1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From HB Require Import structures.
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path.
From mathcomp Require Import div choice fintype tuple finfun bigop prime order.
From mathcomp Require Import ssralg poly finset fingroup morphism perm.
From mathcomp Require Import automorphism quotient finalg action gproduct.
From mathcomp Require Import zmodp commutator cyclic center pgroup sylow.
From mathcomp Require Import frobenius vector ssrnum ssrint archimedean intdiv.
From mathcomp Require Import algC algnum classfun character integral_char.
(******************************************************************************)
(* This file provides basic notions of virtual character theory: *)
(* 'Z[S, A] == collective predicate for the phi that are Z-linear *)
(* combinations of elements of S : seq 'CF(G) and have *)
(* support in A : {set gT}. *)
(* 'Z[S] == collective predicate for the Z-linear combinations of *)
(* elements of S. *)
(* 'Z[irr G] == the collective predicate for virtual characters. *)
(* dirr G == the collective predicate for normal virtual characters, *)
(* i.e., virtual characters of norm 1: *)
(* mu \in dirr G <=> m \in 'Z[irr G] and '[mu] = 1 *)
(* <=> mu or - mu \in irr G. *)
(* --> othonormal subsets of 'Z[irr G] are contained in dirr G. *)
(* dIirr G == an index type for normal virtual characters. *)
(* dchi i == the normal virtual character of index i. *)
(* of_irr i == the (unique) irreducible constituent of dchi i: *)
(* dchi i = 'chi_(of_irr i) or - 'chi_(of_irr i). *)
(* ndirr i == the index of - dchi i. *)
(* dirr1 G == the normal virtual character index of 1 : 'CF(G), the *)
(* principal character. *)
(* dirr_dIirr j f == the index i (or dirr1 G if it does not exist) such that *)
(* dchi i = f j. *)
(* dirr_constt phi == the normal virtual character constituents of phi: *)
(* i \in dirr_constt phi <=> [dchi i, phi] > 0. *)
(* to_dirr phi i == the normal virtual character constituent of phi with an *)
(* irreducible constituent i, when i \in irr_constt phi. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Local Open Scope group_scope.
Import Order.TTheory GRing.Theory Num.Theory.
Local Open Scope ring_scope.
Section Basics.
Variables (gT : finGroupType) (B : {set gT}) (S : seq 'CF(B)) (A : {set gT}).
Definition Zchar : {pred 'CF(B)} :=
[pred phi in 'CF(B, A) | dec_Cint_span (in_tuple S) phi].
Lemma cfun0_zchar : 0 \in Zchar.
Proof.
rewrite inE mem0v; apply/sumboolP; exists 0.
by rewrite big1 // => i _; rewrite ffunE.
Qed.
Fact Zchar_zmod : zmod_closed Zchar.
Proof.
split; first exact: cfun0_zchar.
move=> phi xi /andP[Aphi /sumboolP[a Da]] /andP[Axi /sumboolP[b Db]].
rewrite inE rpredB // Da Db -sumrB; apply/sumboolP; exists (a - b).
by apply: eq_bigr => i _; rewrite -mulrzBr !ffunE.
Qed.
HB.instance Definition _ := GRing.isZmodClosed.Build (classfun B) Zchar
Zchar_zmod.
Lemma scale_zchar a phi : a \in Num.int -> phi \in Zchar -> a *: phi \in Zchar.
Proof. by case/intrP=> m -> Zphi; rewrite scaler_int rpredMz. Qed.
End Basics.
Notation "''Z[' S , A ]" := (Zchar S A) (format "''Z[' S , A ]") : group_scope.
Notation "''Z[' S ]" := 'Z[S, setT] (format "''Z[' S ]") : group_scope.
Section Zchar.
Variables (gT : finGroupType) (G : {group gT}).
Implicit Types (A B : {set gT}) (S : seq 'CF(G)).
Lemma zchar_split S A phi :
phi \in 'Z[S, A] = (phi \in 'Z[S]) && (phi \in 'CF(G, A)).
Proof. by rewrite !inE cfun_onT andbC. Qed.
Lemma zcharD1E phi S : (phi \in 'Z[S, G^#]) = (phi \in 'Z[S]) && (phi 1%g == 0).
Proof. by rewrite zchar_split cfunD1E. Qed.
Lemma zcharD1 phi S A :
(phi \in 'Z[S, A^#]) = (phi \in 'Z[S, A]) && (phi 1%g == 0).
Proof. by rewrite zchar_split cfun_onD1 andbA -zchar_split. Qed.
Lemma zcharW S A : {subset 'Z[S, A] <= 'Z[S]}.
Proof. by move=> phi; rewrite zchar_split => /andP[]. Qed.
Lemma zchar_on S A : {subset 'Z[S, A] <= 'CF(G, A)}.
Proof. by move=> phi /andP[]. Qed.
Lemma zchar_onS A B S : A \subset B -> {subset 'Z[S, A] <= 'Z[S, B]}.
Proof.
move=> sAB phi; rewrite zchar_split (zchar_split _ B) => /andP[->].
exact: cfun_onS.
Qed.
Lemma zchar_onG S : 'Z[S, G] =i 'Z[S].
Proof. by move=> phi; rewrite zchar_split cfun_onG andbT. Qed.
Lemma irr_vchar_on A : {subset 'Z[irr G, A] <= 'CF(G, A)}.
Proof. exact: zchar_on. Qed.
Lemma support_zchar S A phi : phi \in 'Z[S, A] -> support phi \subset A.
Proof. by move/zchar_on; rewrite cfun_onE. Qed.
Lemma mem_zchar_on S A phi :
phi \in 'CF(G, A) -> phi \in S -> phi \in 'Z[S, A].
Proof.
move=> Aphi /(@tnthP _ _ (in_tuple S))[i Dphi]; rewrite inE /= {}Aphi {phi}Dphi.
apply/sumboolP; exists [ffun j => (j == i)%:Z].
rewrite (bigD1 i) //= ffunE eqxx (tnth_nth 0) big1 ?addr0 // => j i'j.
by rewrite ffunE (negPf i'j).
Qed.
(* A special lemma is needed because trivial fails to use the cfun_onT Hint. *)
Lemma mem_zchar S phi : phi \in S -> phi \in 'Z[S].
Proof. by move=> Sphi; rewrite mem_zchar_on ?cfun_onT. Qed.
Lemma zchar_nth_expansion S A phi :
phi \in 'Z[S, A] ->
{z | forall i, z i \in Num.int & phi = \sum_(i < size S) z i *: S`_i}.
Proof.
case/andP=> _ /sumboolP/sig_eqW[/= z ->]; exists (intr \o z) => //=.
by apply: eq_bigr => i _; rewrite scaler_int.
Qed.
Lemma zchar_tuple_expansion n (S : n.-tuple 'CF(G)) A phi :
phi \in 'Z[S, A] ->
{z | forall i, z i \in Num.int & phi = \sum_(i < n) z i *: S`_i}.
Proof. by move/zchar_nth_expansion; rewrite size_tuple. Qed.
