1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
/*
Calculate planets positions in a given date.
The main algorithm uses elements dated Julian 2450680.5 (8/20/1997) so
it's quite accurate for dates near this.
To be improved in the future ...
Galilean and Saturn satellites computed using code extracted with
permission from XEphem, (c) 1997 Elwood Charles Downey.
Keith Burnett's planet positioning algorithm used with persmission.
*/
#include "planets.h"
static void GalileanSat(void),SaturnSat(void),NeptuneSat(void),PlutoSat(void);
static double SolveKepler(double, double);
/* Iterative solution of Kepler equation */
static double SolveKepler(double M, double ec)
{
static double E,d,delta;
E=M;
d=E-ec*sin(E)-M;
while (fabs(d)>1.0E-10) {
delta=d/(1.0-ec*cos(E));
E=E-delta;
d=E-ec*sin(E)-M;
}
return E;
}
/* This function is nearly a clone of the jupiter_data function in xephem 3.0
uses elements dated 12/31/1899
*/
static void GalileanSat()
{
#define dsin(x) sin(DEG2RAD(x))
#define dcos(x) cos(DEG2RAD(x))
static double A, B, Del, J, K, M, N, R, V;
static double cor_u1, cor_u2, cor_u3, cor_u4;
static double tmp, GG, H, psi, r, r1, r2, r3, r4;
static double u1, u2, u3, u4;
static double lam, Ds;
static double z1, z2, z3, z4;
static double De, dsinDe,d;
d=days+35295.0;
V = 134.63 + 0.00111587 * d;
M = (358.47583 + 0.98560003*d);
N = (225.32833 + 0.0830853*d) + 0.33 * dsin (V);
J = 221.647 + 0.9025179*d - 0.33 * dsin(V);;
A = 1.916*dsin(M) + 0.02*dsin(2*M);
B = 5.552*dsin(N) + 0.167*dsin(2*N);
K = (J+A-B);
R = 1.00014 - 0.01672 * dcos(M) - 0.00014 * dcos(2*M);
r = 5.20867 - 0.25192 * dcos(N) - 0.00610 * dcos(2*N);
Del = sqrt (R*R + r*r - 2*R*r*dcos(K));
psi = RAD2DEG (asin(R/Del*dsin(K)));
tmp = psi - B;
u1 = 84.5506 + 203.4058630 * d + tmp;
u2 = 41.5015 + 101.2916323 * d + tmp;
u3 = 109.9770 + 50.2345169 * d + tmp;
u4 = 176.3586 + 21.4879802 * d + tmp;
GG = 187.3 + 50.310674 * d;
H = 311.1 + 21.569229 * d;
cor_u1 = 0.472 * dsin (2*(u1-u2));
cor_u2 = 1.073 * dsin (2*(u2-u3));
cor_u3 = 0.174 * dsin (GG);
cor_u4 = 0.845 * dsin (H);
r1 = RADIUSSCALE(planets[JUPITER].Radius)*5.9061 - 0.0244 * dcos (2*(u1-u2));
r2 = RADIUSSCALE(planets[JUPITER].Radius)*9.3972 - 0.0889 * dcos (2*(u2-u3));
r3 = RADIUSSCALE(planets[JUPITER].Radius)*14.9894 - 0.0227 * dcos (GG);
r4 = RADIUSSCALE(planets[JUPITER].Radius)*26.3649 - 0.1944 * dcos (H);
planets[IO].posx = r1 * dsin (u1+cor_u1);
planets[EUROPA].posx = r2 * dsin (u2+cor_u2);
planets[GANYMEDE].posx = r3 * dsin (u3+cor_u3);
planets[CALLISTO].posx = r4 * dsin (u4+cor_u4);
lam = 238.05 + 0.083091*d + 0.33*dsin(V) + B;
Ds = 3.07*dsin(lam + 44.5);
De = Ds - 2.15*dsin(psi)*dcos(lam+24.)
- 1.31*(r-Del)/Del*dsin(lam-99.4);
dsinDe = dsin(De);
z1 = r1 * dcos(u1+cor_u1);
z2 = r2 * dcos(u2+cor_u2);
z3 = r3 * dcos(u3+cor_u3);
z4 = r4 * dcos(u4+cor_u4);
planets[IO].posy = z1*dsinDe;
planets[EUROPA].posy = z2*dsinDe;
planets[GANYMEDE].posy = z3*dsinDe;
planets[CALLISTO].posy = z4*dsinDe;
planets[IO].posz = z1;
planets[EUROPA].posz = z2;
planets[GANYMEDE].posz = z3;
planets[CALLISTO].posz = z4;
#undef dsin
#undef dcos
}
/* Another xephem based algorithm
Elements dated Jan 0.0 1980 = December 31,1979 0:0:0 UT
*/
static void SaturnSat()
{
static double SMA[11], U[11], U0[11], PD[11];
static double NN;
static int i;
/* Semimajor Axis of the Satellites' Orbit in planet radius */
SMA[1] = 3.08; SMA[2] = 3.95; SMA[3] = 4.89; SMA[4] = 6.26;
SMA[5] = 8.74; SMA[6] = 20.27; SMA[7] = 24.58; SMA[8] = 59.09;
/* Eccentricity of Satellites' Orbit [Program uses 0] */
/* Synodic Orbital Period of Moons in Days */
PD[1] = .9425049; /* Mimas */
PD[2] = 1.3703731; /* Enceladus */
