File: vcharacter.v

package info (click to toggle)
ssreflect 2.5.0-2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 7,120 kB
  • sloc: ml: 506; sh: 300; makefile: 42
file content (967 lines) | stat: -rw-r--r-- 38,452 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)
(* Distributed under the terms of CeCILL-B.                                  *)
From HB Require Import structures.
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path.
From mathcomp Require Import div choice fintype tuple finfun bigop prime order.
From mathcomp Require Import ssralg poly finset fingroup morphism perm.
From mathcomp Require Import automorphism quotient finalg action gproduct.
From mathcomp Require Import zmodp commutator cyclic center pgroup sylow.
From mathcomp Require Import frobenius vector ssrnum ssrint archimedean intdiv.
From mathcomp Require Import algC algnum classfun character integral_char.

(******************************************************************************)
(* This file provides basic notions of virtual character theory:              *)
(*       'Z[S, A] == collective predicate for the phi that are Z-linear       *)
(*                   combinations of elements of S : seq 'CF(G) and have      *)
(*                   support in A : {set gT}.                                 *)
(*          'Z[S] == collective predicate for the Z-linear combinations of    *)
(*                   elements of S.                                           *)
(*      'Z[irr G] == the collective predicate for virtual characters.         *)
(*         dirr G == the collective predicate for normal virtual characters,  *)
(*                   i.e., virtual characters of norm 1:                      *)
(*               mu \in dirr G <=> m \in 'Z[irr G] and '[mu] = 1              *)
(*                             <=> mu or - mu \in irr G.                      *)
(* --> othonormal subsets of 'Z[irr G] are contained in dirr G.               *)
(*        dIirr G == an index type for normal virtual characters.             *)
(*         dchi i == the normal virtual character of index i.                 *)
(*       of_irr i == the (unique) irreducible constituent of dchi i:          *)
(*                   dchi i = 'chi_(of_irr i) or - 'chi_(of_irr i).           *)
(*        ndirr i == the index of - dchi i.                                   *)
(*        dirr1 G == the normal virtual character index of 1 : 'CF(G), the    *)
(*                   principal character.                                     *)
(* dirr_dIirr j f == the index i (or dirr1 G if it does not exist) such that  *)
(*                   dchi i = f j.                                            *)
(* dirr_constt phi == the normal virtual character constituents of phi:       *)
(*                    i \in dirr_constt phi <=> [dchi i, phi] > 0.            *)
(*  to_dirr phi i == the normal virtual character constituent of phi with an  *)
(*                   irreducible constituent i, when i \in irr_constt phi.    *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Local Open Scope group_scope.
Import Order.TTheory GRing.Theory Num.Theory.
Local Open Scope ring_scope.

Section Basics.

Variables (gT : finGroupType) (B : {set gT}) (S : seq 'CF(B)) (A : {set gT}).

Definition Zchar : {pred 'CF(B)} :=
  [pred phi in 'CF(B, A) | dec_Cint_span (in_tuple S) phi].

Lemma cfun0_zchar : 0 \in Zchar.
Proof.
rewrite inE mem0v; apply/sumboolP; exists 0.
by rewrite big1 // => i _; rewrite ffunE.
Qed.

Fact Zchar_zmod : zmod_closed Zchar.
Proof.
split; first exact: cfun0_zchar.
move=> phi xi /andP[Aphi /sumboolP[a Da]] /andP[Axi /sumboolP[b Db]].
rewrite inE rpredB // Da Db -sumrB; apply/sumboolP; exists (a - b).
by apply: eq_bigr => i _; rewrite -mulrzBr !ffunE.
Qed.
HB.instance Definition _ := GRing.isZmodClosed.Build (classfun B) Zchar
  Zchar_zmod.

Lemma scale_zchar a phi : a \in Num.int -> phi \in Zchar -> a *: phi \in Zchar.
Proof. by case/intrP=> m -> Zphi; rewrite scaler_int rpredMz. Qed.

End Basics.

Notation "''Z[' S , A ]" := (Zchar S A) (format "''Z[' S ,  A ]") : group_scope.
Notation "''Z[' S ]" := 'Z[S, setT] (format "''Z[' S ]") : group_scope.

Section Zchar.

Variables (gT : finGroupType) (G : {group gT}).
Implicit Types (A B : {set gT}) (S : seq 'CF(G)).

Lemma zchar_split S A phi :
  phi \in 'Z[S, A] = (phi \in 'Z[S]) && (phi \in 'CF(G, A)).
Proof. by rewrite !inE cfun_onT andbC. Qed.

Lemma zcharD1E phi S : (phi \in 'Z[S, G^#]) = (phi \in 'Z[S]) && (phi 1%g == 0).
Proof. by rewrite zchar_split cfunD1E. Qed.

Lemma zcharD1 phi S A :
  (phi \in 'Z[S, A^#]) = (phi \in 'Z[S, A]) && (phi 1%g == 0).
Proof. by rewrite zchar_split cfun_onD1 andbA -zchar_split. Qed.

Lemma zcharW S A : {subset 'Z[S, A] <= 'Z[S]}.
Proof. by move=> phi; rewrite zchar_split => /andP[]. Qed.

Lemma zchar_on S A : {subset 'Z[S, A] <= 'CF(G, A)}.
Proof. by move=> phi /andP[]. Qed.

Lemma zchar_onS A B S : A \subset B -> {subset 'Z[S, A] <= 'Z[S, B]}.
Proof.
move=> sAB phi; rewrite zchar_split (zchar_split _ B) => /andP[->].
exact: cfun_onS.
Qed.

Lemma zchar_onG S : 'Z[S, G] =i 'Z[S].
Proof. by move=> phi; rewrite zchar_split cfun_onG andbT. Qed.

Lemma irr_vchar_on A : {subset 'Z[irr G, A] <= 'CF(G, A)}.
Proof. exact: zchar_on. Qed.

Lemma support_zchar S A phi : phi \in 'Z[S, A] -> support phi \subset A.
Proof. by move/zchar_on; rewrite cfun_onE. Qed.

Lemma mem_zchar_on S A phi :
  phi \in 'CF(G, A) -> phi \in S -> phi \in 'Z[S, A].
Proof.
move=> Aphi /(@tnthP _ _ (in_tuple S))[i Dphi]; rewrite inE /= {}Aphi {phi}Dphi.
apply/sumboolP; exists [ffun j => (j == i)%:Z].
rewrite (bigD1 i) //= ffunE eqxx (tnth_nth 0) big1 ?addr0 // => j i'j.
by rewrite ffunE (negPf i'j).
Qed.

(* A special lemma is needed because trivial fails to use the cfun_onT Hint. *)
Lemma mem_zchar S phi : phi \in S -> phi \in 'Z[S].
Proof. by move=> Sphi; rewrite mem_zchar_on ?cfun_onT. Qed.

Lemma zchar_nth_expansion S A phi :
    phi \in 'Z[S, A] ->
  {z | forall i, z i \in Num.int & phi = \sum_(i < size S) z i *: S`_i}.
Proof.
case/andP=> _ /sumboolP/sig_eqW[/= z ->]; exists (intr \o z) => //=.
by apply: eq_bigr => i _; rewrite scaler_int.
Qed.

