File: Hwp.h

package info (click to toggle)
stacks 2.55%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,420 kB
  • sloc: cpp: 38,596; perl: 1,337; sh: 539; python: 497; makefile: 144
file content (313 lines) | stat: -rw-r--r-- 10,123 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
// -*-mode:c++; c-style:k&r; c-basic-offset:4;-*-
//
// Copyright 2018, Julian Catchen <jcatchen@illinois.edu>
//
// This file is part of Stacks.
//
// Stacks is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Stacks is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Stacks.  If not, see <http://www.gnu.org/licenses/>.
//

#ifndef __HWP_H__
#define __HWP_H__

#include <random>
using std::uniform_real_distribution;
using std::uniform_int_distribution;
using std::random_device;
using std::mt19937;
using std::seed_seq;

#include <iterator>
#include "constants.h"
#include "utils.h"
#include "PopMap.h"
#include "PopSum.h"

//
// Utility identity function used in both GuoThompson_Hwp and Switchable.
//
size_t kronecker(size_t i, size_t j);

class HWMatrix {
    vector<string>      _hap_list;
    map<string, size_t> _hap_index;
    map<size_t, string> _rev_index;
    map<string, size_t> _hap_cnts;
    size_t   _hets;
    size_t   _n_genotypes;
    size_t   _n_alleles;
    size_t **_g;

 public:
    HWMatrix(size_t n_alleles) {
        this->_n_alleles   = n_alleles;
        this->_n_genotypes = 0;
        this->_hets        = 0;
        this->_g           = new size_t * [this->_n_alleles];
        for (uint i = 0; i < this->_n_alleles; i++) {
            this->_g[i] = new size_t[this->_n_alleles];
            memset(this->_g[i], 0, this->_n_alleles * sizeof(size_t));
        }
    }
    HWMatrix(const HWMatrix &rhs) {
        this->_n_alleles   = rhs._n_alleles;
        this->_n_genotypes = rhs._n_genotypes;
        this->_hets        = rhs._hets;
        this->_g           = new size_t * [this->_n_alleles];

        for (uint i = 0; i < this->_n_alleles; i++) {
            this->_g[i] = new size_t[this->_n_alleles];
            memset(this->_g[i], 0, this->_n_alleles * sizeof(size_t));
            for (uint j = 0; j <= i; j++)
                this->_g[i][j] = rhs._g[i][j];
        }
        this->_hap_list  = rhs._hap_list;
        this->_hap_index = rhs._hap_index;
        this->_rev_index = rhs._rev_index;
        this->_hap_cnts  = rhs._hap_cnts;
    }
    ~HWMatrix() {
        for (uint i = 0; i < this->_n_alleles; i++)
            delete [] this->_g[i];
        delete [] this->_g;
    }
    HWMatrix &operator= (const HWMatrix &rhs) {
        assert(this->_n_alleles == rhs._n_alleles);

        this->_n_alleles   = rhs._n_alleles;
        this->_n_genotypes = rhs._n_genotypes;
        this->_hets        = rhs._hets;

        for (uint i = 0; i < this->_n_alleles; i++)
            for (uint j = 0; j <= i; j++) {
                this->_g[i][j] = rhs._g[i][j];
            }

        this->_hap_list  = rhs._hap_list;
        this->_hap_index = rhs._hap_index;
        this->_rev_index = rhs._rev_index;
        this->_hap_cnts  = rhs._hap_cnts;

        return *this;
    }
    size_t &cellr(size_t i, size_t j) {
        //
        // Only process values in the lower triangular matrix.
        //
        return (j > i) ? this->_g[j][i] : this->_g[i][j];
    }
    size_t cellv(size_t i, size_t j) const {
        //
        // Only process values in the lower triangular matrix.
        //
        return (j > i) ? this->_g[j][i] : this->_g[i][j];
    }
    size_t alleles() const { return this->_n_alleles; }
    size_t hets() const { return this->_hets; }
    size_t genotypes() const { return this->_n_genotypes; }
    map<string, size_t>& hap_cnts() { return this->_hap_cnts; }

    void add_genotype(string allele_1, string allele_2) {
        if (this->_hap_index.count(allele_1) == 0) {
            _hap_index[allele_1] = _hap_list.size();
            _rev_index[_hap_list.size()] = allele_1;
            _hap_cnts[allele_1]  = 1;
            _hap_list.push_back(allele_1);        
        } else {
            _hap_cnts[allele_1]++;
        }
        if (this->_hap_index.count(allele_2) == 0) {
            _hap_index[allele_2] = _hap_list.size();
            _rev_index[_hap_list.size()] = allele_2;
            _hap_cnts[allele_2]  = 1;
            _hap_list.push_back(allele_2);        
        } else {
            _hap_cnts[allele_2]++;
        }
        
        size_t i = this->_hap_index[allele_1];
        size_t j = this->_hap_index[allele_2];
        
        if (j > i)
            this->_g[j][i]++;
        else
            this->_g[i][j]++;

        if (i != j)
            this->_hets++;

        this->_n_genotypes++;
    }
    size_t inc_genotype(size_t i, size_t j) {
        assert(i < this->_n_alleles && j < this->_n_alleles);
        
        if (j > i)
            this->_g[j][i]++;
        else
            this->_g[i][j]++;

        if (i != j) this->_hets++;
        
        this->_n_genotypes++;