(* A pure seq version with the extra hypothesis of S's unicity. *)
Lemma zchar_expansion S A phi : uniq S ->
phi \in 'Z[S, A] ->
{z | forall xi, z xi \in Num.int & phi = \sum_(xi <- S) z xi *: xi}.
Proof.
move=> Suniq /zchar_nth_expansion[z Zz ->] /=.
pose zS xi := oapp z 0 (insub (index xi S)).
exists zS => [xi | ]; rewrite {}/zS; first by case: (insub _) => /=.
rewrite (big_nth 0) big_mkord; apply: eq_bigr => i _; congr (_ *: _).
by rewrite index_uniq // valK.
Qed.
Lemma zchar_span S A : {subset 'Z[S, A] <= <<S>>%VS}.
Proof.
move=> _ /zchar_nth_expansion[z Zz ->] /=.
by apply: rpred_sum => i _; rewrite rpredZ // memv_span ?mem_nth.
Qed.
Lemma zchar_trans S1 S2 A B :
{subset S1 <= 'Z[S2, B]} -> {subset 'Z[S1, A] <= 'Z[S2, A]}.
Proof.
move=> sS12 phi; rewrite !(zchar_split _ A) andbC => /andP[->]; rewrite andbT.
case/zchar_nth_expansion=> z Zz ->; apply: rpred_sum => i _.
by rewrite scale_zchar // (@zcharW _ B) ?sS12 ?mem_nth.
Qed.
Lemma zchar_trans_on S1 S2 A :
{subset S1 <= 'Z[S2, A]} -> {subset 'Z[S1] <= 'Z[S2, A]}.
Proof.
move=> sS12 _ /zchar_nth_expansion[z Zz ->]; apply: rpred_sum => i _.
by rewrite scale_zchar // sS12 ?mem_nth.
Qed.
Lemma zchar_sub_irr S A :
{subset S <= 'Z[irr G]} -> {subset 'Z[S, A] <= 'Z[irr G, A]}.
Proof. exact: zchar_trans. Qed.
Lemma zchar_subset S1 S2 A :
{subset S1 <= S2} -> {subset 'Z[S1, A] <= 'Z[S2, A]}.
Proof.
move=> sS12; apply: zchar_trans setT _ => // f /sS12 S2f.
by rewrite mem_zchar.
Qed.
Lemma zchar_subseq S1 S2 A :
subseq S1 S2 -> {subset 'Z[S1, A] <= 'Z[S2, A]}.
Proof. by move/mem_subseq; apply: zchar_subset. Qed.
Lemma zchar_filter S A (p : pred 'CF(G)) :
{subset 'Z[filter p S, A] <= 'Z[S, A]}.
Proof. by apply: zchar_subset=> f; apply/mem_subseq/filter_subseq. Qed.
End Zchar.
Section VChar.
Variables (gT : finGroupType) (G : {group gT}).
Implicit Types (A B : {set gT}) (phi chi : 'CF(G)) (S : seq 'CF(G)).
Lemma char_vchar chi : chi \is a character -> chi \in 'Z[irr G].
Proof.
case/char_sum_irr=> r ->; apply: rpred_sum => i _.
by rewrite mem_zchar ?mem_tnth.
Qed.
Lemma irr_vchar i : 'chi[G]_i \in 'Z[irr G].
Proof. exact/char_vchar/irr_char. Qed.
Lemma cfun1_vchar : 1 \in 'Z[irr G]. Proof. by rewrite -irr0 irr_vchar. Qed.
Lemma vcharP phi :
reflect (exists2 chi1, chi1 \is a character
& exists2 chi2, chi2 \is a character & phi = chi1 - chi2)
(phi \in 'Z[irr G]).
Proof.
apply: (iffP idP) => [| [a Na [b Nb ->]]]; last by rewrite rpredB ?char_vchar.
case/zchar_tuple_expansion=> z Zz ->; rewrite (bigID (fun i => 0 <= z i)) /=.
set chi1 := \sum_(i | _) _; set nchi2 := \sum_(i | _) _.
exists chi1; last exists (- nchi2); last by rewrite opprK.
apply: rpred_sum => i zi_ge0; rewrite -tnth_nth rpredZ_nat ?irr_char //.
by rewrite natrEint Zz.
rewrite -sumrN rpred_sum // => i zi_lt0; rewrite -scaleNr -tnth_nth.
rewrite rpredZ_nat ?irr_char // natrEint rpredN Zz oppr_ge0 ltW //.
by rewrite real_ltNge ?Rreal_int.
Qed.
Lemma Aint_vchar phi x : phi \in 'Z[irr G] -> phi x \in Aint.
Proof.
case/vcharP=> [chi1 Nchi1 [chi2 Nchi2 ->]].
by rewrite !cfunE rpredB ?Aint_char.
Qed.
Lemma Cint_vchar1 phi : phi \in 'Z[irr G] -> phi 1%g \in Num.int.
Proof.
case/vcharP=> phi1 Nphi1 [phi2 Nphi2 ->].
by rewrite !cfunE rpredB // rpred_nat_num ?Cnat_char1.
Qed.
Lemma Cint_cfdot_vchar_irr i phi :
phi \in 'Z[irr G] -> '[phi, 'chi_i] \in Num.int.
Proof.
case/vcharP=> chi1 Nchi1 [chi2 Nchi2 ->].
by rewrite cfdotBl rpredB // rpred_nat_num ?Cnat_cfdot_char_irr.
Qed.
Lemma cfdot_vchar_r phi psi :
psi \in 'Z[irr G] -> '[phi, psi] = \sum_i '[phi, 'chi_i] * '[psi, 'chi_i].
Proof.
move=> Zpsi; rewrite cfdot_sum_irr; apply: eq_bigr => i _; congr (_ * _).
by rewrite aut_intr ?Cint_cfdot_vchar_irr.
Qed.
Lemma Cint_cfdot_vchar :
{in 'Z[irr G] &, forall phi psi, '[phi, psi] \in Num.int}.
Proof.
move=> phi psi Zphi Zpsi; rewrite /= cfdot_vchar_r // rpred_sum // => k _.
by rewrite rpredM ?Cint_cfdot_vchar_irr.
Qed.
Lemma Cnat_cfnorm_vchar : {in 'Z[irr G], forall phi, '[phi] \in Num.nat}.
Proof. by move=> phi Zphi; rewrite /= natrEint cfnorm_ge0 Cint_cfdot_vchar. Qed.
Fact vchar_mulr_closed : mulr_closed 'Z[irr G].
Proof.
split; first exact: cfun1_vchar.
move=> _ _ /vcharP[xi1 Nxi1 [xi2 Nxi2 ->]] /vcharP[xi3 Nxi3 [xi4 Nxi4 ->]].
by rewrite mulrBl !mulrBr !(rpredB, rpredD) // char_vchar ?rpredM.
Qed.
HB.instance Definition _ := GRing.isMulClosed.Build (classfun G) 'Z[irr G]
vchar_mulr_closed.
Lemma mul_vchar A :
{in 'Z[irr G, A] &, forall phi psi, phi * psi \in 'Z[irr G, A]}.