Lemma zchar_tuple_expansion n (S : n.-tuple 'CF(G)) A phi :
    phi \in 'Z[S, A] ->
  {z | forall i, z i \in Num.int & phi = \sum_(i < n) z i *: S`_i}.
Proof. by move/zchar_nth_expansion; rewrite size_tuple. Qed.

(* A pure seq version with the extra hypothesis of S's unicity.  *)
Lemma zchar_expansion S A phi : uniq S ->
    phi \in 'Z[S, A] ->
  {z | forall xi, z xi \in Num.int & phi = \sum_(xi <- S) z xi *: xi}.
Proof.
move=> Suniq /zchar_nth_expansion[z Zz ->] /=.
pose zS xi := oapp z 0 (insub (index xi S)).
exists zS => [xi | ]; rewrite {}/zS; first by case: (insub _) => /=.
rewrite (big_nth 0) big_mkord; apply: eq_bigr => i _; congr (_ *: _).
by rewrite index_uniq // valK.
Qed.

Lemma zchar_span S A : {subset 'Z[S, A] <= <<S>>%VS}.
Proof.
move=> _ /zchar_nth_expansion[z Zz ->] /=.
by apply: rpred_sum => i _; rewrite rpredZ // memv_span ?mem_nth.
Qed.

Lemma zchar_trans S1 S2 A B :
  {subset S1 <= 'Z[S2, B]} -> {subset 'Z[S1, A] <= 'Z[S2, A]}.
Proof.
move=> sS12 phi; rewrite !(zchar_split _ A) andbC => /andP[->]; rewrite andbT.
case/zchar_nth_expansion=> z Zz ->; apply: rpred_sum => i _.
by rewrite scale_zchar // (@zcharW _ B) ?sS12 ?mem_nth.
Qed.

Lemma zchar_trans_on S1 S2 A :
  {subset S1 <= 'Z[S2, A]} -> {subset 'Z[S1] <= 'Z[S2, A]}.
Proof.
move=> sS12 _ /zchar_nth_expansion[z Zz ->]; apply: rpred_sum => i _.
by rewrite scale_zchar // sS12 ?mem_nth.
Qed.

Lemma zchar_sub_irr S A :
  {subset S <= 'Z[irr G]} -> {subset 'Z[S, A] <= 'Z[irr G, A]}.
Proof. exact: zchar_trans. Qed.

Lemma zchar_subset S1 S2 A :
  {subset S1 <= S2} -> {subset 'Z[S1, A] <= 'Z[S2, A]}.
Proof.
move=> sS12; apply: zchar_trans setT _ => // f /sS12 S2f.
by rewrite mem_zchar.
Qed.

Lemma zchar_subseq S1 S2 A :
  subseq S1 S2 -> {subset 'Z[S1, A] <= 'Z[S2, A]}.
Proof. by move/mem_subseq; apply: zchar_subset. Qed.

Lemma zchar_filter S A (p : pred 'CF(G)) :
  {subset 'Z[filter p S, A] <= 'Z[S, A]}.
Proof. by apply: zchar_subset=> f; apply/mem_subseq/filter_subseq. Qed.

End Zchar.

Section VChar.

Variables (gT : finGroupType) (G : {group gT}).
Implicit Types (A B : {set gT}) (phi chi : 'CF(G)) (S : seq 'CF(G)).

Lemma char_vchar chi : chi \is a character -> chi \in 'Z[irr G].
Proof.
case/char_sum_irr=> r ->; apply: rpred_sum => i _.
by rewrite mem_zchar ?mem_tnth.
Qed.

Lemma irr_vchar i : 'chi[G]_i \in 'Z[irr G].
Proof. exact/char_vchar/irr_char. Qed.

Lemma cfun1_vchar : 1 \in 'Z[irr G]. Proof. by rewrite -irr0 irr_vchar. Qed.

Lemma vcharP phi :
  reflect (exists2 chi1, chi1 \is a character
            & exists2 chi2, chi2 \is a character & phi = chi1 - chi2)
          (phi \in 'Z[irr G]).
Proof.
apply: (iffP idP) => [| [a Na [b Nb ->]]]; last by rewrite rpredB ?char_vchar.
case/zchar_tuple_expansion=> z Zz ->; rewrite (bigID (fun i => 0 <= z i)) /=.
set chi1 := \sum_(i | _) _; set nchi2 := \sum_(i | _) _.
exists chi1; last exists (- nchi2); last by rewrite opprK.
  apply: rpred_sum => i zi_ge0; rewrite -tnth_nth rpredZ_nat ?irr_char //.
  by rewrite natrEint Zz.
rewrite -sumrN rpred_sum // => i zi_lt0; rewrite -scaleNr -tnth_nth.
rewrite rpredZ_nat ?irr_char // natrEint rpredN Zz oppr_ge0 ltW //.
by rewrite real_ltNge ?Rreal_int.
Qed.

Lemma Aint_vchar phi x : phi \in 'Z[irr G] -> phi x \in Aint.
Proof.
case/vcharP=> [chi1 Nchi1 [chi2 Nchi2 ->]].
by rewrite !cfunE rpredB ?Aint_char.
Qed.

Lemma Cint_vchar1 phi : phi \in 'Z[irr G] -> phi 1%g \in Num.int.
Proof.
case/vcharP=> phi1 Nphi1 [phi2 Nphi2 ->].
by rewrite !cfunE rpredB // rpred_nat_num ?Cnat_char1.
Qed.

Lemma Cint_cfdot_vchar_irr i phi :
  phi \in 'Z[irr G] -> '[phi, 'chi_i] \in Num.int.
Proof.
case/vcharP=> chi1 Nchi1 [chi2 Nchi2 ->].
by rewrite cfdotBl rpredB // rpred_nat_num ?Cnat_cfdot_char_irr.
Qed.

Lemma cfdot_vchar_r phi psi :
  psi \in 'Z[irr G] -> '[phi, psi] = \sum_i '[phi, 'chi_i] * '[psi, 'chi_i].
Proof.
move=> Zpsi; rewrite cfdot_sum_irr; apply: eq_bigr => i _; congr (_ * _).
by rewrite aut_intr ?Cint_cfdot_vchar_irr.
Qed.

Lemma Cint_cfdot_vchar :
  {in 'Z[irr G] &, forall phi psi, '[phi, psi] \in Num.int}.
Proof.
move=> phi psi Zphi Zpsi; rewrite /= cfdot_vchar_r // rpred_sum // => k _.
by rewrite rpredM ?Cint_cfdot_vchar_irr.
Qed.

Lemma Cnat_cfnorm_vchar : {in 'Z[irr G], forall phi, '[phi] \in Num.nat}.
Proof. by move=> phi Zphi; rewrite /= natrEint cfnorm_ge0 Cint_cfdot_vchar. Qed.

Fact vchar_mulr_closed : mulr_closed 'Z[irr G].
Proof.
split; first exact: cfun1_vchar.
move=> _ _ /vcharP[xi1 Nxi1 [xi2 Nxi2 ->]] /vcharP[xi3 Nxi3 [xi4 Nxi4 ->]].
by rewrite mulrBl !mulrBr !(rpredB, rpredD) // char_vchar ?rpredM.
Qed.
HB.instance Definition _ := GRing.isMulClosed.Build (classfun G) 'Z[irr G]
  vchar_mulr_closed.