        return (j > i) ? this->_g[j][i] : this->_g[i][j];
    }
    size_t dec_genotype(size_t i, size_t j) {
        assert(i < this->_n_alleles && j < this->_n_alleles);

        if (j > i)
            this->_g[j][i]--;
        else
            this->_g[i][j]--;

        if (i != j) this->_hets--;

        this->_n_genotypes--;

        return (j > i) ? this->_g[j][i] : this->_g[i][j];
    }
    void populate(int, int, const Datum **);
    void dump_matrix();
};

class Switchable {
public:
    size_t Delta;
    bool d0;    // Type 0 donation switch, AKA d0-switchable.
    bool r0;    // Type 0 reception switch, AKA r0-switchable.
    bool d1;    // Type 1 donation switch, AKA d1-switchable.
    bool r1;    // Type 1 reception switch, AKA r1-switchable.
    bool d2;    // Type 2 donation switch, AKA d2-switchable.
    bool r2;    // Type 2 reception switch, AKA r2-switchable.
    bool d_switchable;
    bool r_switchable;
    bool partially_switchable;
    bool fully_switchable;

    Switchable() {
        this->Delta = 0;
        this->d0 = false;
        this->r0 = false;
        this->d1 = false;
        this->r1 = false;
        this->d2 = false;
        this->r2 = false;
        this->d_switchable = false;
        this->r_switchable = false;
        this->partially_switchable = false;
        this->fully_switchable     = false;
    }
    Switchable(HWMatrix *g, size_t i_1, size_t j_1, size_t i_2, size_t j_2) {
        this->Delta = 0;
        this->d0 = false;
        this->r0 = false;
        this->d1 = false;
        this->r1 = false;
        this->d2 = false;
        this->r2 = false;
        this->d_switchable = false;
        this->r_switchable = false;
        this->partially_switchable = false;
        this->fully_switchable     = false;

        this->switchability(g, i_1, j_1, i_2, j_2);
    }

    size_t switchability(HWMatrix *g, size_t i_1, size_t j_1, size_t i_2, size_t j_2) {
        this->Delta = kronecker(i_1, j_1) + kronecker(i_1, j_2) + kronecker(i_2, j_1) + kronecker(i_2, j_2);

        assert(this->Delta >= 0 && this->Delta <= 2);

        //
        // Determine if and how this set of indices are switchable.
        //
        // Delta can be 0, 1, or 2 only. If the right cells in the contingency table have counts > 0
        // then the state is switchabe, either a donation or reception switch (paritally switchable)
        // or both (fully switchable).
        //
        switch(Delta) {
        case 0:
            if (g->cellv(i_1, j_1) * g->cellv(i_2, j_2) != 0) d0 = true;
            if (g->cellv(i_1, j_2) * g->cellv(i_2, j_1) != 0) r0 = true;
            break;
        case 1:
            if (g->cellv(i_1, j_1) * g->cellv(i_2, j_2) != 0) d1 = true;
            if (g->cellv(i_1, j_2) * g->cellv(i_2, j_1) != 0) r1 = true; 
            break;
        case 2:
            if (g->cellv(i_1, j_1) * g->cellv(i_2, j_2) != 0) d2 = true;
            if (g->cellv(i_1, j_2) >= 2)                      r2 = true;
            break;
        }

        this->d_switchable = (this->d0 || this->d1 || this->d2) ? true : false;
        this->r_switchable = (this->r0 || this->r1 || this->r2) ? true : false;
        
        if (this->d_switchable && this->r_switchable) {
            this->fully_switchable = true;

        } else if (this->d_switchable || this->r_switchable) {
            this->partially_switchable = true;
        }
        // else: not switchable.

        return this->Delta;
    }
};

class GuoThompson_Hwp {
    const size_t _burnin  = 10000;
    const size_t _steps   = 10000;
    const size_t _batches = 20;

    random_device _r;
    mt19937       _eng;
    //
    // Random number generator for choosing whether to transition between states.
    //
    uniform_real_distribution<double> _transition;
    //
    // Random number generator for choosing cells from our genotype matrix.
    //
    uniform_int_distribution<uint16_t> _indexes;

public:
    size_t _n_alleles;
    double _p_value;
    double _se;

    GuoThompson_Hwp(size_t n_alleles) {
        this->_n_alleles  = n_alleles;

        seed_seq seed{_r(), _r(), _r(), _r(), _r(), _r(), _r(), _r()};
        _eng.seed(seed);

        this->_indexes    = uniform_int_distribution<uint16_t>(0, n_alleles - 1);
        this->_transition = uniform_real_distribution<double>(0, 1);
    }

    double exec_locus(int, int, const Datum **, size_t);
    double log_hwe_probability(HWMatrix &);
    double hwe_probability(HWMatrix &);

private:
    double walk_chain(HWMatrix **, HWMatrix **, HWMatrix **, double);
    double r_switch(HWMatrix &, HWMatrix &, size_t i_1, size_t j_1, size_t i_2, size_t j_2, Switchable &sw);
    double d_switch(HWMatrix &, HWMatrix &, size_t i_1, size_t j_1, size_t i_2, size_t j_2, Switchable &sw);
    double delta(size_t i_1, size_t j_1, size_t i_2, size_t j_2);
    double gamma(size_t Delta, size_t i_1, size_t j_1, size_t i_2, size_t j_2);
    double transition_prob(double pr);
};

#endif // __HWP_H__