub.
(* Index sequence *)
Fixpoint iota m n := if n is n'.+1 then m :: iota m.+1 n' else [::].
Lemma size_iota m n : size (iota m n) = n.
Proof. by elim: n m => //= n IHn m; rewrite IHn. Qed.
Lemma iotaD m n1 n2 : iota m (n1 + n2) = iota m n1 ++ iota (m + n1) n2.
Proof. by elim: n1 m => [|n1 IHn1] m; rewrite ?addn0 // -addSnnS /= -IHn1. Qed.
Lemma iotaDl m1 m2 n : iota (m1 + m2) n = map (addn m1) (iota m2 n).
Proof. by elim: n m2 => //= n IHn m2; rewrite -addnS IHn. Qed.
Lemma nth_iota p m n i : i < n -> nth p (iota m n) i = m + i.
Proof.
by move/subnKC <-; rewrite addSnnS iotaD nth_cat size_iota ltnn subnn.
Qed.
Lemma mem_iota m n i : (i \in iota m n) = (m <= i < m + n).
Proof.
elim: n m => [|n IHn] /= m; first by rewrite addn0 ltnNge andbN.
by rewrite in_cons IHn addnS ltnS; case: ltngtP => // ->; rewrite leq_addr.
Qed.
Lemma iota_uniq m n : uniq (iota m n).
Proof. by elim: n m => //= n IHn m; rewrite mem_iota ltnn /=. Qed.
Lemma take_iota k m n : take k (iota m n) = iota m (minn k n).
Proof.
have [lt_k_n|le_n_k] := ltnP.
by elim: k n lt_k_n m => [|k IHk] [|n] //= H m; rewrite IHk.
by apply: take_oversize; rewrite size_iota.
Qed.
Lemma drop_iota k m n : drop k (iota m n) = iota (m + k) (n - k).
Proof.
by elim: k m n => [|k IHk] m [|n] //=; rewrite ?addn0 // IHk addnS subSS.
Qed.
Lemma filter_iota_ltn m n j : j <= n ->
[seq i <- iota m n | i < m + j] = iota m j.
Proof.
elim: n m j => [m j|n IHn m [|j] jlen]; first by rewrite leqn0 => /eqP ->.
rewrite (@eq_in_filter _ _ pred0) ?filter_pred0// => i.
by rewrite addn0 ltnNge mem_iota => /andP[->].
by rewrite /= addnS leq_addr -addSn IHn.
Qed.
Lemma filter_iota_leq n m j : j < n ->
[seq i <- iota m n | i <= m + j] = iota m j.+1.
Proof.
elim: n m j => [//|n IHn] m [|j] jlen /=; rewrite leq_addr.
rewrite (@eq_in_filter _ _ pred0) ?filter_pred0// => i.
by rewrite addn0 leqNgt mem_iota => /andP[->].
by rewrite addnS -addSn IHn -1?ltnS.
Qed.
(* Making a sequence of a specific length, using indexes to compute items. *)
Section MakeSeq.
Variables (T : Type) (x0 : T).
Definition mkseq f n : seq T := map f (iota 0 n).
Lemma size_mkseq f n : size (mkseq f n) = n.
Proof. by rewrite size_map size_iota. Qed.
Lemma mkseqS f n :
mkseq f n.+1 = rcons (mkseq f n) (f n).
Proof. by rewrite /mkseq -addn1 iotaD add0n map_cat cats1. Qed.
Lemma eq_mkseq f g : f =1 g -> mkseq f =1 mkseq g.
Proof. by move=> Efg n; apply: eq_map Efg _. Qed.
Lemma nth_mkseq f n i : i < n -> nth x0 (mkseq f n) i = f i.
Proof. by move=> Hi; rewrite (nth_map 0) ?nth_iota ?size_iota. Qed.
Lemma mkseq_nth s : mkseq (nth x0 s) (size s) = s.
Proof.
by apply: (@eq_from_nth _ x0); rewrite size_mkseq // => i Hi; rewrite nth_mkseq.
Qed.
Variant mkseq_spec s : seq T -> Type :=
| MapIota n f : s = mkseq f n -> mkseq_spec s (mkseq f n).
Lemma mkseqP s : mkseq_spec s s.
Proof. by rewrite -[s]mkseq_nth; constructor. Qed.
Lemma map_nth_iota0 s i :
i <= size s -> [seq nth x0 s j | j <- iota 0 i] = take i s.
Proof.
by move=> ile; rewrite -[s in RHS]mkseq_nth -map_take take_iota (minn_idPl _).
Qed.
Lemma map_nth_iota s i j : j <= size s - i ->
[seq nth x0 s k | k <- iota i j] = take j (drop i s).
Proof.
elim: i => [|i IH] in s j *; first by rewrite subn0 drop0 => /map_nth_iota0->.
case: s => [|x s /IH<-]; first by rewrite leqn0 => /eqP->.
by rewrite -add1n iotaDl -map_comp.
Qed.
End MakeSeq.
Section MakeEqSeq.
Variable T : eqType.
Lemma mkseq_uniqP (f : nat -> T) n :
reflect {in gtn n &, injective f} (uniq (mkseq f n)).
Proof.
apply: (equivP (uniqP (f 0))); rewrite size_mkseq.
by split=> injf i j lti ltj; have:= injf i j lti ltj; rewrite !nth_mkseq.
Qed.
Lemma mkseq_uniq (f : nat -> T) n : injective f -> uniq (mkseq f n).
Proof. by move/map_inj_uniq->; apply: iota_uniq. Qed.
Lemma perm_iotaP {s t : seq T} x0 (It := iota 0 (size t)) :
reflect (exists2 Is, perm_eq Is It & s = map (nth x0 t) Is) (perm_eq s t).
Proof.
apply: (iffP idP) => [Est | [Is eqIst ->]]; last first.
by rewrite -{2}[t](mkseq_nth x0) perm_map.
elim: t => [|x t IHt] in s It Est *.
by rewrite (perm_small_eq _ Est) //; exists [::].
have /rot_to[k s1 Ds]: x \in s by rewrite (perm_mem Est) mem_head.
have [|Is1 eqIst1 Ds1] := IHt s1; first by rewrite -(perm_cons x) -Ds perm_rot.
exists (rotr k (0 :: map succn Is1)).
by rewrite perm_rot /It /= perm_cons (iotaDl 1) perm_map.
by rewrite map_rotr /= -map_comp -(@eq_map _ _ (nth x0 t)) // -Ds1 -Ds rotK.
Qed.
End MakeEqSeq.
Arguments perm_iotaP {T s t}.
Section FoldRight.
Variables (T : Type) (R : Type) (f : T -> R -> R) (z0 : R).
Fixpoint foldr s := if s is x :: s' then f x (foldr s') else z0.
End FoldRight.
Section FoldRightComp.
Variables (T1 T2 : Type) (h : T1 -> T2).
Variables (R : Type) (f : T2 -> R -> R) (z0 : R).
Lemma foldr_cat s1 s2 : foldr f z0 (s1 ++ s2) = foldr f (foldr f z0 s2) s1.
Proof. by elim: s1 => //= x s1 ->. Qed.
Lemma foldr_rcons s x : foldr f z0 (rcons s x) = foldr f (f x z0) s.
Proof. by rewrite -cats1 foldr_cat. Qed.
Lemma foldr_map s : foldr f z0 (map h s) = foldr (fun x z => f (h x) z) z0 s.
Proof. by elim: s => //= x s ->. Qed.
End FoldRightComp.
(* Quick characterization of the null sequence. *)
Definition sumn := foldr addn 0.
Lemma sumn_ncons x n s : sumn (ncons n x s) = x * n + sumn s.
Proof. by rewrite mulnC; elim: n => //= n ->; rewrite addnA. Qed.
Lemma sumn_nseq x n : sumn (nseq n x) = x * n.
Proof. by rewrite sumn_ncons addn0. Qed.
Lemma sumn_cat s1 s2 : sumn (s1 ++ s2) = sumn s1 + sumn s2.
Proof. by elim: s1 => //= x s1 ->; rewrite addnA. Qed.
Lemma sumn_count T (a : pred T) s : sumn [seq a i : nat | i <- s] = count a s.
Proof. by elim: s => //= s0 s /= ->. Qed.
Lemma sumn_rcons s n : sumn (rcons s n) = sumn s + n.
Proof. by rewrite -cats1 sumn_cat /= addn0. Qed.
Lemma perm_sumn s1 s2 : perm_eq s1 s2 -> sumn s1 = sumn s2.
Proof.
by apply/catCA_perm_subst: s1 s2 => s1 s2 s3; rewrite !sumn_cat addnCA.
Qed.
Lemma sumn_rot s n : sumn (rot n s) = sumn s.
Proof. by apply/perm_sumn; rewrite perm_rot. Qed.
Lemma sumn_rev s : sumn (rev s) = sumn s.
Proof. by apply/perm_sumn; rewrite perm_rev. Qed.
Lemma natnseq0P s : reflect (s = nseq (size s) 0) (sumn s == 0).
Proof.
apply: (iffP idP) => [|->]; last by rewrite sumn_nseq.
by elim: s => //= x s IHs; rewrite addn_eq0 => /andP[/eqP-> /IHs <-].
Qed.
Lemma sumn_set_nth s x0 n x :
sumn (set_nth x0 s n x) =
sumn s + x - (nth x0 s n) * (n < size s) + x0 * (n - size s).
Proof.
rewrite set_nthE; case: ltnP => [nlts|nges]; last first.
by rewrite sumn_cat sumn_ncons /= addn0 muln0 subn0 addnAC addnA.
have -> : n - size s = 0 by apply/eqP; rewrite subn_eq0 ltnW.
rewrite -[in sumn s](cat_take_drop n s) [drop n s](drop_nth x0)//.
by rewrite !sumn_cat /= muln1 muln0 addn0 addnAC !addnA [in RHS]addnAC addnK.
Qed.
Lemma sumn_set_nth_ltn s x0 n x : n < size s ->
sumn (set_nth x0 s n x) = sumn s + x - nth x0 s n.
Proof.
move=> nlts; rewrite sumn_set_nth nlts muln1.
have -> : n - size s = 0 by apply/eqP; rewrite subn_eq0 ltnW.
by rewrite muln0 addn0.
Qed.
Lemma sumn_set_nth0 s n x : sumn (set_nth 0 s n x) = sumn s + x - nth 0 s n.
Proof.
rewrite sumn_set_nth mul0n addn0.
by case: ltnP => [_|nges]; rewrite ?muln1// nth_default.
Qed.
Section FoldLeft.
Variables (T R : Type) (f : R -> T -> R).
Fixpoint foldl z s := if s is x :: s' then foldl (f z x) s' else z.
Lemma foldl_rev z s : foldl z (rev s) = foldr (fun x z => f z x) z s.
Proof.
by elim/last_ind: s z => // s x IHs z; rewrite rev_rcons -cats1 foldr_cat -IHs.
Qed.
Lemma foldl_cat z s1 s2 : foldl z (s1 ++ s2) = foldl (foldl z s1) s2.
Proof.
by rewrite -(revK (s1 ++ s2)) foldl_rev rev_cat foldr_cat -!foldl_rev !revK.
Qed.
Lemma foldl_rcons z s x : foldl z (rcons s x) = f (foldl z s) x.
Proof. by rewrite -cats1 foldl_cat. Qed.
End FoldLeft.
Section Folds.
Variables (T : Type) (f : T -> T -> T).
Hypotheses (fA : associative f) (fC : commutative f).
Lemma foldl_foldr x0 l : foldl f x0 l = foldr f x0 l.
Proof.
elim: l x0 => [//|x1 l IHl] x0 /=; rewrite {}IHl.
by elim: l x0 x1 => [//|x2 l IHl] x0 x1 /=; rewrite IHl !fA [f x2 x1]fC.
Qed.
End Folds.
Section Scan.
Variables (T1 : Type) (x1 : T1) (T2 : Type) (x2 : T2).
Variables (f : T1 -> T1 -> T2) (g : T1 -> T2 -> T1).
Fixpoint pairmap x s := if s is y :: s' then f x y :: pairmap y s' else [::].
Lemma size_pairmap x s : size (pairmap x s) = size s.