Proof.
move=> phi psi; rewrite zchar_split => /andP[Zphi Aphi] /zcharW Zpsi.
rewrite zchar_split rpredM //; apply/cfun_onP=> x A'x.
by rewrite cfunE (cfun_onP Aphi) ?mul0r.
Qed.
Section CfdotPairwiseOrthogonal.
Variables (M : {group gT}) (S : seq 'CF(G)) (nu : 'CF(G) -> 'CF(M)).
Hypotheses (Inu : {in 'Z[S] &, isometry nu}) (oSS : pairwise_orthogonal S).
Let freeS := orthogonal_free oSS.
Let uniqS : uniq S := free_uniq freeS.
Let Z_S : {subset S <= 'Z[S]}. Proof. by move=> phi; apply: mem_zchar. Qed.
Let notS0 : 0 \notin S. Proof. by case/andP: oSS. Qed.
Let dotSS := proj2 (pairwise_orthogonalP oSS).
Lemma map_pairwise_orthogonal : pairwise_orthogonal (map nu S).
Proof.
have inj_nu: {in S &, injective nu}.
move=> phi psi Sphi Spsi /= eq_nu; apply: contraNeq (memPn notS0 _ Sphi).
by rewrite -cfnorm_eq0 -Inu ?Z_S // {2}eq_nu Inu ?Z_S // => /dotSS->.
have notSnu0: 0 \notin map nu S.
apply: contra notS0 => /mapP[phi Sphi /esym/eqP].
by rewrite -cfnorm_eq0 Inu ?Z_S // cfnorm_eq0 => /eqP <-.
apply/pairwise_orthogonalP; split; first by rewrite /= notSnu0 map_inj_in_uniq.
move=> _ _ /mapP[phi Sphi ->] /mapP[psi Spsi ->].
by rewrite (inj_in_eq inj_nu) // Inu ?Z_S //; apply: dotSS.
Qed.
Lemma cfproj_sum_orthogonal P z phi :
phi \in S ->
'[\sum_(xi <- S | P xi) z xi *: nu xi, nu phi]
= if P phi then z phi * '[phi] else 0.
Proof.
move=> Sphi; have defS := perm_to_rem Sphi.
rewrite cfdot_suml (perm_big _ defS) big_cons /= cfdotZl Inu ?Z_S //.
rewrite big1_seq ?addr0 // => xi; rewrite mem_rem_uniq ?inE //.
by case/and3P=> _ neq_xi Sxi; rewrite cfdotZl Inu ?Z_S // dotSS ?mulr0.
Qed.
Lemma cfdot_sum_orthogonal z1 z2 :
'[\sum_(xi <- S) z1 xi *: nu xi, \sum_(xi <- S) z2 xi *: nu xi]
= \sum_(xi <- S) z1 xi * (z2 xi)^* * '[xi].
Proof.
rewrite cfdot_sumr; apply: eq_big_seq => phi Sphi.
by rewrite cfdotZr cfproj_sum_orthogonal // mulrCA mulrA.
Qed.
Lemma cfnorm_sum_orthogonal z :
'[\sum_(xi <- S) z xi *: nu xi] = \sum_(xi <- S) `|z xi| ^+ 2 * '[xi].
Proof.
by rewrite cfdot_sum_orthogonal; apply: eq_bigr => xi _; rewrite normCK.
Qed.
Lemma cfnorm_orthogonal : '[\sum_(xi <- S) nu xi] = \sum_(xi <- S) '[xi].
Proof.
rewrite -(eq_bigr _ (fun _ _ => scale1r _)) cfnorm_sum_orthogonal.
by apply: eq_bigr => xi; rewrite normCK conjC1 !mul1r.
Qed.
End CfdotPairwiseOrthogonal.
Lemma orthogonal_span S phi :
pairwise_orthogonal S -> phi \in <<S>>%VS ->
{z | z = fun xi => '[phi, xi] / '[xi] & phi = \sum_(xi <- S) z xi *: xi}.
Proof.
move=> oSS /free_span[|c -> _]; first exact: orthogonal_free.
set z := fun _ => _ : algC; exists z => //; apply: eq_big_seq => u Su.
rewrite /z cfproj_sum_orthogonal // mulfK // cfnorm_eq0.
by rewrite (memPn _ u Su); case/andP: oSS.
Qed.
Section CfDotOrthonormal.
Variables (M : {group gT}) (S : seq 'CF(G)) (nu : 'CF(G) -> 'CF(M)).
Hypotheses (Inu : {in 'Z[S] &, isometry nu}) (onS : orthonormal S).
Let oSS := orthonormal_orthogonal onS.
Let freeS := orthogonal_free oSS.
Let nS1 : {in S, forall phi, '[phi] = 1}.
Proof. by move=> phi Sphi; case/orthonormalP: onS => _ -> //; rewrite eqxx. Qed.
Lemma map_orthonormal : orthonormal (map nu S).
Proof.
rewrite !orthonormalE map_pairwise_orthogonal // andbT.
by apply/allP=> _ /mapP[xi Sxi ->]; rewrite /= Inu ?nS1 // mem_zchar.
Qed.
Lemma cfproj_sum_orthonormal z phi :
phi \in S -> '[\sum_(xi <- S) z xi *: nu xi, nu phi] = z phi.
Proof. by move=> Sphi; rewrite cfproj_sum_orthogonal // nS1 // mulr1. Qed.
Lemma cfdot_sum_orthonormal z1 z2 :
'[\sum_(xi <- S) z1 xi *: xi, \sum_(xi <- S) z2 xi *: xi]
= \sum_(xi <- S) z1 xi * (z2 xi)^*.
Proof.
rewrite cfdot_sum_orthogonal //; apply: eq_big_seq => phi /nS1->.
by rewrite mulr1.
Qed.
Lemma cfnorm_sum_orthonormal z :
'[\sum_(xi <- S) z xi *: nu xi] = \sum_(xi <- S) `|z xi| ^+ 2.
Proof.
rewrite cfnorm_sum_orthogonal //.
by apply: eq_big_seq => xi /nS1->; rewrite mulr1.
Qed.
Lemma cfnorm_map_orthonormal : '[\sum_(xi <- S) nu xi] = (size S)%:R.
Proof.
by rewrite cfnorm_orthogonal // (eq_big_seq _ nS1) big_tnth sumr_const card_ord.
Qed.
Lemma orthonormal_span phi :
phi \in <<S>>%VS ->
{z | z = fun xi => '[phi, xi] & phi = \sum_(xi <- S) z xi *: xi}.
Proof.
case/orthogonal_span=> // _ -> {2}->; set z := fun _ => _ : algC.
by exists z => //; apply: eq_big_seq => xi /nS1->; rewrite divr1.
Qed.
End CfDotOrthonormal.
Lemma cfnorm_orthonormal S :
orthonormal S -> '[\sum_(xi <- S) xi] = (size S)%:R.
Proof. exact: cfnorm_map_orthonormal. Qed.
Lemma vchar_orthonormalP S :
{subset S <= 'Z[irr G]} ->
reflect (exists I : {set Iirr G}, exists b : Iirr G -> bool,
perm_eq S [seq (-1) ^+ b i *: 'chi_i | i in I])
(orthonormal S).