Lemma mul_vchar A :
  {in 'Z[irr G, A] &, forall phi psi, phi * psi \in 'Z[irr G, A]}.
Proof.
move=> phi psi; rewrite zchar_split => /andP[Zphi Aphi] /zcharW Zpsi.
rewrite zchar_split rpredM //; apply/cfun_onP=> x A'x.
by rewrite cfunE (cfun_onP Aphi) ?mul0r.
Qed.

Section CfdotPairwiseOrthogonal.

Variables (M : {group gT}) (S : seq 'CF(G)) (nu : 'CF(G) -> 'CF(M)).
Hypotheses (Inu : {in 'Z[S] &, isometry nu}) (oSS : pairwise_orthogonal S).

Let freeS := orthogonal_free oSS.
Let uniqS : uniq S := free_uniq freeS.
Let Z_S : {subset S <= 'Z[S]}. Proof. by move=> phi; apply: mem_zchar. Qed.
Let notS0 : 0 \notin S. Proof. by case/andP: oSS. Qed.
Let dotSS := proj2 (pairwise_orthogonalP oSS).

Lemma map_pairwise_orthogonal : pairwise_orthogonal (map nu S).
Proof.
have inj_nu: {in S &, injective nu}.
  move=> phi psi Sphi Spsi /= eq_nu; apply: contraNeq (memPn notS0 _ Sphi).
  by rewrite -cfnorm_eq0 -Inu ?Z_S // {2}eq_nu Inu ?Z_S // => /dotSS->.
have notSnu0: 0 \notin map nu S.
  apply: contra notS0 => /mapP[phi Sphi /esym/eqP].
  by rewrite -cfnorm_eq0 Inu ?Z_S // cfnorm_eq0 => /eqP <-.
apply/pairwise_orthogonalP; split; first by rewrite /= notSnu0 map_inj_in_uniq.
move=> _ _ /mapP[phi Sphi ->] /mapP[psi Spsi ->].
by rewrite (inj_in_eq inj_nu) // Inu ?Z_S //; apply: dotSS.
Qed.

Lemma cfproj_sum_orthogonal P z phi :
    phi \in S ->
  '[\sum_(xi <- S | P xi) z xi *: nu xi, nu phi]
    = if P phi then z phi * '[phi] else 0.
Proof.
move=> Sphi; have defS := perm_to_rem Sphi.
rewrite cfdot_suml (perm_big _ defS) big_cons /= cfdotZl Inu ?Z_S //.
rewrite big1_seq ?addr0 // => xi; rewrite mem_rem_uniq ?inE //.
by case/and3P=> _ neq_xi Sxi; rewrite cfdotZl Inu ?Z_S // dotSS ?mulr0.
Qed.

Lemma cfdot_sum_orthogonal z1 z2 :
  '[\sum_(xi <- S) z1 xi *: nu xi, \sum_(xi <- S) z2 xi *: nu xi]
    = \sum_(xi <- S) z1 xi * (z2 xi)^* * '[xi].
Proof.
rewrite cfdot_sumr; apply: eq_big_seq => phi Sphi.
by rewrite cfdotZr cfproj_sum_orthogonal // mulrCA mulrA.
Qed.

Lemma cfnorm_sum_orthogonal z :
  '[\sum_(xi <- S) z xi *: nu xi] = \sum_(xi <- S) `|z xi| ^+ 2 * '[xi].
Proof.
by rewrite cfdot_sum_orthogonal; apply: eq_bigr => xi _; rewrite normCK.
Qed.

Lemma cfnorm_orthogonal : '[\sum_(xi <- S) nu xi] = \sum_(xi <- S) '[xi].
Proof.
rewrite -(eq_bigr _ (fun _ _ => scale1r _)) cfnorm_sum_orthogonal.
by apply: eq_bigr => xi; rewrite normCK conjC1 !mul1r.
Qed.

End CfdotPairwiseOrthogonal.

Lemma orthogonal_span S phi :
    pairwise_orthogonal S -> phi \in <<S>>%VS ->
  {z | z = fun xi => '[phi, xi] / '[xi] & phi = \sum_(xi <- S) z xi *: xi}.
Proof.
move=> oSS /free_span[|c -> _]; first exact: orthogonal_free.
set z := fun _ => _ : algC; exists z => //; apply: eq_big_seq => u Su.
rewrite /z cfproj_sum_orthogonal // mulfK // cfnorm_eq0.
by rewrite (memPn _ u Su); case/andP: oSS.
Qed.

Section CfDotOrthonormal.

Variables (M : {group gT}) (S : seq 'CF(G)) (nu : 'CF(G) -> 'CF(M)).
Hypotheses (Inu : {in 'Z[S] &, isometry nu}) (onS : orthonormal S).
Let oSS := orthonormal_orthogonal onS.
Let freeS := orthogonal_free oSS.
Let nS1 : {in S, forall phi, '[phi] = 1}.
Proof. by move=> phi Sphi; case/orthonormalP: onS => _ -> //; rewrite eqxx. Qed.

Lemma map_orthonormal : orthonormal (map nu S).
Proof.
rewrite !orthonormalE map_pairwise_orthogonal // andbT.
by apply/allP=> _ /mapP[xi Sxi ->]; rewrite /= Inu ?nS1 // mem_zchar.
Qed.

Lemma cfproj_sum_orthonormal z phi :
  phi \in S -> '[\sum_(xi <- S) z xi *: nu xi, nu phi] = z phi.
Proof. by move=> Sphi; rewrite cfproj_sum_orthogonal // nS1 // mulr1. Qed.

Lemma cfdot_sum_orthonormal z1 z2 :
  '[\sum_(xi <- S) z1 xi *: xi, \sum_(xi <- S) z2 xi *: xi]
     = \sum_(xi <- S) z1 xi * (z2 xi)^*.
Proof.
rewrite cfdot_sum_orthogonal //; apply: eq_big_seq => phi /nS1->.
by rewrite mulr1.
Qed.

Lemma cfnorm_sum_orthonormal z :
  '[\sum_(xi <- S) z xi *: nu xi] = \sum_(xi <- S) `|z xi| ^+ 2.
Proof.
rewrite cfnorm_sum_orthogonal //.
by apply: eq_big_seq => xi /nS1->; rewrite mulr1.
Qed.

Lemma cfnorm_map_orthonormal : '[\sum_(xi <- S) nu xi] = (size S)%:R.
Proof.
by rewrite cfnorm_orthogonal // (eq_big_seq _ nS1) big_tnth sumr_const card_ord.
Qed.

Lemma orthonormal_span phi :
    phi \in <<S>>%VS ->
  {z | z = fun xi => '[phi, xi] & phi = \sum_(xi <- S) z xi *: xi}.
Proof.
case/orthogonal_span=> // _ -> {2}->; set z := fun _ => _ : algC.
by exists z => //; apply: eq_big_seq => xi /nS1->; rewrite divr1.
Qed.

End CfDotOrthonormal.

Lemma cfnorm_orthonormal S :
  orthonormal S -> '[\sum_(xi <- S) xi] = (size S)%:R.
Proof. exact: cfnorm_map_orthonormal. Qed.