Proof. by elim: s x => //= y s IHs x; rewrite IHs. Qed.
Lemma pairmap_cat x s1 s2 :
pairmap x (s1 ++ s2) = pairmap x s1 ++ pairmap (last x s1) s2.
Proof. by elim: s1 x => //= y s1 IHs1 x; rewrite IHs1. Qed.
Lemma nth_pairmap s n : n < size s ->
forall x, nth x2 (pairmap x s) n = f (nth x1 (x :: s) n) (nth x1 s n).
Proof. by elim: s n => [|y s IHs] [|n] //= Hn x; apply: IHs. Qed.
Fixpoint scanl x s :=
if s is y :: s' then let x' := g x y in x' :: scanl x' s' else [::].
Lemma size_scanl x s : size (scanl x s) = size s.
Proof. by elim: s x => //= y s IHs x; rewrite IHs. Qed.
Lemma scanl_cat x s1 s2 :
scanl x (s1 ++ s2) = scanl x s1 ++ scanl (foldl g x s1) s2.
Proof. by elim: s1 x => //= y s1 IHs1 x; rewrite IHs1. Qed.
Lemma scanl_rcons x s1 y :
scanl x (rcons s1 y) = rcons (scanl x s1) (foldl g x (rcons s1 y)).
Proof. by rewrite -!cats1 scanl_cat foldl_cat. Qed.
Lemma nth_cons_scanl s n : n <= size s ->
forall x, nth x1 (x :: scanl x s) n = foldl g x (take n s).
Proof. by elim: s n => [|y s IHs] [|n] Hn x //=; rewrite IHs. Qed.
Lemma nth_scanl s n : n < size s ->
forall x, nth x1 (scanl x s) n = foldl g x (take n.+1 s).
Proof. by move=> n_lt x; rewrite -nth_cons_scanl. Qed.
Lemma scanlK :
(forall x, cancel (g x) (f x)) -> forall x, cancel (scanl x) (pairmap x).
Proof. by move=> Hfg x s; elim: s x => //= y s IHs x; rewrite Hfg IHs. Qed.
Lemma pairmapK :
(forall x, cancel (f x) (g x)) -> forall x, cancel (pairmap x) (scanl x).
Proof. by move=> Hgf x s; elim: s x => //= y s IHs x; rewrite Hgf IHs. Qed.
End Scan.
Prenex Implicits mask map pmap foldr foldl scanl pairmap.
Section Zip.
Variables (S T : Type) (r : S -> T -> bool).
Fixpoint zip (s : seq S) (t : seq T) {struct t} :=
match s, t with
| x :: s', y :: t' => (x, y) :: zip s' t'
| _, _ => [::]
end.
Definition unzip1 := map (@fst S T).
Definition unzip2 := map (@snd S T).
Fixpoint all2 s t :=
match s, t with
| [::], [::] => true
| x :: s, y :: t => r x y && all2 s t
| _, _ => false
end.
Lemma zip_unzip s : zip (unzip1 s) (unzip2 s) = s.
Proof. by elim: s => [|[x y] s /= ->]. Qed.
Lemma unzip1_zip s t : size s <= size t -> unzip1 (zip s t) = s.
Proof. by elim: s t => [|x s IHs] [|y t] //= le_s_t; rewrite IHs. Qed.
Lemma unzip2_zip s t : size t <= size s -> unzip2 (zip s t) = t.
Proof. by elim: s t => [|x s IHs] [|y t] //= le_t_s; rewrite IHs. Qed.
Lemma size1_zip s t : size s <= size t -> size (zip s t) = size s.
Proof. by elim: s t => [|x s IHs] [|y t] //= Hs; rewrite IHs. Qed.
Lemma size2_zip s t : size t <= size s -> size (zip s t) = size t.
Proof. by elim: s t => [|x s IHs] [|y t] //= Hs; rewrite IHs. Qed.
Lemma size_zip s t : size (zip s t) = minn (size s) (size t).
Proof. by elim: s t => [|x s IHs] [|t2 t] //=; rewrite IHs minnSS. Qed.
Lemma zip_cat s1 s2 t1 t2 :
size s1 = size t1 -> zip (s1 ++ s2) (t1 ++ t2) = zip s1 t1 ++ zip s2 t2.
Proof. by move: s1 t1; apply: seq_ind2 => //= x y s1 t1 _ ->. Qed.
Lemma nth_zip x y s t i :
size s = size t -> nth (x, y) (zip s t) i = (nth x s i, nth y t i).
Proof. by elim: i s t => [|i IHi] [|y1 s1] [|y2 t] //= [/IHi->]. Qed.
Lemma nth_zip_cond p s t i :
nth p (zip s t) i
= (if i < size (zip s t) then (nth p.1 s i, nth p.2 t i) else p).
Proof.
rewrite size_zip ltnNge geq_min.
by elim: s t i => [|x s IHs] [|y t] [|i] //=; rewrite ?orbT -?IHs.
Qed.
Lemma zip_rcons s t x y :
size s = size t -> zip (rcons s x) (rcons t y) = rcons (zip s t) (x, y).
Proof. by move=> eq_sz; rewrite -!cats1 zip_cat //= eq_sz. Qed.
Lemma rev_zip s t : size s = size t -> rev (zip s t) = zip (rev s) (rev t).
Proof.
move: s t; apply: seq_ind2 => //= x y s t eq_sz IHs.
by rewrite !rev_cons IHs zip_rcons ?size_rev.
Qed.
Lemma all2E s t :
all2 s t = (size s == size t) && all [pred xy | r xy.1 xy.2] (zip s t).
Proof. by elim: s t => [|x s IHs] [|y t] //=; rewrite IHs andbCA. Qed.
Lemma zip_map I f g (s : seq I) :
zip (map f s) (map g s) = [seq (f i, g i) | i <- s].
Proof. by elim: s => //= i s ->. Qed.
Lemma unzip1_map_nth_zip x y s t l :
size s = size t ->
unzip1 [seq nth (x, y) (zip s t) i | i <- l] = [seq nth x s i | i <- l].
Proof. by move=> st; elim: l => [//=|n l IH /=]; rewrite nth_zip ?IH ?st. Qed.
Lemma unzip2_map_nth_zip x y s t l :
size s = size t ->
unzip2 [seq nth (x, y) (zip s t) i | i <- l] = [seq nth y t i | i <- l].
Proof. by move=> st; elim: l => [//=|n l IH /=]; rewrite nth_zip ?IH ?st. Qed.
End Zip.
Lemma zip_uniql (S T : eqType) (s : seq S) (t : seq T) :
uniq s -> uniq (zip s t).
Proof.
case: s t => [|s0 s] [|t0 t] //; apply: contraTT => /(uniqPn (s0, t0)) [i [j]].
case=> o z; rewrite !nth_zip_cond !ifT ?js ?(ltn_trans o)// => -[n _].
by apply/(uniqPn s0); exists i, j; rewrite o n (leq_trans z) ?size_zip?geq_minl.
Qed.
Lemma zip_uniqr (S T : eqType) (s : seq S) (t : seq T) :
uniq t -> uniq (zip s t).
Proof.
case: s t => [|s0 s] [|t0 t] //; apply: contraTT => /(uniqPn (s0, t0)) [i [j]].
case=> o z; rewrite !nth_zip_cond !ifT ?js ?(ltn_trans o)// => -[_ n].
by apply/(uniqPn t0); exists i, j; rewrite o n (leq_trans z) ?size_zip?geq_minr.
Qed.
Lemma perm_zip_sym (S T : eqType) (s1 s2 : seq S) (t1 t2 : seq T) :
perm_eq (zip s1 t1) (zip s2 t2) -> perm_eq (zip t1 s1) (zip t2 s2).
Proof.
have swap t s : zip t s = map (fun u => (u.2, u.1)) (zip s t).
by elim: s t => [|x s +] [|y t]//= => ->.
by rewrite [zip t1 s1]swap [zip t2 s2]swap; apply: perm_map.
Qed.
Lemma perm_zip1 {S T : eqType} (t1 t2 : seq T) (s1 s2 : seq S):
size s1 = size t1 -> size s2 = size t2 ->
perm_eq (zip s1 t1) (zip s2 t2) -> perm_eq s1 s2.
Proof.
wlog [x y] : s1 s2 t1 t2 / (S * T)%type => [hwlog|].
case: s2 t2 => [|x s2] [|y t2] //; last exact: hwlog.
by case: s1 t1 => [|u s1] [|v t1]//= _ _ /perm_nilP.
move=> eq1 eq2 /(perm_iotaP (x, y))[ns nsP /(congr1 (@unzip1 _ _))].
rewrite unzip1_zip ?unzip1_map_nth_zip -?eq1// => ->.
by apply/(perm_iotaP x); exists ns; rewrite // size_zip -eq2 minnn in nsP.
Qed.
Lemma perm_zip2 {S T : eqType} (s1 s2 : seq S) (t1 t2 : seq T) :
size s1 = size t1 -> size s2 = size t2 ->
perm_eq (zip s1 t1) (zip s2 t2) -> perm_eq t1 t2.
Proof. by move=> ? ? ?; rewrite (@perm_zip1 _ _ s1 s2) 1?perm_zip_sym. Qed.
Prenex Implicits zip unzip1 unzip2 all2.
Lemma eqseq_all (T : eqType) (s t : seq T) : (s == t) = all2 eq_op s t.
Proof. by elim: s t => [|x s +] [|y t]//= => <-. Qed.
Lemma eq_map_all I (T : eqType) (f g : I -> T) (s : seq I) :
(map f s == map g s) = all [pred xy | xy.1 == xy.2] [seq (f i, g i) | i <- s].
Proof. by rewrite eqseq_all all2E !size_map eqxx zip_map. Qed.
Section Flatten.
Variable T : Type.
Implicit Types (s : seq T) (ss : seq (seq T)).
Definition flatten := foldr cat (Nil T).
Definition shape := map (@size T).
Fixpoint reshape sh s :=
if sh is n :: sh' then take n s :: reshape sh' (drop n s) else [::].
Definition flatten_index sh r c := sumn (take r sh) + c.
Definition reshape_index sh i := find (pred1 0) (scanl subn i.+1 sh).
Definition reshape_offset sh i := i - sumn (take (reshape_index sh i) sh).
Lemma size_flatten ss : size (flatten ss) = sumn (shape ss).
Proof. by elim: ss => //= s ss <-; rewrite size_cat. Qed.
Lemma flatten_cat ss1 ss2 : flatten (ss1 ++ ss2) = flatten ss1 ++ flatten ss2.
Proof. by elim: ss1 => //= s ss1 ->; rewrite catA. Qed.
Lemma size_reshape sh s : size (reshape sh s) = size sh.
Proof. by elim: sh s => //= s0 sh IHsh s; rewrite IHsh. Qed.
Lemma nth_reshape (sh : seq nat) l n :
nth [::] (reshape sh l) n = take (nth 0 sh n) (drop (sumn (take n sh)) l).
Proof.
elim: n sh l => [| n IHn] [| sh0 sh] l; rewrite ?take0 ?drop0 //=.
by rewrite addnC -drop_drop; apply: IHn.
Qed.
Lemma flattenK ss : reshape (shape ss) (flatten ss) = ss.
Proof.
by elim: ss => //= s ss IHss; rewrite take_size_cat ?drop_size_cat ?IHss.
Qed.
Lemma reshapeKr sh s : size s <= sumn sh -> flatten (reshape sh s) = s.
Proof.
elim: sh s => [[]|n sh IHsh] //= s sz_s; rewrite IHsh ?cat_take_drop //.
by rewrite size_drop leq_subLR.
Qed.
Lemma reshapeKl sh s : size s >= sumn sh -> shape (reshape sh s) = sh.
Proof.
elim: sh s => [[]|n sh IHsh] //= s sz_s.
rewrite size_takel; last exact: leq_trans (leq_addr _ _) sz_s.
by rewrite IHsh // -(leq_add2l n) size_drop -maxnE leq_max sz_s orbT.
Qed.
Lemma flatten_rcons ss s : flatten (rcons ss s) = flatten ss ++ s.
Proof. by rewrite -cats1 flatten_cat /= cats0. Qed.