Proof.
move=> vcS; apply: (equivP orthonormalP).
split=> [[uniqS oSS] | [I [b defS]]]; last first.
split=> [|xi1 xi2]; rewrite ?(perm_mem defS).
rewrite (perm_uniq defS) map_inj_uniq ?enum_uniq // => i j /eqP.
by rewrite eq_signed_irr => /andP[_ /eqP].
case/mapP=> [i _ ->] /mapP[j _ ->]; rewrite eq_signed_irr.
rewrite cfdotZl cfdotZr rmorph_sign mulrA cfdot_irr -signr_addb mulr_natr.
by rewrite mulrb andbC; case: eqP => //= ->; rewrite addbb eqxx.
pose I := [set i | ('chi_i \in S) || (- 'chi_i \in S)].
pose b i := - 'chi_i \in S; exists I, b.
apply: uniq_perm => // [|xi].
rewrite map_inj_uniq ?enum_uniq // => i j /eqP.
by rewrite eq_signed_irr => /andP[_ /eqP].
apply/idP/mapP=> [Sxi | [i Ii ->{xi}]]; last first.
move: Ii; rewrite mem_enum inE orbC -/(b i).
by case b_i: (b i); rewrite (scale1r, scaleN1r).
have: '[xi] = 1 by rewrite oSS ?eqxx.
have vc_xi := vcS _ Sxi; rewrite cfdot_sum_irr.
case/natr_sum_eq1 => [i _ | i [_ /eqP norm_xi_i xi_i'_0]].
by rewrite -normCK rpredX // natr_norm_int ?Cint_cfdot_vchar_irr.
suffices def_xi: xi = (-1) ^+ b i *: 'chi_i.
exists i; rewrite // mem_enum inE -/(b i) orbC.
by case: (b i) def_xi Sxi => // ->; rewrite scale1r.
move: Sxi; rewrite [xi]cfun_sum_cfdot (bigD1 i) //.
rewrite big1 //= ?addr0 => [|j ne_ji]; last first.
apply/eqP; rewrite scaler_eq0 -normr_eq0 -[_ == 0](expf_eq0 _ 2) normCK.
by rewrite xi_i'_0 ?eqxx.
have:= norm_xi_i; rewrite (aut_intr _ (Cint_cfdot_vchar_irr _ _)) //.
rewrite -subr_eq0 subr_sqr_1 mulf_eq0 subr_eq0 addr_eq0 /b scaler_sign.
case/pred2P=> ->; last by rewrite scaleN1r => ->.
rewrite scale1r => Sxi; case: ifP => // SNxi.
have:= oSS _ _ Sxi SNxi; rewrite cfdotNr cfdot_irr eqxx; case: eqP => // _.
by move/eqP; rewrite oppr_eq0 oner_eq0.
Qed.
Lemma vchar_norm1P phi :
phi \in 'Z[irr G] -> '[phi] = 1 ->
exists b : bool, exists i : Iirr G, phi = (-1) ^+ b *: 'chi_i.
Proof.
move=> Zphi phiN1.
have: orthonormal phi by rewrite /orthonormal/= phiN1 eqxx.
case/vchar_orthonormalP=> [xi /predU1P[->|] // | I [b def_phi]].
have: phi \in (phi : seq _) := mem_head _ _.
by rewrite (perm_mem def_phi) => /mapP[i _ ->]; exists (b i), i.
Qed.
Lemma zchar_small_norm phi n :
phi \in 'Z[irr G] -> '[phi] = n%:R -> (n < 4)%N ->
{S : n.-tuple 'CF(G) |
[/\ orthonormal S, {subset S <= 'Z[irr G]} & phi = \sum_(xi <- S) xi]}.
Proof.
move=> Zphi def_n lt_n_4.
pose S := [seq '[phi, 'chi_i] *: 'chi_i | i in irr_constt phi].
have def_phi: phi = \sum_(xi <- S) xi.
rewrite big_image big_mkcond {1}[phi]cfun_sum_cfdot.
by apply: eq_bigr => i _; rewrite if_neg; case: eqP => // ->; rewrite scale0r.
have orthS: orthonormal S.
apply/orthonormalP; split=> [|_ _ /mapP[i phi_i ->] /mapP[j _ ->]].
rewrite map_inj_in_uniq ?enum_uniq // => i j; rewrite mem_enum => phi_i _.
by move/eqP; rewrite eq_scaled_irr (negbTE phi_i) => /andP[_ /= /eqP].
rewrite eq_scaled_irr cfdotZl cfdotZr cfdot_irr mulrA mulr_natr mulrb.
rewrite mem_enum in phi_i; rewrite (negbTE phi_i) andbC; case: eqP => // <-.
have /natrP[m def_m] := natr_norm_int (Cint_cfdot_vchar_irr i Zphi).
apply/eqP; rewrite eqxx /= -normCK def_m -natrX eqr_nat eqn_leq lt0n.
rewrite expn_eq0 andbT -eqC_nat -def_m normr_eq0 [~~ _]phi_i andbT.
rewrite (leq_exp2r _ 1) // -ltnS -(@ltn_exp2r _ _ 2) //.
apply: leq_ltn_trans lt_n_4; rewrite -leC_nat -def_n natrX.
rewrite cfdot_sum_irr (bigD1 i) //= -normCK def_m addrC -subr_ge0 addrK.
by rewrite sumr_ge0 // => ? _; apply: mul_conjC_ge0.
have <-: size S = n.
by apply/eqP; rewrite -eqC_nat -def_n def_phi cfnorm_orthonormal.
exists (in_tuple S); split=> // _ /mapP[i _ ->].
by rewrite scale_zchar ?irr_vchar // Cint_cfdot_vchar_irr.
Qed.
Lemma vchar_norm2 phi :
phi \in 'Z[irr G, G^#] -> '[phi] = 2 ->
exists i, exists2 j, j != i & phi = 'chi_i - 'chi_j.
Proof.
rewrite zchar_split cfunD1E => /andP[Zphi phi1_0].
case/zchar_small_norm => // [[[|chi [|xi [|?]]] //= S2]].
case=> /andP[/and3P[Nchi Nxi _] /= ochi] /allP/and3P[Zchi Zxi _].
rewrite big_cons big_seq1 => def_phi.
have [b [i def_chi]] := vchar_norm1P Zchi (eqP Nchi).
have [c [j def_xi]] := vchar_norm1P Zxi (eqP Nxi).
have neq_ji: j != i.
apply: contraTneq ochi; rewrite !andbT def_chi def_xi => ->.
rewrite cfdotZl cfdotZr rmorph_sign cfnorm_irr mulr1 -signr_addb.
by rewrite signr_eq0.
have neq_bc: b != c.
apply: contraTneq phi1_0; rewrite def_phi def_chi def_xi => ->.
rewrite -scalerDr !cfunE mulf_eq0 signr_eq0 eq_le lt_geF //.
by rewrite ltr_pDl ?irr1_gt0.
rewrite {}def_phi {}def_chi {}def_xi !scaler_sign.
case: b c neq_bc => [|] [|] // _; last by exists i, j.
by exists j, i; rewrite 1?eq_sym // addrC.
Qed.
End VChar.