Lemma vchar_orthonormalP S :
    {subset S <= 'Z[irr G]} ->
  reflect (exists I : {set Iirr G}, exists b : Iirr G -> bool,
           perm_eq S [seq (-1) ^+ b i *: 'chi_i | i in I])
          (orthonormal S).
Proof.
move=> vcS; apply: (equivP orthonormalP).
split=> [[uniqS oSS] | [I [b defS]]]; last first.
  split=> [|xi1 xi2]; rewrite ?(perm_mem defS).
    rewrite (perm_uniq defS) map_inj_uniq ?enum_uniq // => i j /eqP.
    by rewrite eq_signed_irr => /andP[_ /eqP].
  case/mapP=> [i _ ->] /mapP[j _ ->]; rewrite eq_signed_irr.
  rewrite cfdotZl cfdotZr rmorph_sign mulrA cfdot_irr -signr_addb mulr_natr.
  by rewrite mulrb andbC; case: eqP => //= ->; rewrite addbb eqxx.
pose I := [set i | ('chi_i \in S) || (- 'chi_i \in S)].
pose b i := - 'chi_i \in S; exists I, b.
apply: uniq_perm => // [|xi].
  rewrite map_inj_uniq ?enum_uniq // => i j /eqP.
  by rewrite eq_signed_irr => /andP[_ /eqP].
apply/idP/mapP=> [Sxi | [i Ii ->{xi}]]; last first.
  move: Ii; rewrite mem_enum inE orbC -/(b i).
  by case b_i: (b i); rewrite (scale1r, scaleN1r).
have: '[xi] = 1 by rewrite oSS ?eqxx.
have vc_xi := vcS _ Sxi; rewrite cfdot_sum_irr.
case/natr_sum_eq1 => [i _ | i [_ /eqP norm_xi_i xi_i'_0]].
  by rewrite -normCK rpredX // natr_norm_int ?Cint_cfdot_vchar_irr.
suffices def_xi: xi = (-1) ^+ b i *: 'chi_i.
  exists i; rewrite // mem_enum inE -/(b i) orbC.
  by case: (b i) def_xi Sxi => // ->; rewrite scale1r.
move: Sxi; rewrite [xi]cfun_sum_cfdot (bigD1 i) //.
rewrite big1 //= ?addr0 => [|j ne_ji]; last first.
  apply/eqP; rewrite scaler_eq0 -normr_eq0 -[_ == 0](expf_eq0 _ 2) normCK.
  by rewrite xi_i'_0 ?eqxx.
have:= norm_xi_i; rewrite (aut_intr _ (Cint_cfdot_vchar_irr _ _)) //.
rewrite -subr_eq0 subr_sqr_1 mulf_eq0 subr_eq0 addr_eq0 /b scaler_sign.
case/pred2P=> ->; last by rewrite scaleN1r => ->.
rewrite scale1r => Sxi; case: ifP => // SNxi.
have:= oSS _ _ Sxi SNxi; rewrite cfdotNr cfdot_irr eqxx; case: eqP => // _.
by move/eqP; rewrite oppr_eq0 oner_eq0.
Qed.

Lemma vchar_norm1P phi :
    phi \in 'Z[irr G] -> '[phi] = 1 ->
  exists b : bool, exists i : Iirr G, phi = (-1) ^+ b *: 'chi_i.
Proof.
move=> Zphi phiN1.
have: orthonormal phi by rewrite /orthonormal/= phiN1 eqxx.
case/vchar_orthonormalP=> [xi /predU1P[->|] // | I [b def_phi]].
have: phi \in (phi : seq _) := mem_head _ _.
by rewrite (perm_mem def_phi) => /mapP[i _ ->]; exists (b i), i.
Qed.

Lemma zchar_small_norm phi n :
    phi \in 'Z[irr G] -> '[phi] = n%:R -> (n < 4)%N ->
  {S : n.-tuple 'CF(G) |
    [/\ orthonormal S, {subset S <= 'Z[irr G]} & phi = \sum_(xi <- S) xi]}.
Proof.
move=> Zphi def_n lt_n_4.
pose S := [seq '[phi, 'chi_i] *: 'chi_i | i in irr_constt phi].
have def_phi: phi = \sum_(xi <- S) xi.
  rewrite big_image big_mkcond {1}[phi]cfun_sum_cfdot.
  by apply: eq_bigr => i _; rewrite if_neg; case: eqP => // ->; rewrite scale0r.
have orthS: orthonormal S.
  apply/orthonormalP; split=> [|_ _ /mapP[i phi_i ->] /mapP[j _ ->]].
    rewrite map_inj_in_uniq ?enum_uniq // => i j; rewrite mem_enum => phi_i _.
    by move/eqP; rewrite eq_scaled_irr (negbTE phi_i) => /andP[_ /= /eqP].
  rewrite eq_scaled_irr cfdotZl cfdotZr cfdot_irr mulrA mulr_natr mulrb.
  rewrite mem_enum in phi_i; rewrite (negbTE phi_i) andbC; case: eqP => // <-.
  have /natrP[m def_m] := natr_norm_int (Cint_cfdot_vchar_irr i Zphi).
  apply/eqP; rewrite eqxx /= -normCK def_m -natrX eqr_nat eqn_leq lt0n.
  rewrite expn_eq0 andbT -eqC_nat -def_m normr_eq0 [~~ _]phi_i andbT.
  rewrite (leq_exp2r _ 1) // -ltnS -(@ltn_exp2r _ _ 2) //.
  apply: leq_ltn_trans lt_n_4; rewrite -leC_nat -def_n natrX.
  rewrite cfdot_sum_irr (bigD1 i) //= -normCK def_m addrC -subr_ge0 addrK.
  by rewrite sumr_ge0 // => ? _; apply: mul_conjC_ge0.
have <-: size S = n.
  by apply/eqP; rewrite -eqC_nat -def_n def_phi cfnorm_orthonormal.
exists (in_tuple S); split=> // _ /mapP[i _ ->].
by rewrite scale_zchar ?irr_vchar // Cint_cfdot_vchar_irr.
Qed.

Lemma vchar_norm2 phi :
    phi \in 'Z[irr G, G^#] -> '[phi] = 2 ->
  exists i, exists2 j, j != i & phi = 'chi_i - 'chi_j.
Proof.
rewrite zchar_split cfunD1E => /andP[Zphi phi1_0].
case/zchar_small_norm => // [[[|chi [|xi [|?]]] //= S2]].
case=> /andP[/and3P[Nchi Nxi _] /= ochi] /allP/and3P[Zchi Zxi _].
rewrite big_cons big_seq1 => def_phi.
have [b [i def_chi]] := vchar_norm1P Zchi (eqP Nchi).
have [c [j def_xi]] := vchar_norm1P Zxi (eqP Nxi).
have neq_ji: j != i.
  apply: contraTneq ochi; rewrite !andbT def_chi def_xi => ->.
  rewrite cfdotZl cfdotZr rmorph_sign cfnorm_irr mulr1 -signr_addb.
  by rewrite signr_eq0.
have neq_bc: b != c.
  apply: contraTneq phi1_0; rewrite def_phi def_chi def_xi => ->.
  rewrite -scalerDr !cfunE mulf_eq0 signr_eq0 eq_le lt_geF //.
  by rewrite ltr_pDl ?irr1_gt0.
rewrite {}def_phi {}def_chi {}def_xi !scaler_sign.
case: b c neq_bc => [|] [|] // _; last by exists i, j.
by exists j, i; rewrite 1?eq_sym // addrC.
Qed.