Lemma flatten_seq1 s : flatten [seq [:: x] | x <- s] = s.
Proof. by elim: s => //= s0 s ->. Qed.
Lemma count_flatten ss P :
count P (flatten ss) = sumn [seq count P x | x <- ss].
Proof. by elim: ss => //= s ss IHss; rewrite count_cat IHss. Qed.
Lemma filter_flatten ss (P : pred T) :
filter P (flatten ss) = flatten [seq filter P i | i <- ss].
Proof. by elim: ss => // s ss /= <-; apply: filter_cat. Qed.
Lemma rev_flatten ss :
rev (flatten ss) = flatten (rev (map rev ss)).
Proof.
by elim: ss => //= s ss IHss; rewrite rev_cons flatten_rcons -IHss rev_cat.
Qed.
Lemma nth_shape ss i : nth 0 (shape ss) i = size (nth [::] ss i).
Proof.
rewrite /shape; case: (ltnP i (size ss)) => Hi; first exact: nth_map.
by rewrite !nth_default // size_map.
Qed.
Lemma shape_rev ss : shape (rev ss) = rev (shape ss).
Proof. exact: map_rev. Qed.
Lemma eq_from_flatten_shape ss1 ss2 :
flatten ss1 = flatten ss2 -> shape ss1 = shape ss2 -> ss1 = ss2.
Proof. by move=> Eflat Esh; rewrite -[LHS]flattenK Eflat Esh flattenK. Qed.
Lemma rev_reshape sh s :
size s = sumn sh -> rev (reshape sh s) = map rev (reshape (rev sh) (rev s)).
Proof.
move=> sz_s; apply/(canLR revK)/eq_from_flatten_shape.
rewrite reshapeKr ?sz_s // -rev_flatten reshapeKr ?revK //.
by rewrite size_rev sumn_rev sz_s.
transitivity (rev (shape (reshape (rev sh) (rev s)))).
by rewrite !reshapeKl ?revK ?size_rev ?sz_s ?sumn_rev.
rewrite shape_rev; congr (rev _); rewrite -[RHS]map_comp.
by under eq_map do rewrite /= size_rev.
Qed.
Lemma reshape_rcons s sh n (m := sumn sh) :
m + n = size s ->
reshape (rcons sh n) s = rcons (reshape sh (take m s)) (drop m s).
Proof.
move=> Dmn; apply/(can_inj revK); rewrite rev_reshape ?rev_rcons ?sumn_rcons //.
rewrite /= take_rev drop_rev -Dmn addnK revK -rev_reshape //.
by rewrite size_takel // -Dmn leq_addr.
Qed.
Lemma flatten_indexP sh r c :
c < nth 0 sh r -> flatten_index sh r c < sumn sh.
Proof.
move=> lt_c_sh; rewrite -[sh in sumn sh](cat_take_drop r) sumn_cat ltn_add2l.
suffices lt_r_sh: r < size sh by rewrite (drop_nth 0 lt_r_sh) ltn_addr.
by case: ltnP => // le_sh_r; rewrite nth_default in lt_c_sh.
Qed.
Lemma reshape_indexP sh i : i < sumn sh -> reshape_index sh i < size sh.
Proof.
rewrite /reshape_index; elim: sh => //= n sh IHsh in i *; rewrite subn_eq0.
by have [// | le_n_i] := ltnP i n; rewrite -leq_subLR subSn // => /IHsh.
Qed.
Lemma reshape_offsetP sh i :
i < sumn sh -> reshape_offset sh i < nth 0 sh (reshape_index sh i).
Proof.
rewrite /reshape_offset /reshape_index; elim: sh => //= n sh IHsh in i *.
rewrite subn_eq0; have [| le_n_i] := ltnP i n; first by rewrite subn0.
by rewrite -leq_subLR /= subnDA subSn // => /IHsh.
Qed.
Lemma reshape_indexK sh i :
flatten_index sh (reshape_index sh i) (reshape_offset sh i) = i.
Proof.
rewrite /reshape_offset /reshape_index /flatten_index -subSKn.
elim: sh => //= n sh IHsh in i *; rewrite subn_eq0; have [//|le_n_i] := ltnP.
by rewrite /= subnDA subSn // -addnA IHsh subnKC.
Qed.
Lemma flatten_indexKl sh r c :
c < nth 0 sh r -> reshape_index sh (flatten_index sh r c) = r.
Proof.
rewrite /reshape_index /flatten_index.
elim: sh r => [|n sh IHsh] [|r] //= lt_c_sh; first by rewrite ifT.
by rewrite -addnA -addnS addKn IHsh.
Qed.
Lemma flatten_indexKr sh r c :
c < nth 0 sh r -> reshape_offset sh (flatten_index sh r c) = c.
Proof.
rewrite /reshape_offset /reshape_index /flatten_index.
elim: sh r => [|n sh IHsh] [|r] //= lt_c_sh; first by rewrite ifT ?subn0.
by rewrite -addnA -addnS addKn /= subnDl IHsh.
Qed.
Lemma nth_flatten x0 ss i (r := reshape_index (shape ss) i) :
nth x0 (flatten ss) i = nth x0 (nth [::] ss r) (reshape_offset (shape ss) i).
Proof.
rewrite /reshape_offset -subSKn {}/r /reshape_index.
elim: ss => //= s ss IHss in i *; rewrite subn_eq0 nth_cat.
by have [//|le_s_i] := ltnP; rewrite subnDA subSn /=.
Qed.
Lemma reshape_leq sh i1 i2
(r1 := reshape_index sh i1) (c1 := reshape_offset sh i1)
(r2 := reshape_index sh i2) (c2 := reshape_offset sh i2) :
(i1 <= i2) = ((r1 < r2) || ((r1 == r2) && (c1 <= c2))).
Proof.
rewrite {}/r1 {}/c1 {}/r2 {}/c2 /reshape_offset /reshape_index.
elim: sh => [|s0 s IHs] /= in i1 i2 *; rewrite ?subn0 ?subn_eq0 //.
have [[] i1s0 [] i2s0] := (ltnP i1 s0, ltnP i2 s0); first by rewrite !subn0.
- by apply: leq_trans i2s0; apply/ltnW.
- by apply/negP => /(leq_trans i1s0); rewrite leqNgt i2s0.
by rewrite !subSn // !eqSS !ltnS !subnDA -IHs leq_subLR subnKC.
Qed.
End Flatten.
Prenex Implicits flatten shape reshape.
Lemma map_flatten S T (f : T -> S) ss :
map f (flatten ss) = flatten (map (map f) ss).
Proof. by elim: ss => // s ss /= <-; apply: map_cat. Qed.
Lemma flatten_map1 (S T : Type) (f : S -> T) s :
flatten [seq [:: f x] | x <- s] = map f s.
Proof. by elim: s => //= s0 s ->. Qed.
Lemma undup_flatten_nseq n (T : eqType) (s : seq T) : 0 < n ->
undup (flatten (nseq n s)) = undup s.
Proof.
elim: n => [|[|n]/= IHn]//= _; rewrite ?cats0// undup_cat {}IHn//.
rewrite (@eq_in_filter _ _ pred0) ?filter_pred0// => x.
by rewrite mem_undup mem_cat => ->.
Qed.
Lemma sumn_flatten (ss : seq (seq nat)) :
sumn (flatten ss) = sumn (map sumn ss).
Proof. by elim: ss => // s ss /= <-; apply: sumn_cat. Qed.
Lemma map_reshape T S (f : T -> S) sh s :
map (map f) (reshape sh s) = reshape sh (map f s).
Proof. by elim: sh s => //= sh0 sh IHsh s; rewrite map_take IHsh map_drop. Qed.
Section EqFlatten.
Variables S T : eqType.
Lemma flattenP (A : seq (seq T)) x :
reflect (exists2 s, s \in A & x \in s) (x \in flatten A).
Proof.
elim: A => /= [|s A IH_A]; [by right; case | rewrite mem_cat].
by apply: equivP (iff_sym exists_cons); apply: (orPP idP IH_A).
Qed.
Arguments flattenP {A x}.
Lemma flatten_mapP (A : S -> seq T) s y :
reflect (exists2 x, x \in s & y \in A x) (y \in flatten (map A s)).
Proof.
apply: (iffP flattenP) => [[_ /mapP[x sx ->]] | [x sx]] Axy; first by exists x.
by exists (A x); rewrite ?map_f.
Qed.
Lemma perm_flatten (ss1 ss2 : seq (seq T)) :
perm_eq ss1 ss2 -> perm_eq (flatten ss1) (flatten ss2).
Proof.
move=> eq_ss; apply/permP=> a; apply/catCA_perm_subst: ss1 ss2 eq_ss.
by move=> ss1 ss2 ss3; rewrite !flatten_cat !count_cat addnCA.
Qed.
End EqFlatten.
Arguments flattenP {T A x}.
Arguments flatten_mapP {S T A s y}.
Notation "[ 'seq' E | x <- s , y <- t ]" :=
(flatten [seq [seq E | y <- t] | x <- s])
(x binder, y binder,
format "[ '[hv' 'seq' E '/ ' | x <- s , '/ ' y <- t ] ']'")
: seq_scope.
Notation "[ 'seq' E : R | x <- s , y <- t ]" :=
(flatten [seq [seq E : R | y <- t] | x <- s])
(x binder, y binder, only parsing) : seq_scope.
Section PrefixSuffixInfix.
Variables T : eqType.
Implicit Type s : seq T.
Fixpoint prefix s1 s2 {struct s2} :=
if s1 isn't x :: s1' then true else
if s2 isn't y :: s2' then false else
(x == y) && prefix s1' s2'.
Lemma prefixE s1 s2 : prefix s1 s2 = (take (size s1) s2 == s1).
Proof. by elim: s2 s1 => [|y s2 +] [|x s1]//= => ->; rewrite eq_sym. Qed.
Lemma prefix_refl s : prefix s s. Proof. by rewrite prefixE take_size. Qed.
Lemma prefixs0 s : prefix s [::] = (s == [::]). Proof. by case: s. Qed.
Lemma prefix0s s : prefix [::] s. Proof. by case: s. Qed.
Lemma prefix_cons s1 s2 x y :
prefix (x :: s1) (y :: s2) = (x == y) && prefix s1 s2.
Proof. by []. Qed.
Lemma prefix_catr s1 s2 s1' s3 : size s1 = size s1' ->
prefix (s1 ++ s2) (s1' ++ s3) = (s1 == s1') && prefix s2 s3.
Proof.
elim: s1 s1' => [|x s1 IHs1] [|y s1']//= [eqs1].
by rewrite IHs1// eqseq_cons andbA.
Qed.
Lemma prefix_prefix s1 s2 : prefix s1 (s1 ++ s2).
Proof. by rewrite prefixE take_cat ltnn subnn take0 cats0. Qed.
Hint Resolve prefix_prefix : core.
Lemma prefixP {s1 s2} :
reflect (exists s2' : seq T, s2 = s1 ++ s2') (prefix s1 s2).
Proof.
apply: (iffP idP) => [|[{}s2 ->]]; last exact: prefix_prefix.
by rewrite prefixE => /eqP<-; exists (drop (size s1) s2); rewrite cat_take_drop.
Qed.
Lemma prefix_trans : transitive prefix.
Proof. by move=> _ s2 _ /prefixP[s1 ->] /prefixP[s3 ->]; rewrite -catA. Qed.
Lemma prefixs1 s x : prefix s [:: x] = (s == [::]) || (s == [:: x]).
Proof. by case: s => //= y s; rewrite prefixs0 eqseq_cons. Qed.
Lemma catl_prefix s1 s2 s3 : prefix (s1 ++ s3) s2 -> prefix s1 s2.
Proof. by move=> /prefixP [s2'] ->; rewrite -catA. Qed.
Lemma prefix_catl s1 s2 s3 : prefix s1 s2 -> prefix s1 (s2 ++ s3).
Proof. by move=> /prefixP [s2'] ->; rewrite -catA. Qed.
Lemma prefix_rcons s x : prefix s (rcons s x).
Proof. by rewrite -cats1 prefix_prefix. Qed.
Definition suffix s1 s2 := prefix (rev s1) (rev s2).