Section Isometries.
Variables (gT : finGroupType) (L G : {group gT}) (S : seq 'CF(L)).
Implicit Type nu : {additive 'CF(L) -> 'CF(G)}.
Lemma Zisometry_of_cfnorm (tauS : seq 'CF(G)) :
pairwise_orthogonal S -> pairwise_orthogonal tauS ->
map cfnorm tauS = map cfnorm S -> {subset tauS <= 'Z[irr G]} ->
{tau : {linear 'CF(L) -> 'CF(G)} | map tau S = tauS
& {in 'Z[S], isometry tau, to 'Z[irr G]}}.
Proof.
move=> oSS oTT /isometry_of_cfnorm[||tau defT Itau] // Z_T; exists tau => //.
split=> [|_ /zchar_nth_expansion[u Zu ->]].
by apply: sub_in2 Itau; apply: zchar_span.
rewrite big_seq linear_sum rpred_sum // => xi Sxi.
by rewrite linearZ scale_zchar ?Z_T // -defT map_f ?mem_nth.
Qed.
Lemma Zisometry_of_iso f :
free S -> {in S, isometry f, to 'Z[irr G]} ->
{tau : {linear 'CF(L) -> 'CF(G)} | {in S, tau =1 f}
& {in 'Z[S], isometry tau, to 'Z[irr G]}}.
Proof.
move=> freeS [If Zf]; have [tau Dtau Itau] := isometry_of_free freeS If.
exists tau => //; split; first by apply: sub_in2 Itau; apply: zchar_span.
move=> _ /zchar_nth_expansion[a Za ->]; rewrite linear_sum rpred_sum // => i _.
by rewrite linearZ rpredZ_int ?Dtau ?Zf ?mem_nth.
Qed.
Lemma Zisometry_inj A nu :
{in 'Z[S, A] &, isometry nu} -> {in 'Z[S, A] &, injective nu}.
Proof. by move/isometry_raddf_inj; apply; apply: rpredB. Qed.
Lemma isometry_in_zchar nu : {in S &, isometry nu} -> {in 'Z[S] &, isometry nu}.
Proof.
move=> Inu _ _ /zchar_nth_expansion[u Zu ->] /zchar_nth_expansion[v Zv ->].
rewrite !raddf_sum; apply: eq_bigr => j _ /=.
rewrite !cfdot_suml; apply: eq_bigr => i _.
by rewrite !raddfZ_int //= !cfdotZl !cfdotZr Inu ?mem_nth.
Qed.
End Isometries.
Section AutVchar.
Variables (u : {rmorphism algC -> algC}) (gT : finGroupType) (G : {group gT}).
Local Notation "alpha ^u" := (cfAut u alpha).
Implicit Type (S : seq 'CF(G)) (phi chi : 'CF(G)).
Lemma cfAut_zchar S A psi :
cfAut_closed u S -> psi \in 'Z[S, A] -> psi^u \in 'Z[S, A].
Proof.
rewrite zchar_split => SuS /andP[/zchar_nth_expansion[z Zz Dpsi] Apsi].
rewrite zchar_split cfAut_on {}Apsi {psi}Dpsi rmorph_sum rpred_sum //= => i _.
by rewrite cfAutZ_Cint // scale_zchar // mem_zchar ?SuS ?mem_nth.
Qed.
Lemma cfAut_vchar A psi : psi \in 'Z[irr G, A] -> psi^u \in 'Z[irr G, A].
Proof. by apply: cfAut_zchar; apply: irr_aut_closed. Qed.
Lemma sub_aut_zchar S A psi :
{subset S <= 'Z[irr G]} -> psi \in 'Z[S, A] -> psi^u \in 'Z[S, A] ->
psi - psi^u \in 'Z[S, A^#].
Proof.
move=> Z_S Spsi Spsi_u; rewrite zcharD1 !cfunE subr_eq0 rpredB //=.
by rewrite aut_intr // Cint_vchar1 // (zchar_trans Z_S) ?(zcharW Spsi).
Qed.
Lemma conjC_vcharAut chi x : chi \in 'Z[irr G] -> (u (chi x))^* = u (chi x)^*.
Proof.
case/vcharP=> chi1 Nchi1 [chi2 Nchi2 ->].
by rewrite !cfunE !rmorphB /= !conjC_charAut.
Qed.
Lemma cfdot_aut_vchar phi chi :
chi \in 'Z[irr G] -> '[phi^u , chi^u] = u '[phi, chi].
Proof.
by case/vcharP=> chi1 Nchi1 [chi2 Nchi2 ->]; rewrite !raddfB /= !cfdot_aut_char.
Qed.
Lemma vchar_aut A chi : (chi^u \in 'Z[irr G, A]) = (chi \in 'Z[irr G, A]).
Proof.
rewrite !(zchar_split _ A) cfAut_on; congr (_ && _).
apply/idP/idP=> [Zuchi|]; last exact: cfAut_vchar.
rewrite [chi]cfun_sum_cfdot rpred_sum // => i _.
rewrite scale_zchar ?irr_vchar //.
by rewrite -(intr_aut u) -cfdot_aut_irr -aut_IirrE Cint_cfdot_vchar_irr.
Qed.
End AutVchar.
Definition cfConjC_vchar := cfAut_vchar Num.conj.
Section MoreVchar.
Variables (gT : finGroupType) (G H : {group gT}).
Lemma cfRes_vchar phi : phi \in 'Z[irr G] -> 'Res[H] phi \in 'Z[irr H].
Proof.
case/vcharP=> xi1 Nx1 [xi2 Nxi2 ->].
by rewrite raddfB rpredB ?char_vchar ?cfRes_char.
Qed.
Lemma cfRes_vchar_on A phi :
H \subset G -> phi \in 'Z[irr G, A] -> 'Res[H] phi \in 'Z[irr H, A].
Proof.
rewrite zchar_split => sHG /andP[Zphi Aphi]; rewrite zchar_split cfRes_vchar //.
apply/cfun_onP=> x /(cfun_onP Aphi); rewrite !cfunElock !genGid sHG => ->.
exact: mul0rn.
Qed.
Lemma cfInd_vchar phi : phi \in 'Z[irr H] -> 'Ind[G] phi \in 'Z[irr G].
Proof.
move=> /vcharP[xi1 Nx1 [xi2 Nxi2 ->]].
by rewrite raddfB rpredB ?char_vchar ?cfInd_char.
Qed.
Lemma sub_conjC_vchar A phi :
phi \in 'Z[irr G, A] -> phi - (phi^*)%CF \in 'Z[irr G, A^#].
Proof.
move=> Zphi; rewrite sub_aut_zchar ?cfAut_zchar // => _ /irrP[i ->].
exact: irr_vchar.
exact: cfConjC_irr.
Qed.
Lemma Frobenius_kernel_exists :
[Frobenius G with complement H] -> {K : {group gT} | [Frobenius G = K ><| H]}.