PD[3] = 1.8880926; /* Tethys */
PD[4] = 2.7375218; /* Dione */
PD[5] = 4.5191631; /* Rhea */
PD[6] = 15.9669028; /* Titan */
PD[7] = 21.3174647; /* Hyperion */
PD[8] = 79.9190206; /* Iapetus */
U0[1] = DEG2RAD(18.2919);
U0[2] = DEG2RAD(174.2135);
U0[3] = DEG2RAD(172.8546);
U0[4] = DEG2RAD(76.8438);
U0[5] = DEG2RAD(37.2555);
U0[6] = DEG2RAD(57.7005);
U0[7] = DEG2RAD(266.6977);
U0[8] = DEG2RAD(195.3513);
NN=days+7305.0;
for (i=TETHYS;i<=TITAN;i++) {
U[i-TETHYS+1] = U0[i-TETHYS+1] + (NN * 2 * PI / PD[i-TETHYS+1]);
U[i-TETHYS+1] = ((U[i-TETHYS+1] / (2 * PI)) - (int)(U[i-TETHYS+1] / (2 * PI))) * 2 * PI;
planets[i].posx = SMA[i-TETHYS+1] * sin(U[i-TETHYS+1]) * RADIUSSCALE(planets[SATURN].Radius);
planets[i].posz = SMA[i-TETHYS+1] * cos(U[i-TETHYS+1]) * RADIUSSCALE(planets[SATURN].Radius);
planets[i].posy = -SMA[i-TETHYS+1] * cos(U[i-TETHYS+1]) * sin(DEG2RAD(1.0)) * RADIUSSCALE(planets[SATURN].Radius);
}
}
static void NeptuneSat()
{
static double SMA[11], U[11], U0[11], PD[11];
static double NN;
/* Semimajor Axis of the Satellites' Orbit in planet radius */
SMA[1] = 14.33;
/* Eccentricity of Satellites' Orbit [Program uses 0] */
/* Synodic Orbital Period of Moons in Days */
PD[1] = 5.876854; /* Triton */
U0[1] = 0.0; /* ? */
NN=days;
U[1] = U0[1] + (NN * 2 * PI / PD[1]);
U[1] = ((U[1] / (2 * PI)) - (int)(U[1] / (2 * PI))) * 2 * PI;
planets[TRITON].posx = SMA[1] * sin(U[1]) * RADIUSSCALE(planets[NEPTUNE].Radius);
planets[TRITON].posz = SMA[1] * cos(U[1]) * RADIUSSCALE(planets[NEPTUNE].Radius);
planets[TRITON].posy = -SMA[1] * cos(U[1]) * sin(DEG2RAD(1.0)) * RADIUSSCALE(planets[NEPTUNE].Radius);
}
static void PlutoSat()
{
static double SMA[11], U[11], U0[11], PD[11];
static double NN;
/* Semimajor Axis of the Satellites' Orbit in planet radius */
SMA[1] = 17.0;
/* Eccentricity of Satellites' Orbit [Program uses 0] */
/* Synodic Orbital Period of Moons in Days */
PD[1] = 6.38725; /* Charon */
U0[1] = 0.0; /* ? */
NN=days;
U[1] = U0[1] + (NN * 2 * PI / PD[1]);
U[1] = ((U[1] / (2 * PI)) - (int)(U[1] / (2 * PI))) * 2 * PI;
planets[CHARON].posx = SMA[1] * RADIUSSCALE(planets[PLUTO].Radius)
* sin(U[1]);
planets[CHARON].posz = SMA[1] * RADIUSSCALE(planets[PLUTO].Radius)
* cos(U[1]);
planets[CHARON].posy = -SMA[1] * RADIUSSCALE(planets[PLUTO].Radius)
* cos(U[1]) * sin(DEG2RAD(1.0));
}
/* Based on Keith Burnett's QBASIC code found here:
http://www.xylem.demon.co.uk/kepler/
*/
void UpdatePositions(void)
{
static int j;
static double e,M,E,r,v,o,p,i,x,y,z;
for (j=1;j<=MOON;j++) {
planets[j].DeltaRotation+=planets[j].Rotation*timefactor;
e=planets[j].Eccentricity;
M=planets[j].DailyMotion*days+planets[j].MeanLongitude-planets[j].Perihelion;
E=SolveKepler(M,e);
r=planets[j].MeanDistance*(1.0-e*cos(E));
v=2.0*atan(sqrt((1+e)/(1-e))*tan(E/2.0));
o=planets[j].AscendingNode;
p=planets[j].Perihelion;
i=planets[j].Inclination;
planets[j].posx=r*(cos(o)*cos(v+p-o)-sin(o)*sin(v+p-o)*cos(i));
planets[j].posz=-r*(sin(o)*cos(v+p-o)+cos(o)*sin(v+p-o)*cos(i));
planets[j].posy=r*(sin(v+p-o)*sin(i));
}
GalileanSat();
SaturnSat();
NeptuneSat();
PlutoSat();
for (j=MOON;j<=CHARON;j++) {
x=planets[j].posx;
y=planets[j].posy;
z=planets[j].posz;
o=cos(DEG2RAD(planets[planets[j].Sat].Degrees)+planets[j].Inclination);
p=sin(DEG2RAD(planets[planets[j].Sat].Degrees)+planets[j].Inclination);
planets[j].posx = planets[planets[j].Sat].posx+x;
planets[j].posy = planets[planets[j].Sat].posy+y*o+z*p;
planets[j].posz = planets[planets[j].Sat].posz-y*p+z*o;
}
i=atan2(planets[EARTH].posz,planets[EARTH].posx)*180.0/PI;
planets[EARTH].DeltaRotation=(days-floor(days))*planets[EARTH].Rotation-i+90.0;
}
|