Lemma suffixE s1 s2 : suffix s1 s2 = (drop (size s2 - size s1) s2 == s1).
Proof. by rewrite /suffix prefixE take_rev (can_eq revK) size_rev. Qed.
Lemma suffix_refl s : suffix s s.
Proof. exact: prefix_refl. Qed.
Lemma suffixs0 s : suffix s [::] = (s == [::]).
Proof. by rewrite /suffix prefixs0 -!nilpE rev_nilp. Qed.
Lemma suffix0s s : suffix [::] s.
Proof. exact: prefix0s. Qed.
Lemma prefix_rev s1 s2 : prefix (rev s1) (rev s2) = suffix s1 s2.
Proof. by []. Qed.
Lemma prefix_revLR s1 s2 : prefix (rev s1) s2 = suffix s1 (rev s2).
Proof. by rewrite -prefix_rev revK. Qed.
Lemma suffix_rev s1 s2 : suffix (rev s1) (rev s2) = prefix s1 s2.
Proof. by rewrite -prefix_rev !revK. Qed.
Lemma suffix_revLR s1 s2 : suffix (rev s1) s2 = prefix s1 (rev s2).
Proof. by rewrite -prefix_rev revK. Qed.
Lemma suffix_suffix s1 s2 : suffix s2 (s1 ++ s2).
Proof. by rewrite /suffix rev_cat prefix_prefix. Qed.
Hint Resolve suffix_suffix : core.
Lemma suffixP {s1 s2} :
reflect (exists s2' : seq T, s2 = s2' ++ s1) (suffix s1 s2).
Proof.
apply: (iffP prefixP) => [[s2' rev_s2]|[s2' ->]]; exists (rev s2'); last first.
by rewrite rev_cat.
by rewrite -[s2]revK rev_s2 rev_cat revK.
Qed.
Lemma suffix_trans : transitive suffix.
Proof. by move=> _ s2 _ /suffixP[s1 ->] /suffixP[s3 ->]; rewrite catA. Qed.
Lemma suffix_rcons s1 s2 x y :
suffix (rcons s1 x) (rcons s2 y) = (x == y) && suffix s1 s2.
Proof. by rewrite /suffix 2!rev_rcons prefix_cons. Qed.
Lemma suffix_catl s1 s2 s3 s3' : size s3 = size s3' ->
suffix (s1 ++ s3) (s2 ++ s3') = (s3 == s3') && suffix s1 s2.
Proof.
by move=> eqs3; rewrite /suffix !rev_cat prefix_catr ?size_rev// (can_eq revK).
Qed.
Lemma suffix_catr s1 s2 s3 : suffix s1 s2 -> suffix s1 (s3 ++ s2).
Proof. by move=> /suffixP [s2'] ->; rewrite catA suffix_suffix. Qed.
Lemma catl_suffix s s1 s2 : suffix (s ++ s1) s2 -> suffix s1 s2.
Proof. by move=> /suffixP [s2'] ->; rewrite catA suffix_suffix. Qed.
Lemma suffix_cons s x : suffix s (x :: s).
Proof. by rewrite /suffix rev_cons prefix_rcons. Qed.
Fixpoint infix s1 s2 :=
if s2 is y :: s2' then prefix s1 s2 || infix s1 s2' else s1 == [::].
Fixpoint infix_index s1 s2 :=
if prefix s1 s2 then 0
else if s2 is y :: s2' then (infix_index s1 s2').+1 else 1.
Lemma infix0s s : infix [::] s. Proof. by case: s. Qed.
Lemma infixs0 s : infix s [::] = (s == [::]). Proof. by case: s. Qed.
Lemma infix_consl s1 y s2 :
infix s1 (y :: s2) = prefix s1 (y :: s2) || infix s1 s2.
Proof. by []. Qed.
Lemma infix_indexss s : infix_index s s = 0.
Proof. by case: s => //= x s; rewrite eqxx prefix_refl. Qed.
Lemma infix_index_le s1 s2 : infix_index s1 s2 <= (size s2).+1.
Proof. by elim: s2 => [|x s2'] /=; case: ifP. Qed.
Lemma infixTindex s1 s2 : (infix_index s1 s2 <= size s2) = infix s1 s2.
Proof. by elim: s2 s1 => [|y s2 +] [|x s1]//= => <-; case: ifP. Qed.
Lemma infixPn s1 s2 :
reflect (infix_index s1 s2 = (size s2).+1) (~~ infix s1 s2).
Proof.
rewrite -infixTindex -ltnNge; apply: (iffP idP) => [s2lt|->//].
by apply/eqP; rewrite eqn_leq s2lt infix_index_le.
Qed.
Lemma infix_index0s s : infix_index [::] s = 0.
Proof. by case: s. Qed.
Lemma infix_indexs0 s : infix_index s [::] = (s != [::]).
Proof. by case: s. Qed.
Lemma infixE s1 s2 : infix s1 s2 =
(take (size s1) (drop (infix_index s1 s2) s2) == s1).
Proof.
elim: s2 s1 => [|y s2 +] [|x s1]//= => -> /=.
by case: ifP => // /andP[/eqP-> ps1s2/=]; rewrite eqseq_cons -prefixE eqxx.
Qed.
Lemma infix_refl s : infix s s.
Proof. by rewrite infixE infix_indexss// drop0 take_size. Qed.
Lemma prefixW s1 s2 : prefix s1 s2 -> infix s1 s2.
Proof. by elim: s2 s1 => [|y s2 IHs2] [|x s1]//=->. Qed.
Lemma prefix_infix s1 s2 : infix s1 (s1 ++ s2).
Proof. exact: prefixW. Qed.
Hint Resolve prefix_infix : core.
Lemma infix_infix s1 s2 s3 : infix s2 (s1 ++ s2 ++ s3).
Proof. by elim: s1 => //= x s1 ->; rewrite orbT. Qed.
Hint Resolve infix_infix : core.
Lemma suffix_infix s1 s2 : infix s2 (s1 ++ s2).
Proof. by rewrite -[X in s1 ++ X]cats0. Qed.
Hint Resolve suffix_infix : core.
Lemma infixP {s1 s2} :
reflect (exists s s' : seq T, s2 = s ++ s1 ++ s') (infix s1 s2).
Proof.
apply: (iffP idP) => [|[p [s {s2}->]]]//=; rewrite infixE => /eqP<-.
set k := infix_index _ _; exists (take k s2), (drop (size s1 + k) s2).
by rewrite -drop_drop !cat_take_drop.
Qed.
Lemma infix_rev s1 s2 : infix (rev s1) (rev s2) = infix s1 s2.
Proof.
gen have sr : s1 s2 / infix s1 s2 -> infix (rev s1) (rev s2); last first.
by apply/idP/idP => /sr; rewrite ?revK.
by move=> /infixP[s [p ->]]; rewrite !rev_cat -catA.
Qed.
Lemma suffixW s1 s2 : suffix s1 s2 -> infix s1 s2.
Proof. by rewrite -infix_rev; apply: prefixW. Qed.
Lemma infix_trans : transitive infix.
Proof.
move=> s s1 s2 /infixP[s1p [s1s def_s]] /infixP[sp [ss def_s2]].
by apply/infixP; exists (sp ++ s1p),(s1s ++ ss); rewrite def_s2 def_s -!catA.
Qed.
Lemma infix_revLR s1 s2 : infix (rev s1) s2 = infix s1 (rev s2).
Proof. by rewrite -infix_rev revK. Qed.
Lemma infix_rconsl s1 s2 y :
infix s1 (rcons s2 y) = suffix s1 (rcons s2 y) || infix s1 s2.
Proof.
rewrite -infix_rev rev_rcons infix_consl.
by rewrite -rev_rcons prefix_rev infix_rev.
Qed.
Lemma infix_cons s x : infix s (x :: s).
Proof. by rewrite -cat1s suffix_infix. Qed.
Lemma infixs1 s x : infix s [:: x] = (s == [::]) || (s == [:: x]).
Proof. by rewrite infix_consl prefixs1 orbC orbA orbb. Qed.
Lemma catl_infix s s1 s2 : infix (s ++ s1) s2 -> infix s1 s2.
Proof. apply: infix_trans; exact/suffixW/suffix_suffix. Qed.
Lemma catr_infix s s1 s2 : infix (s1 ++ s) s2 -> infix s1 s2.
Proof.
by rewrite -infix_rev rev_cat => /catl_infix; rewrite infix_rev.
Qed.
Lemma cons2_infix s1 s2 x : infix (x :: s1) (x :: s2) -> infix s1 s2.
Proof.
by rewrite /= eqxx /= -cat1s => /orP[/prefixW//|]; exact: catl_infix.
Qed.
Lemma rcons2_infix s1 s2 x : infix (rcons s1 x) (rcons s2 x) -> infix s1 s2.
Proof. by rewrite -infix_rev !rev_rcons => /cons2_infix; rewrite infix_rev. Qed.
Lemma catr2_infix s s1 s2 : infix (s ++ s1) (s ++ s2) -> infix s1 s2.
Proof. by elim: s => //= x s IHs /cons2_infix. Qed.
Lemma catl2_infix s s1 s2 : infix (s1 ++ s) (s2 ++ s) -> infix s1 s2.
Proof. by rewrite -infix_rev !rev_cat => /catr2_infix; rewrite infix_rev. Qed.
Lemma infix_catl s1 s2 s3 : infix s1 s2 -> infix s1 (s3 ++ s2).
Proof. by move=> is12; apply: infix_trans is12 (suffix_infix _ _). Qed.
Lemma infix_catr s1 s2 s3 : infix s1 s2 -> infix s1 (s2 ++ s3).
Proof.
case: s3 => [|x s /infixP [p [sf]] ->]; first by rewrite cats0.
by rewrite -catA; apply: infix_catl; rewrite -catA prefix_infix.
Qed.
Lemma prefix_infix_trans s2 s1 s3 :
prefix s1 s2 -> infix s2 s3 -> infix s1 s3.
Proof. by move=> /prefixW/infix_trans; apply. Qed.
Lemma suffix_infix_trans s2 s1 s3 :
suffix s1 s2 -> infix s2 s3 -> infix s1 s3.
Proof. by move=> /suffixW/infix_trans; apply. Qed.
Lemma infix_prefix_trans s2 s1 s3 :
infix s1 s2 -> prefix s2 s3 -> infix s1 s3.
Proof. by move=> + /prefixW; apply: infix_trans. Qed.
Lemma infix_suffix_trans s2 s1 s3 :
infix s1 s2 -> suffix s2 s3 -> infix s1 s3.
Proof. by move=> + /suffixW; apply: infix_trans. Qed.
Lemma prefix_suffix_trans s2 s1 s3 :
prefix s1 s2 -> suffix s2 s3 -> infix s1 s3.
Proof. by move=> /prefixW + /suffixW +; apply: infix_trans. Qed.
Lemma suffix_prefix_trans s2 s1 s3 :
suffix s1 s2 -> prefix s2 s3 -> infix s1 s3.
Proof. by move=> /suffixW + /prefixW +; apply: infix_trans. Qed.
Lemma infixW s1 s2 : infix s1 s2 -> subseq s1 s2.
Proof.
move=> /infixP[sp [ss ->]].
exact: subseq_trans (prefix_subseq _ _) (suffix_subseq _ _).
Qed.
Lemma mem_infix s1 s2 : infix s1 s2 -> {subset s1 <= s2}.
Proof. by move=> /infixW subH; apply: mem_subseq. Qed.
Lemma infix1s s x : infix [:: x] s = (x \in s).
Proof. by elim: s => // x' s /= ->; rewrite in_cons prefix0s andbT. Qed.
Lemma prefix1s s x : prefix [:: x] s -> x \in s.
Proof. by rewrite -infix1s => /prefixW. Qed.
Lemma suffix1s s x : suffix [:: x] s -> x \in s.
Proof. by rewrite -infix1s => /suffixW. Qed.
Lemma infix_rcons s x : infix s (rcons s x).
Proof. by rewrite -cats1 prefix_infix. Qed.
Lemma infix_uniq s1 s2 : infix s1 s2 -> uniq s2 -> uniq s1.
Proof. by move=> /infixW /subseq_uniq subH. Qed.