End VChar.

Section Isometries.

Variables (gT : finGroupType) (L G : {group gT}) (S : seq 'CF(L)).
Implicit Type nu : {additive 'CF(L) -> 'CF(G)}.

Lemma Zisometry_of_cfnorm (tauS : seq 'CF(G)) :
    pairwise_orthogonal S -> pairwise_orthogonal tauS ->
    map cfnorm tauS = map cfnorm S -> {subset tauS <= 'Z[irr G]} ->
  {tau : {linear 'CF(L) -> 'CF(G)} | map tau S = tauS
       & {in 'Z[S], isometry tau, to 'Z[irr G]}}.
Proof.
move=> oSS oTT /isometry_of_cfnorm[||tau defT Itau] // Z_T; exists tau => //.
split=> [|_ /zchar_nth_expansion[u Zu ->]].
  by apply: sub_in2 Itau; apply: zchar_span.
rewrite big_seq linear_sum rpred_sum // => xi Sxi.
by rewrite linearZ scale_zchar ?Z_T // -defT map_f ?mem_nth.
Qed.

Lemma Zisometry_of_iso f :
    free S -> {in S, isometry f, to 'Z[irr G]} ->
  {tau : {linear 'CF(L) -> 'CF(G)} | {in S, tau =1 f}
       & {in 'Z[S], isometry tau, to 'Z[irr G]}}.
Proof.
move=> freeS [If Zf]; have [tau Dtau Itau] := isometry_of_free freeS If.
exists tau => //; split; first by apply: sub_in2 Itau; apply: zchar_span.
move=> _ /zchar_nth_expansion[a Za ->]; rewrite linear_sum rpred_sum // => i _.
by rewrite linearZ rpredZ_int ?Dtau ?Zf ?mem_nth.
Qed.

Lemma Zisometry_inj A nu :
  {in 'Z[S, A] &, isometry nu} -> {in 'Z[S, A] &, injective nu}.
Proof. by move/isometry_raddf_inj; apply; apply: rpredB. Qed.

Lemma isometry_in_zchar nu : {in S &, isometry nu} -> {in 'Z[S] &, isometry nu}.
Proof.
move=> Inu _ _ /zchar_nth_expansion[u Zu ->] /zchar_nth_expansion[v Zv ->].
rewrite !raddf_sum; apply: eq_bigr => j _ /=.
rewrite !cfdot_suml; apply: eq_bigr => i _.
by rewrite !raddfZ_int //= !cfdotZl !cfdotZr Inu ?mem_nth.
Qed.

End Isometries.

Section AutVchar.

Variables (u : {rmorphism algC -> algC}) (gT : finGroupType) (G : {group gT}).
Local Notation "alpha ^u" := (cfAut u alpha).
Implicit Type (S : seq 'CF(G)) (phi chi : 'CF(G)).

Lemma cfAut_zchar S A psi :
  cfAut_closed u S -> psi \in 'Z[S, A] -> psi^u \in 'Z[S, A].
Proof.
rewrite zchar_split => SuS /andP[/zchar_nth_expansion[z Zz Dpsi] Apsi].
rewrite zchar_split cfAut_on {}Apsi {psi}Dpsi rmorph_sum rpred_sum //= => i _.
by rewrite cfAutZ_Cint // scale_zchar // mem_zchar ?SuS ?mem_nth.
Qed.

Lemma cfAut_vchar A psi : psi \in 'Z[irr G, A] -> psi^u \in 'Z[irr G, A].
Proof. by apply: cfAut_zchar; apply: irr_aut_closed. Qed.

Lemma sub_aut_zchar S A psi :
   {subset S <= 'Z[irr G]} -> psi \in 'Z[S, A] -> psi^u \in 'Z[S, A] ->
  psi - psi^u \in 'Z[S, A^#].
Proof.
move=> Z_S Spsi Spsi_u; rewrite zcharD1 !cfunE subr_eq0 rpredB //=.
by rewrite aut_intr // Cint_vchar1 // (zchar_trans Z_S) ?(zcharW Spsi).
Qed.

Lemma conjC_vcharAut chi x : chi \in 'Z[irr G] -> (u (chi x))^* = u (chi x)^*.
Proof.
case/vcharP=> chi1 Nchi1 [chi2 Nchi2 ->].
by rewrite !cfunE !rmorphB /= !conjC_charAut.
Qed.

Lemma cfdot_aut_vchar phi chi :
  chi \in 'Z[irr G] -> '[phi^u , chi^u] = u '[phi, chi].
Proof.
by case/vcharP=> chi1 Nchi1 [chi2 Nchi2 ->]; rewrite !raddfB /= !cfdot_aut_char.
Qed.

Lemma vchar_aut A chi : (chi^u \in 'Z[irr G, A]) = (chi \in 'Z[irr G, A]).
Proof.
rewrite !(zchar_split _ A) cfAut_on; congr (_ && _).
apply/idP/idP=> [Zuchi|]; last exact: cfAut_vchar.
rewrite [chi]cfun_sum_cfdot rpred_sum // => i _.
rewrite scale_zchar ?irr_vchar //.
by rewrite -(intr_aut u) -cfdot_aut_irr -aut_IirrE Cint_cfdot_vchar_irr.
Qed.

End AutVchar.

Definition cfConjC_vchar :=  cfAut_vchar Num.conj.

Section MoreVchar.

Variables (gT : finGroupType) (G H : {group gT}).

Lemma cfRes_vchar phi : phi \in 'Z[irr G] -> 'Res[H] phi \in 'Z[irr H].
Proof.
case/vcharP=> xi1 Nx1 [xi2 Nxi2 ->].
by rewrite raddfB rpredB ?char_vchar ?cfRes_char.
Qed.

Lemma cfRes_vchar_on A phi :
  H \subset G -> phi \in 'Z[irr G, A] -> 'Res[H] phi \in 'Z[irr H, A].
Proof.
rewrite zchar_split => sHG /andP[Zphi Aphi]; rewrite zchar_split cfRes_vchar //.
apply/cfun_onP=> x /(cfun_onP Aphi); rewrite !cfunElock !genGid sHG => ->.
exact: mul0rn.
Qed.

Lemma cfInd_vchar phi : phi \in 'Z[irr H] -> 'Ind[G] phi \in 'Z[irr G].
Proof.
move=> /vcharP[xi1 Nx1 [xi2 Nxi2 ->]].
by rewrite raddfB rpredB ?char_vchar ?cfInd_char.
Qed.

Lemma sub_conjC_vchar A phi :
  phi \in 'Z[irr G, A] -> phi - (phi^*)%CF \in 'Z[irr G, A^#].
Proof.
move=> Zphi; rewrite sub_aut_zchar ?cfAut_zchar // => _ /irrP[i ->].
  exact: irr_vchar.
exact: cfConjC_irr.
Qed.