Proof.
move=> frobG; have [_ ntiHG] := andP frobG.
have [[_ sHG regGH][_ tiHG /eqP defNH]] := (normedTI_memJ_P ntiHG, and3P ntiHG).
suffices /sigW[K defG]: exists K, gval K ><| H == G by exists K; apply/andP.
pose K1 := G :\: cover (H^# :^: G).
have oK1: #|K1| = #|G : H|.
rewrite cardsD (setIidPr _); last first.
rewrite cover_imset; apply/bigcupsP=> x Gx.
by rewrite sub_conjg conjGid ?groupV // (subset_trans (subsetDl _ _)).
rewrite (cover_partition (partition_normedTI ntiHG)) -(Lagrange sHG).
by rewrite (card_support_normedTI ntiHG) (cardsD1 1%g) group1 mulSn addnK.
suffices extG i: {j | {in H, 'chi[G]_j =1 'chi[H]_i} & K1 \subset cfker 'chi_j}.
pose K := [group of \bigcap_i cfker 'chi_(s2val (extG i))].
have nKH: H \subset 'N(K).
by apply/norms_bigcap/bigcapsP=> i _; apply: subset_trans (cfker_norm _).
have tiKH: K :&: H = 1%g.
apply/trivgP; rewrite -(TI_cfker_irr H) /= setIC; apply/bigcapsP=> i _.
apply/subsetP=> x /setIP[Hx /bigcapP/(_ i isT)/=]; rewrite !cfkerEirr !inE.
by case: (extG i) => /= j def_j _; rewrite !def_j.
exists K; rewrite sdprodE // eqEcard TI_cardMg // mul_subG //=; last first.
by rewrite (bigcap_min (0 : Iirr H)) ?cfker_sub.
rewrite -(Lagrange sHG) mulnC leq_pmul2r // -oK1 subset_leq_card //.
by apply/bigcapsP=> i _; case: (extG i).
case i0: (i == 0).
exists 0 => [x Hx|]; last by rewrite irr0 cfker_cfun1 subsetDl.
by rewrite (eqP i0) !irr0 !cfun1E // (subsetP sHG) ?Hx.
have ochi1: '['chi_i, 1] = 0 by rewrite -irr0 cfdot_irr i0.
pose a := 'chi_i 1%g; have Za: a \in Num.int by rewrite intrE Cnat_irr1.
pose theta := 'chi_i - a%:A; pose phi := 'Ind[G] theta + a%:A.
have /cfun_onP theta0: theta \in 'CF(H, H^#).
by rewrite cfunD1E !cfunE cfun11 mulr1 subrr.
have RItheta: 'Res ('Ind[G] theta) = theta.
apply/cfun_inP=> x Hx; rewrite cfResE ?cfIndE // (big_setID H) /= addrC.
apply: canLR (mulKf (neq0CG H)) _; rewrite (setIidPr sHG) mulr_natl.
rewrite big1 ?add0r => [|y /setDP[/regGH tiHy H'y]]; last first.
have [-> | ntx] := eqVneq x 1%g; first by rewrite conj1g theta0 ?inE ?eqxx.
by rewrite theta0 ?tiHy // !inE ntx.
by rewrite -sumr_const; apply: eq_bigr => y Hy; rewrite cfunJ.
have ophi1: '[phi, 1] = 0.
rewrite cfdotDl -cfdot_Res_r cfRes_cfun1 // cfdotBl !cfdotZl !cfnorm1.
by rewrite ochi1 add0r addNr.
have{ochi1} n1phi: '[phi] = 1.
have: '[phi - a%:A] = '[theta] by rewrite addrK -cfdot_Res_l RItheta.
rewrite !cfnormBd ?cfnormZ ?cfdotZr ?ophi1 ?ochi1 ?mulr0 //.
by rewrite !cfnorm1 cfnorm_irr => /addIr.
have Zphi: phi \in 'Z[irr G].
by rewrite rpredD ?cfInd_vchar ?rpredB ?irr_vchar // scale_zchar ?rpred1.
have def_phi: {in H, phi =1 'chi_i}.
move=> x Hx /=; rewrite !cfunE -[_ x](cfResE _ sHG) ?RItheta //.
by rewrite !cfunE !cfun1E ?(subsetP sHG) ?Hx ?subrK.
have [j def_chi_j]: {j | 'chi_j = phi}.
apply/sig_eqW; have [[] [j]] := vchar_norm1P Zphi n1phi; last first.
by rewrite scale1r; exists j.
move/cfunP/(_ 1%g)/eqP; rewrite scaleN1r def_phi // cfunE -addr_eq0 eq_le.
by rewrite lt_geF // ltr_pDl ?irr1_gt0.
exists j; rewrite ?cfkerEirr def_chi_j //; apply/subsetP => x /setDP[Gx notHx].
rewrite inE cfunE def_phi // cfunE -/a cfun1E // Gx mulr1 cfIndE //.
rewrite big1 ?mulr0 ?add0r // => y Gy; apply/theta0/(contra _ notHx) => Hxy.
by rewrite -(conjgK y x) cover_imset -class_supportEr imset2_f ?groupV.
Qed.
End MoreVchar.
Definition dirr (gT : finGroupType) (B : {set gT}) : {pred 'CF(B)} :=
[pred f | (f \in irr B) || (- f \in irr B)].
Arguments dirr {gT}.
Section Norm1vchar.
Variables (gT : finGroupType) (G : {group gT}).
Fact dirr_oppr_closed : oppr_closed (dirr G).
Proof. by move=> xi; rewrite !inE opprK orbC. Qed.
HB.instance Definition _ := GRing.isOppClosed.Build (classfun G) (dirr G)
dirr_oppr_closed.
Lemma dirr_opp v : (- v \in dirr G) = (v \in dirr G). Proof. exact: rpredN. Qed.
Lemma dirr_sign n v : ((-1)^+ n *: v \in dirr G) = (v \in dirr G).
Proof. exact: rpredZsign. Qed.
Lemma irr_dirr i : 'chi_i \in dirr G.
Proof. by rewrite !inE mem_irr. Qed.
Lemma dirrP f :
reflect (exists b : bool, exists i, f = (-1) ^+ b *: 'chi_i) (f \in dirr G).
Proof.
apply: (iffP idP) => [| [b [i ->]]]; last by rewrite dirr_sign irr_dirr.
case/orP=> /irrP[i Hf]; first by exists false, i; rewrite scale1r.
by exists true, i; rewrite scaleN1r -Hf opprK.
Qed.
(* This should perhaps be the definition of dirr. *)
Lemma dirrE phi : phi \in dirr G = (phi \in 'Z[irr G]) && ('[phi] == 1).
Proof.
apply/dirrP/andP=> [[b [i ->]] | [Zphi /eqP/vchar_norm1P]]; last exact.
by rewrite rpredZsign irr_vchar cfnorm_sign cfnorm_irr.
Qed.
Lemma cfdot_dirr f g : f \in dirr G -> g \in dirr G ->
'[f, g] = (if f == - g then -1 else (f == g)%:R).
Proof.
case/dirrP=> [b1 [i1 ->]] /dirrP[b2 [i2 ->]].
rewrite cfdotZl cfdotZr rmorph_sign mulrA -signr_addb cfdot_irr.
rewrite -scaleNr -signrN !eq_scaled_irr signr_eq0 !(inj_eq signr_inj) /=.
by rewrite -!negb_add addbN mulr_sign -mulNrn mulrb; case: ifP.