Lemma prefix_uniq s1 s2 : prefix s1 s2 -> uniq s2 -> uniq s1.
Proof. by move=> /prefixW /infix_uniq preH. Qed.
Lemma suffix_uniq s1 s2 : suffix s1 s2 -> uniq s2 -> uniq s1.
Proof. by move=> /suffixW /infix_uniq preH. Qed.
Lemma prefix_take s i : prefix (take i s) s.
Proof. by rewrite -{2}[s](cat_take_drop i). Qed.
Lemma suffix_drop s i : suffix (drop i s) s.
Proof. by rewrite -{2}[s](cat_take_drop i). Qed.
Lemma infix_take s i : infix (take i s) s.
Proof. by rewrite prefixW // prefix_take. Qed.
Lemma prefix_drop_gt0 s i : ~~ prefix (drop i s) s -> i > 0.
Proof. by case: i => //=; rewrite drop0 ltnn prefix_refl. Qed.
Lemma infix_drop s i : infix (drop i s) s.
Proof. by rewrite -{2}[s](cat_take_drop i). Qed.
Lemma consr_infix s1 s2 x : infix (x :: s1) s2 -> infix [:: x] s2.
Proof. by rewrite -cat1s => /catr_infix. Qed.
Lemma consl_infix s1 s2 x : infix (x :: s1) s2 -> infix s1 s2.
Proof. by rewrite -cat1s => /catl_infix. Qed.
Lemma prefix_index s1 s2 : prefix s1 s2 -> infix_index s1 s2 = 0.
Proof. by case: s1 s2 => [|x s1] [|y s2] //= ->. Qed.
Lemma size_infix s1 s2 : infix s1 s2 -> size s1 <= size s2.
Proof. by move=> /infixW; apply: size_subseq. Qed.
Lemma size_prefix s1 s2 : prefix s1 s2 -> size s1 <= size s2.
Proof. by move=> /prefixW; apply: size_infix. Qed.
Lemma size_suffix s1 s2 : suffix s1 s2 -> size s1 <= size s2.
Proof. by move=> /suffixW; apply: size_infix. Qed.
End PrefixSuffixInfix.
Section AllPairsDep.
Variables (S S' : Type) (T T' : S -> Type) (R : Type).
Implicit Type f : forall x, T x -> R.
Definition allpairs_dep f s t := [seq f x y | x <- s, y <- t x].
Lemma size_allpairs_dep f s t :
size [seq f x y | x <- s, y <- t x] = sumn [seq size (t x) | x <- s].
Proof. by elim: s => //= x s IHs; rewrite size_cat size_map IHs. Qed.
Lemma allpairs0l f t : [seq f x y | x <- [::], y <- t x] = [::].
Proof. by []. Qed.
Lemma allpairs0r f s : [seq f x y | x <- s, y <- [::]] = [::].
Proof. by elim: s. Qed.
Lemma allpairs1l f x t :
[seq f x y | x <- [:: x], y <- t x] = [seq f x y | y <- t x].
Proof. exact: cats0. Qed.
Lemma allpairs1r f s y :
[seq f x y | x <- s, y <- [:: y x]] = [seq f x (y x) | x <- s].
Proof. exact: flatten_map1. Qed.
Lemma allpairs_cons f x s t :
[seq f x y | x <- x :: s, y <- t x] =
[seq f x y | y <- t x] ++ [seq f x y | x <- s, y <- t x].
Proof. by []. Qed.
Lemma eq_allpairs (f1 f2 : forall x, T x -> R) s t :
(forall x, f1 x =1 f2 x) ->
[seq f1 x y | x <- s, y <- t x] = [seq f2 x y | x <- s, y <- t x].
Proof. by move=> eq_f; under eq_map do under eq_map do rewrite eq_f. Qed.
Lemma eq_allpairsr (f : forall x, T x -> R) s t1 t2 : (forall x, t1 x = t2 x) ->
[seq f x y | x <- s, y <- t1 x] = [seq f x y | x <- s, y <- t2 x].
Proof. by move=> eq_t; under eq_map do rewrite eq_t. Qed.
Lemma allpairs_cat f s1 s2 t :
[seq f x y | x <- s1 ++ s2, y <- t x] =
[seq f x y | x <- s1, y <- t x] ++ [seq f x y | x <- s2, y <- t x].
Proof. by rewrite map_cat flatten_cat. Qed.
Lemma allpairs_rcons f x s t :
[seq f x y | x <- rcons s x, y <- t x] =
[seq f x y | x <- s, y <- t x] ++ [seq f x y | y <- t x].
Proof. by rewrite -cats1 allpairs_cat allpairs1l. Qed.
Lemma allpairs_mapl f (g : S' -> S) s t :
[seq f x y | x <- map g s, y <- t x] = [seq f (g x) y | x <- s, y <- t (g x)].
Proof. by rewrite -map_comp. Qed.
Lemma allpairs_mapr f (g : forall x, T' x -> T x) s t :
[seq f x y | x <- s, y <- map (g x) (t x)] =
[seq f x (g x y) | x <- s, y <- t x].
Proof. by under eq_map do rewrite -map_comp. Qed.
End AllPairsDep.
Arguments allpairs_dep {S T R} f s t /.
Lemma map_allpairs S T R R' (g : R' -> R) f s t :
map g [seq f x y | x : S <- s, y : T x <- t x] =
[seq g (f x y) | x <- s, y <- t x].
Proof. by rewrite map_flatten allpairs_mapl allpairs_mapr. Qed.
Section AllPairsNonDep.
Variables (S T R : Type) (f : S -> T -> R).
Implicit Types (s : seq S) (t : seq T).
Definition allpairs s t := [seq f x y | x <- s, y <- t].
Lemma size_allpairs s t : size [seq f x y | x <- s, y <- t] = size s * size t.
Proof. by elim: s => //= x s IHs; rewrite size_cat size_map IHs. Qed.
End AllPairsNonDep.
Arguments allpairs {S T R} f s t /.
Section EqAllPairsDep.
Variables (S : eqType) (T : S -> eqType).
Implicit Types (R : eqType) (s : seq S) (t : forall x, seq (T x)).
Lemma allpairsPdep R (f : forall x, T x -> R) s t (z : R) :
reflect (exists x y, [/\ x \in s, y \in t x & z = f x y])
(z \in [seq f x y | x <- s, y <- t x]).
Proof.
apply: (iffP flatten_mapP); first by case=> x sx /mapP[y ty ->]; exists x, y.
by case=> x [y [sx ty ->]]; exists x; last apply: map_f.
Qed.
Variable R : eqType.
Implicit Type f : forall x, T x -> R.
Lemma allpairs_f_dep f s t x y :
x \in s -> y \in t x -> f x y \in [seq f x y | x <- s, y <- t x].
Proof. by move=> sx ty; apply/allpairsPdep; exists x, y. Qed.
Lemma eq_in_allpairs_dep f1 f2 s t :
{in s, forall x, {in t x, f1 x =1 f2 x}} <->
[seq f1 x y : R | x <- s, y <- t x] = [seq f2 x y | x <- s, y <- t x].
Proof.
split=> [eq_f | eq_fst x s_x].
by congr flatten; apply/eq_in_map=> x s_x; apply/eq_in_map/eq_f.
apply/eq_in_map; apply/eq_in_map: x s_x; apply/eq_from_flatten_shape => //.
by rewrite /shape -!map_comp; apply/eq_map=> x /=; rewrite !size_map.
Qed.
Lemma perm_allpairs_dep f s1 t1 s2 t2 :
perm_eq s1 s2 -> {in s1, forall x, perm_eq (t1 x) (t2 x)} ->
perm_eq [seq f x y | x <- s1, y <- t1 x] [seq f x y | x <- s2, y <- t2 x].
Proof.
elim: s1 s2 t1 t2 => [s2 t1 t2 |a s1 IH s2 t1 t2 perm_s2 perm_t1].
by rewrite perm_sym => /perm_nilP->.
have mem_a : a \in s2 by rewrite -(perm_mem perm_s2) inE eqxx.
rewrite -[s2](cat_take_drop (index a s2)).
rewrite allpairs_cat (drop_nth a) ?index_mem //= nth_index //=.
rewrite perm_sym perm_catC -catA perm_cat //; last first.
rewrite perm_catC -allpairs_cat.
rewrite -remE perm_sym IH // => [|x xI]; last first.
by apply: perm_t1; rewrite inE xI orbT.
by rewrite -(perm_cons a) (perm_trans perm_s2 (perm_to_rem _)).
have /perm_t1 : a \in a :: s1 by rewrite inE eqxx.
rewrite perm_sym; elim: (t2 a) (t1 a) => /= [s4|b s3 IH1 s4 perm_s4].
by rewrite perm_sym => /perm_nilP->.
have mem_b : b \in s4 by rewrite -(perm_mem perm_s4) inE eqxx.
rewrite -[s4](cat_take_drop (index b s4)).
rewrite map_cat /= (drop_nth b) ?index_mem //= nth_index //=.
rewrite perm_sym perm_catC /= perm_cons // perm_catC -map_cat.
rewrite -remE perm_sym IH1 // -(perm_cons b).
by apply: perm_trans perm_s4 (perm_to_rem _).
Qed.
Lemma mem_allpairs_dep f s1 t1 s2 t2 :
s1 =i s2 -> {in s1, forall x, t1 x =i t2 x} ->
[seq f x y | x <- s1, y <- t1 x] =i [seq f x y | x <- s2, y <- t2 x].
Proof.
move=> eq_s eq_t z; apply/allpairsPdep/allpairsPdep=> -[x [y [sx ty ->]]];
by exists x, y; rewrite -eq_s in sx *; rewrite eq_t in ty *.
Qed.
Lemma allpairs_uniq_dep f s t (st := [seq Tagged T y | x <- s, y <- t x]) :
let g (p : {x : S & T x}) : R := f (tag p) (tagged p) in
uniq s -> {in s, forall x, uniq (t x)} -> {in st &, injective g} ->
uniq [seq f x y | x <- s, y <- t x].
Proof.
move=> g Us Ut; rewrite -(map_allpairs g (existT T)) => /map_inj_in_uniq->{f g}.
elim: s Us => //= x s IHs /andP[s'x Us] in st Ut *; rewrite {st}cat_uniq.
rewrite {}IHs {Us}// ?andbT => [|x1 s_s1]; last exact/Ut/mem_behead.
have injT: injective (existT T x) by move=> y z /eqP; rewrite eq_Tagged => /eqP.
rewrite (map_inj_in_uniq (in2W injT)) {injT}Ut ?mem_head // has_sym has_map.
by apply: contra s'x => /hasP[y _ /allpairsPdep[z [_ [? _ /(congr1 tag)/=->]]]].
Qed.
End EqAllPairsDep.
Arguments allpairsPdep {S T R f s t z}.
Section MemAllPairs.
Variables (S : Type) (T : S -> Type) (R : eqType).
Implicit Types (f : forall x, T x -> R) (s : seq S).
Lemma perm_allpairs_catr f s t1 t2 :
perm_eql [seq f x y | x <- s, y <- t1 x ++ t2 x]
([seq f x y | x <- s, y <- t1 x] ++ [seq f x y | x <- s, y <- t2 x]).
Proof.
apply/permPl; rewrite perm_sym; elim: s => //= x s ihs.
by rewrite perm_catACA perm_cat ?map_cat.
Qed.
Lemma mem_allpairs_catr f s y0 t :
[seq f x y | x <- s, y <- y0 x ++ t x] =i
[seq f x y | x <- s, y <- y0 x] ++ [seq f x y | x <- s, y <- t x].
Proof. exact/perm_mem/permPl/perm_allpairs_catr. Qed.
Lemma perm_allpairs_consr f s y0 t :
perm_eql [seq f x y | x <- s, y <- y0 x :: t x]
([seq f x (y0 x) | x <- s] ++ [seq f x y | x <- s, y <- t x]).
Proof.
by apply/permPl; rewrite (perm_allpairs_catr _ _ (fun=> [:: _])) allpairs1r.
Qed.
Lemma mem_allpairs_consr f s t y0 :
[seq f x y | x <- s, y <- y0 x :: t x] =i
[seq f x (y0 x) | x <- s] ++ [seq f x y | x <- s, y <- t x].