Lemma Frobenius_kernel_exists :
  [Frobenius G with complement H] -> {K : {group gT} | [Frobenius G = K ><| H]}.
Proof.
move=> frobG; have [_ ntiHG] := andP frobG.
have [[_ sHG regGH][_ tiHG /eqP defNH]] := (normedTI_memJ_P ntiHG, and3P ntiHG).
suffices /sigW[K defG]: exists K, gval K ><| H == G by exists K; apply/andP.
pose K1 := G :\: cover (H^# :^: G).
have oK1: #|K1| = #|G : H|.
  rewrite cardsD (setIidPr _); last first.
    rewrite cover_imset; apply/bigcupsP=> x Gx.
    by rewrite sub_conjg conjGid ?groupV // (subset_trans (subsetDl _ _)).
  rewrite (cover_partition (partition_normedTI ntiHG)) -(Lagrange sHG).
  by rewrite (card_support_normedTI ntiHG) (cardsD1 1%g) group1 mulSn addnK.
suffices extG i: {j | {in H, 'chi[G]_j =1 'chi[H]_i} & K1 \subset cfker 'chi_j}.
  pose K := [group of \bigcap_i cfker 'chi_(s2val (extG i))].
  have nKH: H \subset 'N(K).
    by apply/norms_bigcap/bigcapsP=> i _; apply: subset_trans (cfker_norm _).
  have tiKH: K :&: H = 1%g.
    apply/trivgP; rewrite -(TI_cfker_irr H) /= setIC; apply/bigcapsP=> i _.
    apply/subsetP=> x /setIP[Hx /bigcapP/(_ i isT)/=]; rewrite !cfkerEirr !inE.
    by case: (extG i) => /= j def_j _; rewrite !def_j.
  exists K; rewrite sdprodE // eqEcard TI_cardMg // mul_subG //=; last first.
    by rewrite (bigcap_min (0 : Iirr H)) ?cfker_sub.
  rewrite -(Lagrange sHG) mulnC leq_pmul2r // -oK1 subset_leq_card //.
  by apply/bigcapsP=> i _; case: (extG i).
case i0: (i == 0).
  exists 0 => [x Hx|]; last by rewrite irr0 cfker_cfun1 subsetDl.
  by rewrite (eqP i0) !irr0 !cfun1E // (subsetP sHG) ?Hx.
have ochi1: '['chi_i, 1] = 0 by rewrite -irr0 cfdot_irr i0.
pose a := 'chi_i 1%g; have Za: a \in Num.int by rewrite intrE Cnat_irr1.
pose theta := 'chi_i - a%:A; pose phi := 'Ind[G] theta + a%:A.
have /cfun_onP theta0: theta \in 'CF(H, H^#).
  by rewrite cfunD1E !cfunE cfun11 mulr1 subrr.
have RItheta: 'Res ('Ind[G] theta) = theta.
  apply/cfun_inP=> x Hx; rewrite cfResE ?cfIndE // (big_setID H) /= addrC.
  apply: canLR (mulKf (neq0CG H)) _; rewrite (setIidPr sHG) mulr_natl.
  rewrite big1 ?add0r => [|y /setDP[/regGH tiHy H'y]]; last first.
    have [-> | ntx] := eqVneq x 1%g; first by rewrite conj1g theta0 ?inE ?eqxx.
    by rewrite theta0 ?tiHy // !inE ntx.
  by rewrite -sumr_const; apply: eq_bigr => y Hy; rewrite cfunJ.
have ophi1: '[phi, 1] = 0.
  rewrite cfdotDl -cfdot_Res_r cfRes_cfun1 // cfdotBl !cfdotZl !cfnorm1.
  by rewrite ochi1 add0r addNr.
have{ochi1} n1phi: '[phi] = 1.
  have: '[phi - a%:A] = '[theta] by rewrite addrK -cfdot_Res_l RItheta.
  rewrite !cfnormBd ?cfnormZ ?cfdotZr ?ophi1 ?ochi1 ?mulr0 //.
  by rewrite !cfnorm1 cfnorm_irr => /addIr.
have Zphi: phi \in 'Z[irr G].
  by rewrite rpredD ?cfInd_vchar ?rpredB ?irr_vchar // scale_zchar ?rpred1.
have def_phi: {in H, phi =1 'chi_i}.
  move=> x Hx /=; rewrite !cfunE -[_ x](cfResE _ sHG) ?RItheta //.
  by rewrite !cfunE !cfun1E ?(subsetP sHG) ?Hx ?subrK.
have [j def_chi_j]: {j | 'chi_j = phi}.
  apply/sig_eqW; have [[] [j]] := vchar_norm1P Zphi n1phi; last first.
    by rewrite scale1r; exists j.
  move/cfunP/(_ 1%g)/eqP; rewrite scaleN1r def_phi // cfunE -addr_eq0 eq_le.
  by rewrite lt_geF // ltr_pDl ?irr1_gt0.
exists j; rewrite ?cfkerEirr def_chi_j //; apply/subsetP => x /setDP[Gx notHx].
rewrite inE cfunE def_phi // cfunE -/a cfun1E // Gx mulr1 cfIndE //.
rewrite big1 ?mulr0 ?add0r // => y Gy; apply/theta0/(contra _ notHx) => Hxy.
by rewrite -(conjgK y x) cover_imset -class_supportEr imset2_f ?groupV.
Qed.

End MoreVchar.

Definition dirr (gT : finGroupType) (B : {set gT}) : {pred 'CF(B)} :=
  [pred f | (f \in irr B) || (- f \in irr B)].
Arguments dirr {gT}.

Section Norm1vchar.

Variables (gT : finGroupType) (G : {group gT}).

Fact dirr_oppr_closed : oppr_closed (dirr G).
Proof. by move=> xi; rewrite !inE opprK orbC. Qed.
HB.instance Definition _ := GRing.isOppClosed.Build (classfun G) (dirr G)
  dirr_oppr_closed.

Lemma dirr_opp v : (- v \in dirr G) = (v \in dirr G). Proof. exact: rpredN. Qed.
Lemma dirr_sign n v : ((-1)^+ n *: v \in dirr G) = (v \in dirr G).
Proof. exact: rpredZsign. Qed.

Lemma irr_dirr i : 'chi_i \in dirr G.
Proof. by rewrite !inE mem_irr. Qed.

Lemma dirrP f :
  reflect (exists b : bool, exists i, f = (-1) ^+ b *: 'chi_i) (f \in dirr G).
Proof.
apply: (iffP idP) => [| [b [i ->]]]; last by rewrite dirr_sign irr_dirr.
case/orP=> /irrP[i Hf]; first by exists false, i; rewrite scale1r.
by exists true, i; rewrite scaleN1r -Hf opprK.
Qed.

(* This should perhaps be the definition of dirr. *)
Lemma dirrE phi : phi \in dirr G = (phi \in 'Z[irr G]) && ('[phi] == 1).
Proof.
apply/dirrP/andP=> [[b [i ->]] | [Zphi /eqP/vchar_norm1P]]; last exact.
by rewrite rpredZsign irr_vchar cfnorm_sign cfnorm_irr.
Qed.

Lemma cfdot_dirr f g : f \in dirr G -> g \in dirr G ->
  '[f, g] = (if f == - g then -1 else (f == g)%:R).
Proof.
case/dirrP=> [b1 [i1 ->]] /dirrP[b2 [i2 ->]].
rewrite cfdotZl cfdotZr rmorph_sign mulrA -signr_addb cfdot_irr.
rewrite -scaleNr -signrN !eq_scaled_irr signr_eq0 !(inj_eq signr_inj) /=.
by rewrite -!negb_add addbN mulr_sign -mulNrn mulrb; case: ifP.
Qed.