Qed.
Lemma dirr_norm1 phi : phi \in 'Z[irr G] -> '[phi] = 1 -> phi \in dirr G.
Proof. by rewrite dirrE => -> -> /=. Qed.
Lemma dirr_aut u phi : (cfAut u phi \in dirr G) = (phi \in dirr G).
Proof.
rewrite !dirrE vchar_aut; apply: andb_id2l => /cfdot_aut_vchar->.
exact: fmorph_eq1.
Qed.
Definition dIirr (B : {set gT}) := (bool * (Iirr B))%type.
Definition dirr1 (B : {set gT}) : dIirr B := (false, 0).
Definition ndirr (B : {set gT}) (i : dIirr B) : dIirr B :=
(~~ i.1, i.2).
Lemma ndirr_diff (i : dIirr G) : ndirr i != i.
Proof. by case: i => [] [|] i. Qed.
Lemma ndirrK : involutive (@ndirr G).
Proof. by move=> [b i]; rewrite /ndirr /= negbK. Qed.
Lemma ndirr_inj : injective (@ndirr G).
Proof. exact: (inv_inj ndirrK). Qed.
Definition dchi (B : {set gT}) (i : dIirr B) : 'CF(B) := (-1)^+ i.1 *: 'chi_i.2.
Lemma dchi1 : dchi (dirr1 G) = 1.
Proof. by rewrite /dchi scale1r irr0. Qed.
Lemma dirr_dchi i : dchi i \in dirr G.
Proof. by apply/dirrP; exists i.1; exists i.2. Qed.
Lemma dIrrP phi : reflect (exists i, phi = dchi i) (phi \in dirr G).
Proof.
by apply: (iffP idP)=> [/dirrP[b]|] [i ->]; [exists (b, i) | apply: dirr_dchi].
Qed.
Lemma dchi_ndirrE (i : dIirr G) : dchi (ndirr i) = - dchi i.
Proof. by case: i => [b i]; rewrite /ndirr /dchi signrN scaleNr. Qed.
Lemma cfdot_dchi (i j : dIirr G) :
'[dchi i, dchi j] = (i == j)%:R - (i == ndirr j)%:R.
Proof.
case: i => bi i; case: j => bj j; rewrite cfdot_dirr ?dirr_dchi // !xpair_eqE.
rewrite -dchi_ndirrE !eq_scaled_irr signr_eq0 !(inj_eq signr_inj) /=.
by rewrite -!negb_add addbN negbK; case: andP => [[->]|]; rewrite ?subr0 ?add0r.
Qed.
Lemma dchi_vchar i : dchi i \in 'Z[irr G].
Proof. by case: i => b i; rewrite rpredZsign irr_vchar. Qed.
Lemma cfnorm_dchi (i : dIirr G) : '[dchi i] = 1.
Proof. by case: i => b i; rewrite cfnorm_sign cfnorm_irr. Qed.
Lemma dirr_inj : injective (@dchi G).
Proof.
case=> b1 i1 [b2 i2] /eqP; rewrite eq_scaled_irr (inj_eq signr_inj) /=.
by rewrite signr_eq0 -xpair_eqE => /eqP.
Qed.
Definition dirr_dIirr (B : {set gT}) J (f : J -> 'CF(B)) j : dIirr B :=
odflt (dirr1 B) [pick i | dchi i == f j].
Lemma dirr_dIirrPE J (f : J -> 'CF(G)) (P : pred J) :
(forall j, P j -> f j \in dirr G) ->
forall j, P j -> dchi (dirr_dIirr f j) = f j.
Proof.
rewrite /dirr_dIirr => dirrGf j Pj; case: pickP => [i /eqP //|].
by have /dIrrP[i-> /(_ i)/eqP] := dirrGf j Pj.
Qed.
Lemma dirr_dIirrE J (f : J -> 'CF(G)) :
(forall j, f j \in dirr G) -> forall j, dchi (dirr_dIirr f j) = f j.
Proof. by move=> dirrGf j; apply: (@dirr_dIirrPE _ _ xpredT). Qed.
Definition dirr_constt (B : {set gT}) (phi: 'CF(B)) : {set (dIirr B)} :=
[set i | 0 < '[phi, dchi i]].
Lemma dirr_consttE (phi : 'CF(G)) (i : dIirr G) :
(i \in dirr_constt phi) = (0 < '[phi, dchi i]).
Proof. by rewrite inE. Qed.
Lemma Cnat_dirr (phi : 'CF(G)) i :
phi \in 'Z[irr G] -> i \in dirr_constt phi -> '[phi, dchi i] \in Num.nat.
Proof.
move=> PiZ; rewrite natrEint dirr_consttE andbC => /ltW -> /=.
by case: i => b i; rewrite cfdotZr rmorph_sign rpredMsign Cint_cfdot_vchar_irr.
Qed.
Lemma dirr_constt_oppr (i : dIirr G) (phi : 'CF(G)) :
(i \in dirr_constt (-phi)) = (ndirr i \in dirr_constt phi).
Proof. by rewrite !dirr_consttE dchi_ndirrE cfdotNl cfdotNr. Qed.
Lemma dirr_constt_oppI (phi: 'CF(G)) :
dirr_constt phi :&: dirr_constt (-phi) = set0.
Proof.
apply/setP=> i; rewrite inE !dirr_consttE cfdotNl inE.
apply/idP=> /andP [L1 L2]; have := ltr_pDl L1 L2.
by rewrite subrr lt_def eqxx.
Qed.
Lemma dirr_constt_oppl (phi: 'CF(G)) i :
i \in dirr_constt phi -> (ndirr i) \notin dirr_constt phi.
Proof.
by rewrite !dirr_consttE dchi_ndirrE cfdotNr oppr_gt0 => /ltW /le_gtF ->.
Qed.
Definition to_dirr (B : {set gT}) (phi : 'CF(B)) (i : Iirr B) : dIirr B :=
('[phi, 'chi_i] < 0, i).
Definition of_irr (B : {set gT}) (i : dIirr B) : Iirr B := i.2.
Lemma irr_constt_to_dirr (phi: 'CF(G)) i : phi \in 'Z[irr G] ->
(i \in irr_constt phi) = (to_dirr phi i \in dirr_constt phi).
Proof.
move=> Zphi; rewrite irr_consttE dirr_consttE cfdotZr rmorph_sign /=.
by rewrite -real_normrEsign ?normr_gt0 ?Rreal_int // Cint_cfdot_vchar_irr.
Qed.
Lemma to_dirrK (phi: 'CF(G)) : cancel (to_dirr phi) (@of_irr G).
Proof. by []. Qed.
Lemma of_irrK (phi: 'CF(G)) :
{in dirr_constt phi, cancel (@of_irr G) (to_dirr phi)}.
Proof.
case=> b i; rewrite dirr_consttE cfdotZr rmorph_sign /= /to_dirr mulr_sign.
by rewrite fun_if oppr_gt0; case: b => [|/ltW/le_gtF] ->.
Qed.