Proof. exact/perm_mem/permPl/perm_allpairs_consr. Qed.
Lemma allpairs_rconsr f s y0 t :
perm_eql [seq f x y | x <- s, y <- rcons (t x) (y0 x)]
([seq f x y | x <- s, y <- t x] ++ [seq f x (y0 x) | x <- s]).
Proof.
apply/permPl; rewrite -(eq_allpairsr _ _ (fun=> cats1 _ _)).
by rewrite perm_allpairs_catr allpairs1r.
Qed.
Lemma mem_allpairs_rconsr f s t y0 :
[seq f x y | x <- s, y <- rcons (t x) (y0 x)] =i
([seq f x y | x <- s, y <- t x] ++ [seq f x (y0 x) | x <- s]).
Proof. exact/perm_mem/permPl/allpairs_rconsr. Qed.
End MemAllPairs.
Lemma all_allpairsP
(S : eqType) (T : S -> eqType) (R : Type)
(p : pred R) (f : forall x : S, T x -> R)
(s : seq S) (t : forall x : S, seq (T x)) :
reflect (forall (x : S) (y : T x), x \in s -> y \in t x -> p (f x y))
(all p [seq f x y | x <- s, y <- t x]).
Proof.
elim: s => [|x s IHs]; first by constructor.
rewrite /= all_cat all_map /preim.
apply/(iffP andP)=> [[/allP /= ? ? x' y x'_in_xs]|p_xs_t].
by move: x'_in_xs y => /[1!inE] /predU1P [-> //|? ?]; exact: IHs.
split; first by apply/allP => ?; exact/p_xs_t/mem_head.
by apply/IHs => x' y x'_in_s; apply: p_xs_t; rewrite inE x'_in_s orbT.
Qed.
Arguments all_allpairsP {S T R p f s t}.
Section EqAllPairs.
Variables S T R : eqType.
Implicit Types (f : S -> T -> R) (s : seq S) (t : seq T).
Lemma allpairsP f s t (z : R) :
reflect (exists p, [/\ p.1 \in s, p.2 \in t & z = f p.1 p.2])
(z \in [seq f x y | x <- s, y <- t]).
Proof.
by apply: (iffP allpairsPdep) => [[x[y]]|[[x y]]]; [exists (x, y)|exists x, y].
Qed.
Lemma allpairs_f f s t x y :
x \in s -> y \in t -> f x y \in [seq f x y | x <- s, y <- t].
Proof. exact: allpairs_f_dep. Qed.
Lemma eq_in_allpairs f1 f2 s t :
{in s & t, f1 =2 f2} <->
[seq f1 x y : R | x <- s, y <- t] = [seq f2 x y | x <- s, y <- t].
Proof.
split=> [eq_f | /eq_in_allpairs_dep-eq_f x y /eq_f/(_ y)//].
by apply/eq_in_allpairs_dep=> x /eq_f.
Qed.
Lemma perm_allpairs f s1 t1 s2 t2 :
perm_eq s1 s2 -> perm_eq t1 t2 ->
perm_eq [seq f x y | x <- s1, y <- t1] [seq f x y | x <- s2, y <- t2].
Proof. by move=> perm_s perm_t; apply: perm_allpairs_dep. Qed.
Lemma mem_allpairs f s1 t1 s2 t2 :
s1 =i s2 -> t1 =i t2 ->
[seq f x y | x <- s1, y <- t1] =i [seq f x y | x <- s2, y <- t2].
Proof. by move=> eq_s eq_t; apply: mem_allpairs_dep. Qed.
Lemma allpairs_uniq f s t (st := [seq (x, y) | x <- s, y <- t]) :
uniq s -> uniq t -> {in st &, injective (uncurry f)} ->
uniq [seq f x y | x <- s, y <- t].
Proof.
move=> Us Ut inj_f; rewrite -(map_allpairs (uncurry f) (@pair S T)) -/st.
rewrite map_inj_in_uniq // allpairs_uniq_dep {Us Ut st inj_f}//.
by apply: in2W => -[x1 y1] [x2 y2] /= [-> ->].
Qed.
End EqAllPairs.
Arguments allpairsP {S T R f s t z}.
Arguments perm_nilP {T s}.
Arguments perm_consP {T x s t}.
Section AllRel.
Variables (T S : Type) (r : T -> S -> bool).
Implicit Types (x : T) (y : S) (xs : seq T) (ys : seq S).
Definition allrel xs ys := all [pred x | all (r x) ys] xs.
Lemma allrel0l ys : allrel [::] ys. Proof. by []. Qed.
Lemma allrel0r xs : allrel xs [::]. Proof. by elim: xs. Qed.
Lemma allrel_consl x xs ys : allrel (x :: xs) ys = all (r x) ys && allrel xs ys.
Proof. by []. Qed.
Lemma allrel_consr xs y ys :
allrel xs (y :: ys) = all (r^~ y) xs && allrel xs ys.
Proof. exact: all_predI. Qed.
Lemma allrel_cons2 x y xs ys :
allrel (x :: xs) (y :: ys) =
[&& r x y, all (r x) ys, all (r^~ y) xs & allrel xs ys].
Proof. by rewrite /= allrel_consr -andbA. Qed.
Lemma allrel1l x ys : allrel [:: x] ys = all (r x) ys. Proof. exact: andbT. Qed.
Lemma allrel1r xs y : allrel xs [:: y] = all (r^~ y) xs.
Proof. by rewrite allrel_consr allrel0r andbT. Qed.
Lemma allrel_catl xs xs' ys :
allrel (xs ++ xs') ys = allrel xs ys && allrel xs' ys.
Proof. exact: all_cat. Qed.
Lemma allrel_catr xs ys ys' :
allrel xs (ys ++ ys') = allrel xs ys && allrel xs ys'.
Proof.
elim: ys => /= [|y ys ihys]; first by rewrite allrel0r.
by rewrite !allrel_consr ihys andbA.
Qed.
Lemma allrel_maskl m xs ys : allrel xs ys -> allrel (mask m xs) ys.
Proof.
by elim: m xs => [|[] m IHm] [|x xs] //= /andP [xys /IHm->]; rewrite ?xys.
Qed.
Lemma allrel_maskr m xs ys : allrel xs ys -> allrel xs (mask m ys).
Proof. by elim: xs => //= x xs IHxs /andP [/all_mask->]. Qed.
Lemma allrel_filterl a xs ys : allrel xs ys -> allrel (filter a xs) ys.
Proof. by rewrite filter_mask; apply: allrel_maskl. Qed.
Lemma allrel_filterr a xs ys : allrel xs ys -> allrel xs (filter a ys).
Proof. by rewrite filter_mask; apply: allrel_maskr. Qed.
Lemma allrel_allpairsE xs ys :
allrel xs ys = all id [seq r x y | x <- xs, y <- ys].
Proof. by elim: xs => //= x xs ->; rewrite all_cat all_map. Qed.
End AllRel.
Arguments allrel {T S} r xs ys : simpl never.
Arguments allrel0l {T S} r ys.
Arguments allrel0r {T S} r xs.
Arguments allrel_consl {T S} r x xs ys.
Arguments allrel_consr {T S} r xs y ys.
Arguments allrel1l {T S} r x ys.
Arguments allrel1r {T S} r xs y.
Arguments allrel_catl {T S} r xs xs' ys.
Arguments allrel_catr {T S} r xs ys ys'.
Arguments allrel_maskl {T S} r m xs ys.
Arguments allrel_maskr {T S} r m xs ys.
Arguments allrel_filterl {T S} r a xs ys.
Arguments allrel_filterr {T S} r a xs ys.
Arguments allrel_allpairsE {T S} r xs ys.
Notation all2rel r xs := (allrel r xs xs).
Lemma sub_in_allrel
{T S : Type} (P : {pred T}) (Q : {pred S}) (r r' : T -> S -> bool) :
{in P & Q, forall x y, r x y -> r' x y} ->
forall xs ys, all P xs -> all Q ys -> allrel r xs ys -> allrel r' xs ys.
Proof.
move=> rr' + ys; elim=> //= x xs IHxs /andP [Px Pxs] Qys.
rewrite !allrel_consl => /andP [+ {}/IHxs-> //]; rewrite andbT.
by elim: ys Qys => //= y ys IHys /andP [Qy Qys] /andP [/rr'-> // /IHys->].
Qed.
Lemma sub_allrel {T S : Type} (r r' : T -> S -> bool) :
(forall x y, r x y -> r' x y) ->
forall xs ys, allrel r xs ys -> allrel r' xs ys.
Proof.
by move=> rr' xs ys; apply/sub_in_allrel/all_predT/all_predT; apply: in2W.
Qed.
Lemma eq_in_allrel {T S : Type} (P : {pred T}) (Q : {pred S}) r r' :
{in P & Q, r =2 r'} ->
forall xs ys, all P xs -> all Q ys -> allrel r xs ys = allrel r' xs ys.
Proof.
move=> rr' xs ys Pxs Qys.
by apply/idP/idP; apply/sub_in_allrel/Qys/Pxs => ? ? ? ?; rewrite rr'.
Qed.
Lemma eq_allrel {T S : Type} (r r' : T -> S -> bool) :
r =2 r' -> allrel r =2 allrel r'.
Proof. by move=> rr' xs ys; apply/eq_in_allrel/all_predT/all_predT. Qed.
Lemma allrelC {T S : Type} (r : T -> S -> bool) xs ys :
allrel r xs ys = allrel (fun y => r^~ y) ys xs.
Proof. by elim: xs => [|x xs ih]; [elim: ys | rewrite allrel_consr -ih]. Qed.
Lemma allrel_mapl {T T' S : Type} (f : T' -> T) (r : T -> S -> bool) xs ys :
allrel r (map f xs) ys = allrel (fun x => r (f x)) xs ys.
Proof. exact: all_map. Qed.
Lemma allrel_mapr {T S S' : Type} (f : S' -> S) (r : T -> S -> bool) xs ys :
allrel r xs (map f ys) = allrel (fun x y => r x (f y)) xs ys.
Proof. by rewrite allrelC allrel_mapl allrelC. Qed.
Lemma allrelP {T S : eqType} {r : T -> S -> bool} {xs ys} :
reflect {in xs & ys, forall x y, r x y} (allrel r xs ys).
Proof. by rewrite allrel_allpairsE; exact: all_allpairsP. Qed.
Lemma allrelT {T S : Type} (xs : seq T) (ys : seq S) :
allrel (fun _ _ => true) xs ys = true.
Proof. by elim: xs => //= ? ?; rewrite allrel_consl all_predT. Qed.
Lemma allrel_relI {T S : Type} (r r' : T -> S -> bool) xs ys :
allrel (fun x y => r x y && r' x y) xs ys = allrel r xs ys && allrel r' xs ys.
Proof. by rewrite -all_predI; apply: eq_all => ?; rewrite /= -all_predI. Qed.
Lemma allrel_revl {T S : Type} (r : T -> S -> bool) (s1 : seq T) (s2 : seq S) :
allrel r (rev s1) s2 = allrel r s1 s2.
Proof. exact: all_rev. Qed.
Lemma allrel_revr {T S : Type} (r : T -> S -> bool) (s1 : seq T) (s2 : seq S) :
allrel r s1 (rev s2) = allrel r s1 s2.
Proof. by rewrite allrelC allrel_revl allrelC. Qed.
Lemma allrel_rev2 {T S : Type} (r : T -> S -> bool) (s1 : seq T) (s2 : seq S) :
allrel r (rev s1) (rev s2) = allrel r s1 s2.
Proof. by rewrite allrel_revr allrel_revl. Qed.
Lemma eq_allrel_meml {T : eqType} {S} (r : T -> S -> bool) (s1 s1' : seq T) s2 :
s1 =i s1' -> allrel r s1 s2 = allrel r s1' s2.
Proof. by move=> eqs1; apply: eq_all_r. Qed.
Lemma eq_allrel_memr {T} {S : eqType} (r : T -> S -> bool) s1 (s2 s2' : seq S) :
s2 =i s2' -> allrel r s1 s2 = allrel r s1 s2'.
Proof. by rewrite ![allrel _ s1 _]allrelC; apply: eq_allrel_meml. Qed.