Lemma dirr_norm1 phi : phi \in 'Z[irr G] -> '[phi] = 1 -> phi \in dirr G.
Proof. by rewrite dirrE => -> -> /=. Qed.

Lemma dirr_aut u phi : (cfAut u phi \in dirr G) = (phi \in dirr G).
Proof.
rewrite !dirrE vchar_aut; apply: andb_id2l => /cfdot_aut_vchar->.
exact: fmorph_eq1.
Qed.

Definition dIirr (B : {set gT}) := (bool * (Iirr B))%type.

Definition dirr1 (B : {set gT}) : dIirr B := (false, 0).

Definition ndirr (B : {set gT}) (i : dIirr B) : dIirr B :=
  (~~ i.1, i.2).

Lemma ndirr_diff (i : dIirr G) : ndirr i != i.
Proof. by case: i => [] [|] i. Qed.

Lemma ndirrK : involutive (@ndirr G).
Proof. by move=> [b i]; rewrite /ndirr /= negbK. Qed.

Lemma ndirr_inj : injective (@ndirr G).
Proof. exact: (inv_inj ndirrK). Qed.

Definition dchi (B : {set gT}) (i : dIirr B) : 'CF(B) := (-1)^+ i.1 *: 'chi_i.2.

Lemma dchi1 : dchi (dirr1 G) = 1.
Proof. by rewrite /dchi scale1r irr0. Qed.

Lemma dirr_dchi i : dchi i \in dirr G.
Proof. by apply/dirrP; exists i.1; exists i.2. Qed.

Lemma dIrrP phi : reflect (exists i, phi = dchi i) (phi \in dirr G).
Proof.
by apply: (iffP idP)=> [/dirrP[b]|] [i ->]; [exists (b, i) | apply: dirr_dchi].
Qed.

Lemma dchi_ndirrE (i : dIirr G) : dchi (ndirr i) = - dchi i.
Proof. by case: i => [b i]; rewrite /ndirr /dchi signrN scaleNr. Qed.

Lemma cfdot_dchi (i j : dIirr G) : 
  '[dchi i, dchi j] = (i == j)%:R - (i == ndirr j)%:R.
Proof.
case: i => bi i; case: j => bj j; rewrite cfdot_dirr ?dirr_dchi // !xpair_eqE.
rewrite -dchi_ndirrE !eq_scaled_irr signr_eq0 !(inj_eq signr_inj) /=.
by rewrite -!negb_add addbN negbK; case: andP => [[->]|]; rewrite ?subr0 ?add0r.
Qed.

Lemma dchi_vchar i : dchi i \in 'Z[irr G].
Proof. by case: i => b i; rewrite rpredZsign irr_vchar. Qed.

Lemma cfnorm_dchi (i : dIirr G) : '[dchi i] = 1.
Proof.  by case: i => b i; rewrite cfnorm_sign cfnorm_irr. Qed.

Lemma dirr_inj : injective (@dchi G).
Proof.
case=> b1 i1 [b2 i2] /eqP; rewrite eq_scaled_irr (inj_eq signr_inj) /=.
by rewrite signr_eq0 -xpair_eqE => /eqP.
Qed.

Definition dirr_dIirr (B : {set gT}) J (f : J -> 'CF(B)) j : dIirr B :=
  odflt (dirr1 B) [pick i | dchi i == f j].

Lemma dirr_dIirrPE J (f : J -> 'CF(G)) (P : pred J) :
    (forall j, P j -> f j \in dirr G) ->
  forall j, P j -> dchi (dirr_dIirr f j) = f j.
Proof.
rewrite /dirr_dIirr => dirrGf j Pj; case: pickP => [i /eqP //|].
by have /dIrrP[i-> /(_ i)/eqP] := dirrGf j Pj.
Qed.

Lemma dirr_dIirrE J (f : J -> 'CF(G)) :
  (forall j, f j \in dirr G) -> forall j, dchi (dirr_dIirr f j) = f j.
Proof. by move=> dirrGf j; apply: (@dirr_dIirrPE _ _ xpredT). Qed.

Definition dirr_constt (B : {set gT}) (phi: 'CF(B)) : {set (dIirr B)} :=
  [set i | 0 < '[phi, dchi i]].

Lemma dirr_consttE (phi : 'CF(G)) (i : dIirr G) :
  (i \in dirr_constt phi) = (0 < '[phi, dchi i]).
Proof. by rewrite inE. Qed.

Lemma Cnat_dirr (phi : 'CF(G)) i :
  phi \in 'Z[irr G] -> i \in dirr_constt phi -> '[phi, dchi i] \in Num.nat.
Proof.
move=> PiZ; rewrite natrEint dirr_consttE andbC => /ltW -> /=.
by case: i => b i; rewrite cfdotZr rmorph_sign rpredMsign Cint_cfdot_vchar_irr.
Qed.

Lemma dirr_constt_oppr (i : dIirr G) (phi : 'CF(G)) :
  (i \in dirr_constt (-phi)) = (ndirr i \in dirr_constt phi).
Proof. by rewrite !dirr_consttE dchi_ndirrE cfdotNl cfdotNr. Qed.

Lemma dirr_constt_oppI (phi: 'CF(G)) :
   dirr_constt phi :&: dirr_constt (-phi) = set0.
Proof.
apply/setP=> i; rewrite inE !dirr_consttE cfdotNl inE.
apply/idP=> /andP [L1 L2]; have := ltr_pDl L1 L2.
by rewrite subrr lt_def eqxx.
Qed.

Lemma dirr_constt_oppl (phi: 'CF(G)) i :
  i \in dirr_constt phi -> (ndirr i) \notin dirr_constt phi.
Proof.
by rewrite !dirr_consttE dchi_ndirrE cfdotNr oppr_gt0 => /ltW /le_gtF ->.
Qed.

Definition to_dirr  (B : {set gT}) (phi : 'CF(B)) (i : Iirr B) : dIirr B :=
  ('[phi, 'chi_i] < 0, i).

Definition of_irr (B : {set gT}) (i : dIirr B) : Iirr B := i.2.

Lemma irr_constt_to_dirr (phi: 'CF(G)) i : phi \in 'Z[irr G] ->
  (i \in irr_constt phi) = (to_dirr phi i \in dirr_constt phi).
Proof.
move=> Zphi; rewrite irr_consttE dirr_consttE cfdotZr rmorph_sign /=.
by rewrite -real_normrEsign ?normr_gt0 ?Rreal_int // Cint_cfdot_vchar_irr.
Qed.

Lemma to_dirrK (phi: 'CF(G)) : cancel (to_dirr phi) (@of_irr G).
Proof. by []. Qed.

Lemma of_irrK (phi: 'CF(G)) :
  {in dirr_constt phi, cancel (@of_irr G) (to_dirr phi)}.
Proof.
case=> b i; rewrite dirr_consttE cfdotZr rmorph_sign /= /to_dirr mulr_sign.
by rewrite fun_if oppr_gt0; case: b => [|/ltW/le_gtF] ->.
Qed.