Lemma cfdot_todirrE (phi: 'CF(G)) i (phi_i := dchi (to_dirr phi i)) :
'[phi, phi_i] *: phi_i = '[phi, 'chi_i] *: 'chi_i.
Proof. by rewrite cfdotZr rmorph_sign mulrC -scalerA signrZK. Qed.
Lemma cfun_sum_dconstt (phi : 'CF(G)) :
phi \in 'Z[irr G] ->
phi = \sum_(i in dirr_constt phi) '[phi, dchi i] *: dchi i.
Proof.
move=> PiZ; rewrite [LHS]cfun_sum_constt.
rewrite (reindex (to_dirr phi))=> [/= |]; last first.
by exists (@of_irr _)=> //; apply: of_irrK .
by apply: eq_big => i; rewrite ?irr_constt_to_dirr // cfdot_todirrE.
Qed.
Lemma cnorm_dconstt (phi : 'CF(G)) :
phi \in 'Z[irr G] ->
'[phi] = \sum_(i in dirr_constt phi) '[phi, dchi i] ^+ 2.
Proof.
move=> PiZ; rewrite {1 2}(cfun_sum_dconstt PiZ).
rewrite cfdot_suml; apply: eq_bigr=> i IiD.
rewrite cfdot_sumr (bigD1 i) //= big1 ?addr0 => [|j /andP [JiD IdJ]].
rewrite cfdotZr cfdotZl cfdot_dchi eqxx eq_sym (negPf (ndirr_diff i)).
by rewrite subr0 mulr1 aut_natr ?Cnat_dirr.
rewrite cfdotZr cfdotZl cfdot_dchi eq_sym (negPf IdJ) -natrB ?mulr0 //.
by rewrite (negPf (contraNneq _ (dirr_constt_oppl JiD))) => // <-.
Qed.
Lemma dirr_small_norm (phi : 'CF(G)) n :
phi \in 'Z[irr G] -> '[phi] = n%:R -> (n < 4)%N ->
[/\ #|dirr_constt phi| = n, dirr_constt phi :&: dirr_constt (- phi) = set0 &
phi = \sum_(i in dirr_constt phi) dchi i].
Proof.
move=> PiZ Pln; rewrite ltnNge -leC_nat => Nl4.
suffices Fd i: i \in dirr_constt phi -> '[phi, dchi i] = 1.
split; last 2 [by apply/setP=> u; rewrite !inE cfdotNl oppr_gt0 lt_asym].
apply/eqP; rewrite -eqC_nat -sumr_const -Pln (cnorm_dconstt PiZ).
by apply/eqP/eq_bigr=> i Hi; rewrite Fd // expr1n.
rewrite {1}[phi]cfun_sum_dconstt //.
by apply: eq_bigr => i /Fd->; rewrite scale1r.
move=> IiD; apply: contraNeq Nl4 => phi_i_neq1.
rewrite -Pln cnorm_dconstt // (bigD1 i) ?ler_wpDr ?sumr_ge0 //=.
by move=> j /andP[JiD _]; rewrite exprn_ge0 ?natr_ge0 ?Cnat_dirr.
have /natrP[m Dm] := Cnat_dirr PiZ IiD; rewrite Dm -natrX ler_nat (leq_sqr 2).
by rewrite ltn_neqAle eq_sym -eqC_nat -ltC_nat -Dm phi_i_neq1 -dirr_consttE.
Qed.
Lemma cfdot_sum_dchi (phi1 phi2 : 'CF(G)) :
'[\sum_(i in dirr_constt phi1) dchi i,
\sum_(i in dirr_constt phi2) dchi i] =
#|dirr_constt phi1 :&: dirr_constt phi2|%:R -
#|dirr_constt phi1 :&: dirr_constt (- phi2)|%:R.
Proof.
rewrite addrC (big_setID (dirr_constt (- phi2))) /= cfdotDl; congr (_ + _).
rewrite cfdot_suml -sumr_const -sumrN; apply: eq_bigr => i /setIP[p1i p2i].
rewrite cfdot_sumr (bigD1 (ndirr i)) -?dirr_constt_oppr //= dchi_ndirrE.
rewrite cfdotNr cfnorm_dchi big1 ?addr0 // => j /andP[p2j i'j].
rewrite cfdot_dchi -(inv_eq ndirrK) [in rhs in - rhs]eq_sym (negPf i'j) subr0.
rewrite (negPf (contraTneq _ p2i)) // => ->.
by rewrite dirr_constt_oppr dirr_constt_oppl.
rewrite cfdot_sumr (big_setID (dirr_constt phi1)) setIC /= addrC.
rewrite big1 ?add0r => [|j /setDP[p2j p1'j]]; last first.
rewrite cfdot_suml big1 // => i /setDP[p1i p2'i].
rewrite cfdot_dchi (negPf (contraTneq _ p1i)) => [|-> //].
rewrite (negPf (contraNneq _ p2'i)) ?subrr // => ->.
by rewrite dirr_constt_oppr ndirrK.
rewrite -sumr_const; apply: eq_bigr => i /setIP[p1i p2i]; rewrite cfdot_suml.
rewrite (bigD1 i) /=; last by rewrite inE dirr_constt_oppr dirr_constt_oppl.
rewrite cfnorm_dchi big1 ?addr0 // => j /andP[/setDP[p1j _] i'j].
rewrite cfdot_dchi (negPf i'j) (negPf (contraTneq _ p1j)) ?subrr // => ->.
exact: dirr_constt_oppl.
Qed.
Lemma cfdot_dirr_eq1 :
{in dirr G &, forall phi psi, ('[phi, psi] == 1) = (phi == psi)}.
Proof.
move=> _ _ /dirrP[b1 [i1 ->]] /dirrP[b2 [i2 ->]].
rewrite eq_signed_irr cfdotZl cfdotZr rmorph_sign cfdot_irr mulrA -signr_addb.
rewrite pmulrn -rmorphMsign (eqr_int _ _ 1) -negb_add.
by case: (b1 (+) b2) (i1 == i2) => [] [].
Qed.
Lemma cfdot_add_dirr_eq1 :
{in dirr G & &, forall phi1 phi2 psi,
'[phi1 + phi2, psi] = 1 -> psi = phi1 \/ psi = phi2}.
Proof.
move=> _ _ _ /dirrP[b1 [i1 ->]] /dirrP[b2 [i2 ->]] /dirrP[c [j ->]] /eqP.
rewrite cfdotDl !cfdotZl !cfdotZr !rmorph_sign !cfdot_irr !mulrA -!signr_addb.
rewrite 2!{1}signrE !mulrBl !mul1r -!natrM addrCA -subr_eq0 -!addrA.
rewrite -!opprD addrA subr_eq0 -mulrSr -!natrD eqr_nat => eq_phi_psi.
apply/pred2P; rewrite /= !eq_signed_irr -!negb_add !(eq_sym j) !(addbC c).
by case: (i1 == j) eq_phi_psi; case: (i2 == j); do 2!case: (_ (+) c).
Qed.
End Norm1vchar.
Prenex Implicits ndirr ndirrK to_dirr to_dirrK of_irr.
Arguments of_irrK {gT G phi} [i] phi_i : rename.
|