Lemma eq_allrel_mem2 {T S : eqType} (r : T -> S -> bool)
(s1 s1' : seq T) (s2 s2' : seq S) :
s1 =i s1' -> s2 =i s2' -> allrel r s1 s2 = allrel r s1' s2'.
Proof. by move=> /eq_allrel_meml -> /eq_allrel_memr ->. Qed.
Section All2Rel.
Variable (T : nonPropType) (r : rel T).
Implicit Types (x y z : T) (xs : seq T).
Hypothesis (rsym : symmetric r).
Lemma all2rel1 x : all2rel r [:: x] = r x x.
Proof. by rewrite /allrel /= !andbT. Qed.
Lemma all2rel2 x y : all2rel r [:: x; y] = r x x && r y y && r x y.
Proof. by rewrite /allrel /= rsym; do 3 case: r. Qed.
Lemma all2rel_cons x xs :
all2rel r (x :: xs) = [&& r x x, all (r x) xs & all2rel r xs].
Proof.
rewrite allrel_cons2; congr andb; rewrite andbA -all_predI; congr andb.
by elim: xs => //= y xs ->; rewrite rsym andbb.
Qed.
End All2Rel.
Section Pairwise.
Variables (T : Type) (r : T -> T -> bool).
Implicit Types (x y : T) (xs ys : seq T).
Fixpoint pairwise xs : bool :=
if xs is x :: xs then all (r x) xs && pairwise xs else true.
Lemma pairwise_cons x xs : pairwise (x :: xs) = all (r x) xs && pairwise xs.
Proof. by []. Qed.
Lemma pairwise_cat xs ys :
pairwise (xs ++ ys) = [&& allrel r xs ys, pairwise xs & pairwise ys].
Proof. by elim: xs => //= x xs ->; rewrite all_cat -!andbA; bool_congr. Qed.
Lemma pairwise_rcons xs x :
pairwise (rcons xs x) = all (r^~ x) xs && pairwise xs.
Proof. by rewrite -cats1 pairwise_cat allrel1r andbT. Qed.
Lemma pairwise2 x y : pairwise [:: x; y] = r x y.
Proof. by rewrite /= !andbT. Qed.
Lemma pairwise_mask m xs : pairwise xs -> pairwise (mask m xs).
Proof.
by elim: m xs => [|[] m IHm] [|x xs] //= /andP [? ?]; rewrite ?IHm // all_mask.
Qed.
Lemma pairwise_filter a xs : pairwise xs -> pairwise (filter a xs).
Proof. by rewrite filter_mask; apply: pairwise_mask. Qed.
Lemma pairwiseP x0 xs :
reflect {in gtn (size xs) &, {homo nth x0 xs : i j / i < j >-> r i j}}
(pairwise xs).
Proof.
elim: xs => /= [|x xs IHxs]; first exact: (iffP idP).
apply: (iffP andP) => [[r_x_xs pxs] i j|Hnth]; rewrite -?topredE /= ?ltnS.
by case: i j => [|i] [|j] //= gti gtj ij; [exact/all_nthP | exact/IHxs].
split; last by apply/IHxs => // i j; apply/(Hnth i.+1 j.+1).
by apply/(all_nthP x0) => i gti; apply/(Hnth 0 i.+1).
Qed.
Lemma pairwise_all2rel :
reflexive r -> symmetric r -> forall xs, pairwise xs = all2rel r xs.
Proof.
by move=> r_refl r_sym; elim => //= x xs ->; rewrite all2rel_cons // r_refl.
Qed.
End Pairwise.
Arguments pairwise {T} r xs.
Arguments pairwise_cons {T} r x xs.
Arguments pairwise_cat {T} r xs ys.
Arguments pairwise_rcons {T} r xs x.
Arguments pairwise2 {T} r x y.
Arguments pairwise_mask {T r} m {xs}.
Arguments pairwise_filter {T r} a {xs}.
Arguments pairwiseP {T r} x0 {xs}.
Arguments pairwise_all2rel {T r} r_refl r_sym xs.
Lemma sub_in_pairwise {T : Type} (P : {pred T}) (r r' : rel T) :
{in P &, subrel r r'} ->
forall xs, all P xs -> pairwise r xs -> pairwise r' xs.
Proof.
move=> rr'; elim=> //= x xs IHxs /andP [Px Pxs] /andP [+ {}/IHxs->] //.
rewrite andbT; elim: xs Pxs => //= x' xs IHxs /andP [? ?] /andP [+ /IHxs->] //.
by rewrite andbT; apply: rr'.
Qed.
Lemma sub_pairwise {T : Type} (r r' : rel T) xs :
subrel r r' -> pairwise r xs -> pairwise r' xs.
Proof. by move=> rr'; apply/sub_in_pairwise/all_predT; apply: in2W. Qed.
Lemma eq_in_pairwise {T : Type} (P : {pred T}) (r r' : rel T) :
{in P &, r =2 r'} -> forall xs, all P xs -> pairwise r xs = pairwise r' xs.
Proof.
move=> rr' xs Pxs.
by apply/idP/idP; apply/sub_in_pairwise/Pxs => ? ? ? ?; rewrite rr'.
Qed.
Lemma eq_pairwise {T : Type} (r r' : rel T) :
r =2 r' -> pairwise r =i pairwise r'.
Proof. by move=> rr' xs; apply/eq_in_pairwise/all_predT. Qed.
Lemma pairwise_map {T T' : Type} (f : T' -> T) (r : rel T) xs :
pairwise r (map f xs) = pairwise (relpre f r) xs.
Proof. by elim: xs => //= x xs ->; rewrite all_map. Qed.
Lemma pairwise_relI {T : Type} (r r' : rel T) (s : seq T) :
pairwise [rel x y | r x y && r' x y] s = pairwise r s && pairwise r' s.
Proof. by elim: s => //= x s ->; rewrite andbACA all_predI. Qed.
Section EqPairwise.
Variables (T : eqType) (r : T -> T -> bool).
Implicit Types (xs ys : seq T).
Lemma subseq_pairwise xs ys : subseq xs ys -> pairwise r ys -> pairwise r xs.
Proof. by case/subseqP => m _ ->; apply: pairwise_mask. Qed.
Lemma uniq_pairwise xs : uniq xs = pairwise [rel x y | x != y] xs.
Proof.
elim: xs => //= x xs ->; congr andb; rewrite -has_pred1 -all_predC.
by elim: xs => //= x' xs ->; case: eqVneq.
Qed.
Lemma pairwise_uniq xs : irreflexive r -> pairwise r xs -> uniq xs.
Proof.
move=> r_irr; rewrite uniq_pairwise; apply/sub_pairwise => x y.
by apply: contraTneq => ->; rewrite r_irr.
Qed.
Lemma pairwise_eq : antisymmetric r ->
forall xs ys, pairwise r xs -> pairwise r ys -> perm_eq xs ys -> xs = ys.
Proof.
move=> r_asym; elim=> [|x xs IHxs] [|y ys] //=; try by move=> ? ? /perm_size.
move=> /andP [r_x_xs pxs] /andP [r_y_ys pys] eq_xs_ys.
move: (mem_head y ys) (mem_head x xs).
rewrite -(perm_mem eq_xs_ys) [x \in _](perm_mem eq_xs_ys) !inE.
case: eqVneq eq_xs_ys => /= [->|ne_xy] eq_xs_ys ys_x xs_y.
by rewrite (IHxs ys) // -(perm_cons x).
by case/eqP: ne_xy; apply: r_asym; rewrite (allP r_x_xs) ?(allP r_y_ys).
Qed.
Lemma pairwise_trans s : antisymmetric r ->
pairwise r s -> {in s & &, transitive r}.
Proof.
move=> /(_ _ _ _)/eqP r_anti + y x z => /pairwiseP-/(_ y) ltP ys xs zs.
have [-> //|neqxy] := eqVneq x y; have [-> //|neqzy] := eqVneq z y.
move=> lxy lyz; move: ys xs zs lxy neqxy lyz neqzy.
move=> /(nthP y)[j jlt <-] /(nthP y)[i ilt <-] /(nthP y)[k klt <-].
have [ltij|ltji|->] := ltngtP i j; last 2 first.
- by move=> leij; rewrite r_anti// leij ltP.
- by move=> lejj; rewrite r_anti// lejj.
move=> _ _; have [ltjk|ltkj|->] := ltngtP j k; last 2 first.
- by move=> lejk; rewrite r_anti// lejk ltP.
- by move=> lekk; rewrite r_anti// lekk.
by move=> _ _; apply: (ltP) => //; apply: ltn_trans ltjk.
Qed.
End EqPairwise.
Arguments subseq_pairwise {T r xs ys}.
Arguments uniq_pairwise {T} xs.
Arguments pairwise_uniq {T r xs}.
Arguments pairwise_eq {T r} r_asym {xs ys}.
Section Permutations.
Variable T : eqType.
Implicit Types (x : T) (s t : seq T) (bs : seq (T * nat)) (acc : seq (seq T)).
Fixpoint incr_tally bs x :=
if bs isn't b :: bs then [:: (x, 1)] else
if x == b.1 then (x, b.2.+1) :: bs else b :: incr_tally bs x.
Definition tally s := foldl incr_tally [::] s.
Definition wf_tally :=
[qualify a bs : seq (T * nat) | uniq (unzip1 bs) && (0 \notin unzip2 bs)].
Definition tally_seq bs := flatten [seq nseq b.2 b.1 | b <- bs].
Local Notation tseq := tally_seq.
Lemma size_tally_seq bs : size (tally_seq bs) = sumn (unzip2 bs).
Proof.
by rewrite size_flatten /shape -map_comp; under eq_map do rewrite /= size_nseq.
Qed.
Lemma tally_seqK : {in wf_tally, cancel tally_seq tally}.
Proof.
move=> bs /andP[]; elim: bs => [|[x [|n]] bs IHbs] //= /andP[bs'x Ubs] bs'0.
rewrite inE /tseq /tally /= -[n.+1]addn1 in bs'0 *.
elim: n 1 => /= [|n IHn] m; last by rewrite eqxx IHn addnS.
rewrite -{}[in RHS]IHbs {Ubs bs'0}// /tally /tally_seq add0n.
elim: bs bs'x [::] => [|[y n] bs IHbs] //= /[1!inE] /norP[y'x bs'x].
by elim: n => [|n IHn] bs1 /=; [rewrite IHbs | rewrite eq_sym ifN // IHn].
Qed.
Lemma incr_tallyP x : {homo incr_tally^~ x : bs / bs \in wf_tally}.
Proof.
move=> bs /andP[]; rewrite unfold_in.
elim: bs => [|[y [|n]] bs IHbs] //= /andP[bs'y Ubs] /[1!inE] /= bs'0.
have [<- | y'x] /= := eqVneq y; first by rewrite bs'y Ubs.
rewrite -andbA {}IHbs {Ubs bs'0}// andbT.
elim: bs bs'y => [|b bs IHbs] /=; rewrite inE ?y'x // => /norP[b'y bs'y].
by case: ifP => _; rewrite /= inE negb_or ?y'x // b'y IHbs.
Qed.
Lemma tallyP s : tally s \is a wf_tally.
Proof.
rewrite /tally; set bs := [::]; have: bs \in wf_tally by [].
by elim: s bs => //= x s IHs bs /(incr_tallyP x)/IHs.
Qed.
Lemma tallyK s : perm_eq (tally_seq (tally s)) s.
Proof.
rewrite -[s in perm_eq _ s]cats0 -[nil]/(tseq [::]) /tally.
elim: s [::] => //= x s IHs bs; rewrite {IHs}(permPl (IHs _)).
rewrite perm_sym -cat1s perm_catCA {s}perm_cat2l.
elim: bs => //= b bs IHbs; case: eqP => [-> | _] //=.
by rewrite -cat1s perm_catCA perm_cat2l.
Qed.
Lemma tallyEl s : perm_eq (unzip1 (tally s)) (undup s).
Proof.
have /andP[Ubs bs'0] := tallyP s; set bs := tally s in Ubs bs'0 *.
rewrite uniq_perm ?undup_uniq {Ubs}// => x.
rewrite mem_undup -(perm_mem (tallyK s)) -/bs.
elim: bs => [|[y [|m]] bs IHbs] //= in bs'0 *.
by rewrite inE IHbs // mem_cat mem_nseq.