Lemma cfdot_todirrE (phi: 'CF(G)) i (phi_i := dchi (to_dirr phi i)) :
  '[phi, phi_i] *: phi_i = '[phi, 'chi_i] *: 'chi_i.
Proof. by rewrite cfdotZr rmorph_sign mulrC -scalerA signrZK. Qed.

Lemma cfun_sum_dconstt (phi : 'CF(G)) :
    phi \in 'Z[irr G] ->
  phi = \sum_(i in dirr_constt phi) '[phi, dchi i] *: dchi i.
Proof.
move=> PiZ; rewrite [LHS]cfun_sum_constt.
rewrite (reindex (to_dirr phi))=> [/= |]; last first.
  by exists (@of_irr _)=> //; apply: of_irrK .
by apply: eq_big => i; rewrite ?irr_constt_to_dirr // cfdot_todirrE.
Qed.

Lemma cnorm_dconstt (phi : 'CF(G)) :
  phi \in 'Z[irr G] ->
  '[phi] = \sum_(i in dirr_constt phi) '[phi, dchi i] ^+ 2.
Proof.
move=> PiZ; rewrite {1 2}(cfun_sum_dconstt PiZ).
rewrite cfdot_suml; apply: eq_bigr=> i IiD.
rewrite cfdot_sumr (bigD1 i) //= big1 ?addr0 => [|j /andP [JiD IdJ]].
  rewrite cfdotZr cfdotZl cfdot_dchi eqxx eq_sym (negPf (ndirr_diff i)).
  by rewrite subr0 mulr1 aut_natr ?Cnat_dirr.
rewrite cfdotZr cfdotZl cfdot_dchi eq_sym (negPf IdJ) -natrB ?mulr0 //.
by rewrite (negPf (contraNneq _ (dirr_constt_oppl JiD))) => // <-.
Qed.

Lemma dirr_small_norm (phi : 'CF(G)) n :
  phi \in 'Z[irr G] -> '[phi] = n%:R -> (n < 4)%N ->
  [/\ #|dirr_constt phi| = n, dirr_constt phi :&: dirr_constt (- phi) = set0 &
      phi = \sum_(i in dirr_constt phi) dchi i].
Proof.
move=> PiZ Pln; rewrite ltnNge -leC_nat => Nl4.
suffices Fd i: i \in dirr_constt phi -> '[phi, dchi i] = 1.
  split; last 2 [by apply/setP=> u; rewrite !inE cfdotNl oppr_gt0 lt_asym].
    apply/eqP; rewrite -eqC_nat -sumr_const -Pln (cnorm_dconstt PiZ).
    by apply/eqP/eq_bigr=> i Hi; rewrite Fd // expr1n.
  rewrite {1}[phi]cfun_sum_dconstt //.
  by apply: eq_bigr => i /Fd->; rewrite scale1r.
move=> IiD; apply: contraNeq Nl4 => phi_i_neq1.
rewrite -Pln cnorm_dconstt // (bigD1 i) ?ler_wpDr ?sumr_ge0 //=.
  by move=> j /andP[JiD _]; rewrite exprn_ge0 ?natr_ge0 ?Cnat_dirr.
have /natrP[m Dm] := Cnat_dirr PiZ IiD; rewrite Dm -natrX ler_nat (leq_sqr 2).
by rewrite ltn_neqAle eq_sym -eqC_nat -ltC_nat -Dm phi_i_neq1 -dirr_consttE.
Qed.

Lemma cfdot_sum_dchi (phi1 phi2 : 'CF(G)) :
  '[\sum_(i in dirr_constt phi1) dchi i,
    \sum_(i in dirr_constt phi2) dchi i] =
  #|dirr_constt phi1 :&: dirr_constt phi2|%:R -
    #|dirr_constt phi1 :&: dirr_constt (- phi2)|%:R.
Proof.
rewrite addrC (big_setID (dirr_constt (- phi2))) /= cfdotDl; congr (_ + _).
  rewrite cfdot_suml -sumr_const -sumrN; apply: eq_bigr => i /setIP[p1i p2i].
  rewrite cfdot_sumr (bigD1 (ndirr i)) -?dirr_constt_oppr //= dchi_ndirrE.
  rewrite cfdotNr cfnorm_dchi big1 ?addr0 // => j /andP[p2j i'j].
  rewrite cfdot_dchi -(inv_eq ndirrK) [in rhs in - rhs]eq_sym (negPf i'j) subr0.
  rewrite (negPf (contraTneq _ p2i)) // => ->.
  by rewrite dirr_constt_oppr dirr_constt_oppl.
rewrite cfdot_sumr (big_setID (dirr_constt phi1)) setIC /= addrC.
rewrite big1 ?add0r => [|j /setDP[p2j p1'j]]; last first.
  rewrite cfdot_suml big1 // => i /setDP[p1i p2'i].
  rewrite cfdot_dchi (negPf (contraTneq _ p1i)) => [|-> //].
  rewrite (negPf (contraNneq _ p2'i)) ?subrr // => ->.
  by rewrite dirr_constt_oppr ndirrK.
rewrite -sumr_const; apply: eq_bigr => i /setIP[p1i p2i]; rewrite cfdot_suml.
rewrite (bigD1 i) /=; last by rewrite inE dirr_constt_oppr dirr_constt_oppl.
rewrite cfnorm_dchi big1 ?addr0 // => j /andP[/setDP[p1j _] i'j].
rewrite cfdot_dchi (negPf i'j) (negPf (contraTneq _ p1j)) ?subrr // => ->.
exact: dirr_constt_oppl.
Qed.

Lemma cfdot_dirr_eq1 :
  {in dirr G &, forall phi psi, ('[phi, psi] == 1) = (phi == psi)}.
Proof.
move=> _ _ /dirrP[b1 [i1 ->]] /dirrP[b2 [i2 ->]].
rewrite eq_signed_irr cfdotZl cfdotZr rmorph_sign cfdot_irr mulrA -signr_addb.
rewrite pmulrn -rmorphMsign (eqr_int _ _ 1) -negb_add.
by case: (b1 (+) b2) (i1 == i2) => [] [].
Qed.

Lemma cfdot_add_dirr_eq1 :
  {in dirr G & &, forall phi1 phi2 psi,
    '[phi1 + phi2, psi] = 1 -> psi = phi1 \/ psi = phi2}.
Proof.
move=> _ _ _ /dirrP[b1 [i1 ->]] /dirrP[b2 [i2 ->]] /dirrP[c [j ->]] /eqP.
rewrite cfdotDl !cfdotZl !cfdotZr !rmorph_sign !cfdot_irr !mulrA -!signr_addb.
rewrite 2!{1}signrE !mulrBl !mul1r -!natrM addrCA -subr_eq0 -!addrA.
rewrite -!opprD addrA subr_eq0 -mulrSr -!natrD eqr_nat => eq_phi_psi.
apply/pred2P; rewrite /= !eq_signed_irr -!negb_add !(eq_sym j) !(addbC c).
by case: (i1 == j) eq_phi_psi; case: (i2 == j); do 2!case: (_ (+) c).
Qed.

End Norm1vchar.

Prenex Implicits ndirr ndirrK to_dirr to_dirrK of_irr.
Arguments of_irrK {gT G phi} [i] phi_i : rename.