Qed.
Lemma tallyE s : perm_eq (tally s) [seq (x, count_mem x s) | x <- undup s].
Proof.
have /andP[Ubs _] := tallyP s; pose b := [fun s x => (x, count_mem x (tseq s))].
suffices /permPl->: perm_eq (tally s) (map (b (tally s)) (unzip1 (tally s))).
congr perm_eq: (perm_map (b (tally s)) (tallyEl s)).
by under eq_map do rewrite /= (permP (tallyK s)).
elim: (tally s) Ubs => [|[x m] bs IH] //= /andP[bs'x /IH-IHbs {IH}].
rewrite /tseq /= -/(tseq _) count_cat count_nseq /= eqxx mul1n.
rewrite (count_memPn _) ?addn0 ?perm_cons; last first.
apply: contra bs'x; elim: {b IHbs}bs => //= b bs IHbs.
by rewrite mem_cat mem_nseq inE andbC; case: (_ == _).
congr perm_eq: IHbs; apply/eq_in_map=> y bs_y; congr (y, _).
by rewrite count_cat count_nseq /= (negPf (memPnC bs'x y bs_y)).
Qed.
Lemma perm_tally s1 s2 : perm_eq s1 s2 -> perm_eq (tally s1) (tally s2).
Proof.
move=> eq_s12; apply: (@perm_trans _ [seq (x, count_mem x s2) | x <- undup s1]).
by congr perm_eq: (tallyE s1); under eq_map do rewrite (permP eq_s12).
by rewrite (permPr (tallyE s2)); apply/perm_map/perm_undup/(perm_mem eq_s12).
Qed.
Lemma perm_tally_seq bs1 bs2 :
perm_eq bs1 bs2 -> perm_eq (tally_seq bs1) (tally_seq bs2).
Proof. by move=> Ebs12; rewrite perm_flatten ?perm_map. Qed.
Local Notation perm_tseq := perm_tally_seq.
Lemma perm_count_undup s :
perm_eq (flatten [seq nseq (count_mem x s) x | x <- undup s]) s.
Proof.
by rewrite -(permPr (tallyK s)) (permPr (perm_tseq (tallyE s))) /tseq -map_comp.
Qed.
Local Fixpoint cons_perms_ perms_rec (s : seq T) bs bs2 acc :=
if bs isn't b :: bs1 then acc else
if b isn't (x, m.+1) then cons_perms_ perms_rec s bs1 bs2 acc else
let acc_xs := perms_rec (x :: s) ((x, m) :: bs1 ++ bs2) acc in
cons_perms_ perms_rec s bs1 (b :: bs2) acc_xs.
Local Fixpoint perms_rec n s bs acc :=
if n isn't n.+1 then s :: acc else cons_perms_ (perms_rec n) s bs [::] acc.
Local Notation cons_perms n := (cons_perms_ (perms_rec n) [::]).
Definition permutations s := perms_rec (size s) [::] (tally s) [::].
Let permsP s : exists n bs,
[/\ permutations s = perms_rec n [::] bs [::],
size (tseq bs) == n, perm_eq (tseq bs) s & uniq (unzip1 bs)].
Proof.
have /andP[Ubs _] := tallyP s; exists (size s), (tally s).
by rewrite (perm_size (tallyK s)) tallyK.
Qed.
Local Notation bsCA := (permEl (perm_catCA _ [:: _] _)).
Let cons_permsE : forall n x bs bs1 bs2,
let cp := cons_perms n bs bs2 in let perms s := perms_rec n s bs1 [::] in
cp (perms [:: x]) = cp [::] ++ [seq rcons t x | t <- perms [::]].
Proof.
pose is_acc f := forall acc, f acc = f [::] ++ acc. (* f is accumulating. *)
have cpE: forall f & forall s bs, is_acc (f s bs), is_acc (cons_perms_ f _ _ _).
move=> s bs bs2 f fE acc; elim: bs => [|[x [|m]] bs IHbs] //= in s bs2 acc *.
by rewrite fE IHbs catA -IHbs.
have prE: is_acc (perms_rec _ _ _) by elim=> //= n IHn s bs; apply: cpE.
pose has_suffix f := forall s : seq T, f s = [seq t ++ s | t <- f [::]].
suffices prEs n bs: has_suffix (fun s => perms_rec n s bs [::]).
move=> n x bs bs1 bs2 /=; rewrite cpE // prEs.
by under eq_map do rewrite cats1.
elim: n bs => //= n IHn bs s; elim: bs [::] => [|[x [|m]] bs IHbs] //= bs1.
rewrite cpE // IHbs IHn [in RHS]cpE // [in RHS]IHn map_cat -map_comp.
by congr (_ ++ _); apply: eq_map => t /=; rewrite -catA.
Qed.
Lemma mem_permutations s t : (t \in permutations s) = perm_eq t s.
Proof.
have{s} [n [bs [-> Dn /permPr<- _]]] := permsP s.
elim: n => [|n IHn] /= in t bs Dn *.
by rewrite inE (nilP Dn); apply/eqP/perm_nilP.
rewrite -[bs in tseq bs]cats0 in Dn *; have x0 : T by case: (tseq _) Dn.
rewrite -[RHS](@andb_idl (last x0 t \in tseq bs)); last first.
case/lastP: t {IHn} => [|t x] Dt; first by rewrite -(perm_size Dt) in Dn.
by rewrite -[bs]cats0 -(perm_mem Dt) last_rcons mem_rcons mem_head.
elim: bs [::] => [|[x [|m]] bs IHbs] //= bs2 in Dn *.
rewrite cons_permsE -!cat_cons !mem_cat (mem_nseq m.+1) orbC andb_orl.
rewrite {}IHbs ?(perm_size (perm_tseq bsCA)) //= (permPr (perm_tseq bsCA)).
congr (_ || _); apply/mapP/andP=> [[t1 Dt1 ->] | [/eqP]].
by rewrite last_rcons perm_rcons perm_cons IHn in Dt1 *.
case/lastP: t => [_ /perm_size//|t y]; rewrite last_rcons perm_rcons => ->.
by rewrite perm_cons; exists t; rewrite ?IHn.
Qed.
Lemma permutations_uniq s : uniq (permutations s).
Proof.
have{s} [n [bs [-> Dn _ Ubs]]] := permsP s.
elim: n => //= n IHn in bs Dn Ubs *; rewrite -[bs]cats0 /unzip1 in Dn Ubs.
elim: bs [::] => [|[x [|m]] bs IHbs] //= bs2 in Dn Ubs *.
by case/andP: Ubs => _ /IHbs->.
rewrite /= cons_permsE cat_uniq has_sym andbCA andbC.
rewrite {}IHbs; first 1 last; first by rewrite (perm_size (perm_tseq bsCA)).
by rewrite (perm_uniq (perm_map _ bsCA)).
rewrite (map_inj_uniq (rcons_injl x)) {}IHn {Dn}//=.
have: x \notin unzip1 bs by apply: contraL Ubs; rewrite map_cat mem_cat => ->.
move: {bs2 m Ubs}(perms_rec n _ _ _) (_ :: bs2) => ts.
elim: bs => [|[y [|m]] bs IHbs] //= /[1!inE] bs2 /norP[x'y /IHbs//].
rewrite cons_permsE has_cat negb_or has_map => ->.
by apply/hasPn=> t _; apply: contra x'y => /mapP[t1 _ /rcons_inj[_ ->]].
Qed.
Notation perms := permutations.
Lemma permutationsE s :
0 < size s ->
perm_eq (perms s) [seq x :: t | x <- undup s, t <- perms (rem x s)].
Proof.
move=> nt_s; apply/uniq_perm=> [||t]; first exact: permutations_uniq.
apply/allpairs_uniq_dep=> [|x _|]; rewrite ?undup_uniq ?permutations_uniq //.
by case=> [_ _] [x t] _ _ [-> ->].
rewrite mem_permutations; apply/idP/allpairsPdep=> [Dt | [x [t1 []]]].
rewrite -(perm_size Dt) in nt_s; case: t nt_s => // x t _ in Dt *.
have s_x: x \in s by rewrite -(perm_mem Dt) mem_head.
exists x, t; rewrite mem_undup mem_permutations; split=> //.
by rewrite -(perm_cons x) (permPl Dt) perm_to_rem.
rewrite mem_undup mem_permutations -(perm_cons x) => s_x Dt1 ->.
by rewrite (permPl Dt1) perm_sym perm_to_rem.
Qed.
Lemma permutationsErot x s (le_x := fun t => iota 0 (index x t + 1)) :
perm_eq (perms (x :: s)) [seq rot i (x :: t) | t <- perms s, i <- le_x t].
Proof.
have take'x t i: i <= index x t -> i <= size t /\ x \notin take i t.
move=> le_i_x; have le_i_t: i <= size t := leq_trans le_i_x (index_size x t).
case: (nthP x) => // -[j lt_j_i /eqP]; rewrite size_takel // in lt_j_i.
by rewrite nth_take // [_ == _](before_find x (leq_trans lt_j_i le_i_x)).
pose xrot t i := rot i (x :: t); pose xrotV t := index x (rev (rot 1 t)).
have xrotK t: {in le_x t, cancel (xrot t) xrotV}.
move=> i; rewrite mem_iota addn1 /xrotV => /take'x[le_i_t ti'x].
rewrite -rotD ?rev_cat //= rev_cons cat_rcons index_cat mem_rev size_rev.
by rewrite ifN // size_takel //= eqxx addn0.
apply/uniq_perm=> [||t]; first exact: permutations_uniq.
apply/allpairs_uniq_dep=> [|t _|]; rewrite ?permutations_uniq ?iota_uniq //.
move=> _ _ /allpairsPdep[t [i [_ ? ->]]] /allpairsPdep[u [j [_ ? ->]]] Etu.
have Eij: i = j by rewrite -(xrotK t i) // /xrot Etu xrotK.
by move: Etu; rewrite Eij => /rot_inj[->].
rewrite mem_permutations; apply/esym; apply/allpairsPdep/idP=> [[u [i]] | Dt].
rewrite mem_permutations => -[Du _ /(canLR (rotK i))]; rewrite /rotr.
by set j := (j in rot j _) => Dt; apply/perm_consP; exists j, u.
pose r := rev (rot 1 t); pose i := index x r; pose u := rev (take i r).
have r_x: x \in r by rewrite mem_rev mem_rot (perm_mem Dt) mem_head.
have [v Duv]: {v | rot i (x :: u ++ v) = t}; first exists (rev (drop i.+1 r)).
rewrite -rev_cat -rev_rcons -rot1_cons -cat_cons -(nth_index x r_x).
by rewrite -drop_nth ?index_mem // rot_rot !rev_rot revK rotK rotrK.
exists (u ++ v), i; rewrite mem_permutations -(perm_cons x) -(perm_rot i) Duv.
rewrite mem_iota addn1 ltnS /= index_cat mem_rev size_rev.
by have /take'x[le_i_t ti'x] := leqnn i; rewrite ifN ?size_takel ?leq_addr.
Qed.
Lemma size_permutations s : uniq s -> size (permutations s) = (size s)`!.
Proof.
move Dn: (size s) => n Us; elim: n s => [[]|n IHn s] //= in Dn Us *.
rewrite (perm_size (permutationsE _)) ?Dn // undup_id // factS -Dn.
rewrite -(size_iota 0 n`!) -(size_allpairs (fun=>id)) !size_allpairs_dep.
by apply/congr1/eq_in_map=> x sx; rewrite size_iota IHn ?size_rem ?Dn ?rem_uniq.
Qed.
Lemma permutations_all_uniq s : uniq s -> all uniq (permutations s).
Proof.
by move=> Us; apply/allP=> t; rewrite mem_permutations => /perm_uniq->.
Qed.
Lemma perm_permutations s t :
perm_eq s t -> perm_eq (permutations s) (permutations t).
Proof.
move=> Est; apply/uniq_perm; try exact: permutations_uniq.
by move=> u; rewrite !mem_permutations (permPr Est).
Qed.
End Permutations.
|