1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
|
/* screen_seq: a program for finding readings that appear to be known contaminating
sequence such as E. coli. Readings found to contain a long segment matching a known
possible contaminant are given a comment line to indicate this and their names
are not written to the pass file, but go to the fail file.
The files to screen against are obtained from a file of file names or can be
a single file.
It is a very quick screen: the best match is found (say >25) and then all other 8 base
matches within window/2 either side are added up and the percentage overlap found is
used as a test.
*/
#include <staden_config.h>
#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <ctype.h>
#include "misc.h"
#include "dna_utils.h"
#include <io_lib/scf.h>
#include <io_lib/expFileIO.h>
#include "getfile.h"
#define NORMAL_MODE 0
#define TEST_ONLY 1
#define MAX_READ 4096 /* the reading */
#define MAX_VECTOR_D 100000 /* the vector sequence */
#define MIN_VECTOR 4096 /* the vector sequence */
#define MAX_READS 10000
#define MAX_VECTORS 5000
char *file_names[MAX_READS];
char *vfile_names[MAX_VECTORS];
int get_text_seq ( char *seq, int max_len, int *seq_len, FILE *fp );
void write_dot(void) {
fprintf ( stdout, "." );
(void) fflush ( stdout );
}
int vep_error ( FILE *fp, char *file_name, int error_no ) {
char *err_mess[] = {
/* 1 */ "Error: could not open experiment file",
/* 2 */ "Error: no sequence in experiment file",
/* 3 */ "Error: sequence too short",
/* 4 */ "Error: could not write to experiment file",
/* 5 */ "Error: hashing problem",
/* 6 */ "Error: invalid sequence for demonstration mode"};
fprintf ( stderr, "%s\n",err_mess[error_no-1] );
if ( fp ) fprintf ( fp, "%s %s\n",file_name,err_mess[error_no-1]);
fprintf ( stdout, "!" );
(void) fflush ( stdout );
return 0;
}
int get_filenames ( FILE *fp ) {
int num_read = -1;
char file_name[FILENAME_MAX+1];
while ( fgets ( file_name, FILENAME_MAX, fp )) {
num_read++;
if ( num_read == MAX_READS-1) {
fprintf(stderr, "too many readings\n");
return -1;
}
file_name[strlen(file_name)-1] = '\0';
if ( NULL == (file_names[num_read] = (char *) malloc ( sizeof(char *)*(strlen(file_name)+1) ))) {
return -2;
}
strcpy ( file_names[num_read], file_name );
}
num_read++;
return num_read;
}
int get_vfilenames ( FILE *fp, char *fofn_name ) {
int num_read = -1;
char file_name[FILENAME_MAX+1], tmp[FILENAME_MAX+1];
char expanded_fn[FILENAME_MAX+1], base_name[FILENAME_MAX+1];
char *p;
if (1 != expandpath(fofn_name, expanded_fn)) {
fprintf(stderr, "Failed to expand input file of vector file names\n");
return -1;
}
if (p = strrchr(expanded_fn, '/')) {
strncpy(base_name, expanded_fn, p-expanded_fn+1);
base_name[p-expanded_fn+1] = 0;
} else {
base_name[0] = 0;
}
while ( fgets ( tmp, FILENAME_MAX, fp )) {
num_read++;
if ( num_read == MAX_VECTORS-1) {
fprintf(stderr, "too many sequences\n");
return -1;
}
if (1 != expandpath(tmp, file_name)) {
fprintf(stderr, "Failed to expand vector file name\n");
return -1;
}
file_name[strlen(file_name)-1] = '\0';
#ifdef _WIN32
if (file_name[0] != '/' && file_name[1] != ':') {
#else
if (file_name[0] != '/') {
#endif
sprintf(tmp, "%s%s", base_name, file_name);
strcpy(file_name, tmp);
}
if ( NULL == (vfile_names[num_read] = (char *) malloc ( sizeof(char *)*(strlen(file_name)+1) ))) {
return -2;
}
strcpy ( vfile_names[num_read], file_name );
}
num_read++;
return num_read;
}
int get_vfilenames_old ( FILE *fp, char *fofn_name ) {
int num_read = -1;
char file_name[FILENAME_MAX+1], tmp[FILENAME_MAX+1];
char base_name[FILENAME_MAX+1];
char *p;
if (p = strrchr(fofn_name, '/')) {
strncpy(base_name, fofn_name, p-fofn_name+1);
base_name[p-fofn_name+1] = 0;
} else {
base_name[0] = 0;
}
while ( fgets ( file_name, FILENAME_MAX, fp )) {
num_read++;
if ( num_read == MAX_VECTORS-1) {
fprintf(stderr, "too many sequences\n");
return -1;
}
file_name[strlen(file_name)-1] = '\0';
#ifdef _WIN32
if (file_name[0] != '/' && file_name[1] != ':') {
#else
if (file_name[0] != '/') {
strcpy(tmp, file_name);
sprintf(file_name, "%s%s", base_name, file_name);
#endif
}
if ( NULL == (vfile_names[num_read] = (char *) malloc ( sizeof(char *)*(strlen(file_name)+1) ))) {
return -2;
}
strcpy ( vfile_names[num_read], file_name );
}
num_read++;
return num_read;
}
/************************************************************/
void store_hash (
int *hash_values, /* the hash values for each position in a seq */
int seq_len, /* size of the seq and hash array */
int *last_word, /* last occurrence of this hash value */
int *word_count, /* frequency of each hash value or word */
int word_length, /* word length */
int size_wc ) { /* number of elements in word_count and first_word */
/* store the hash values in hash_values: put number of occurrences of
each hash value in word_count; put the array position of the last
occurrence of each hash value in last_word, and previous
occurrences in hash_values[last_word].
Note that words containing unknown characters (like '-') are given
hash value -1. So we skip them here, and they are ignored.
*/
int nw;
register int i,j,n;
/* zero the word counts */
for ( i=0;i<size_wc;i++ ) {
word_count[i] = 0;
last_word[i] = 0;
}
/* loop for all entries in hash_values */
j = seq_len - word_length + 1;
for ( i = 0; i < j; i++ ) {
n = hash_values[i];
/* is it a good value ? */
if ( -1 != n ) {
nw = word_count[n];
/* already an entry for this word ? */
if ( 0 == nw ) {
/* no, so put in last_word */
last_word[n] = i;
word_count[n] += 1;
}
/* yes, so put previous last occurrence in hash_values*/
else {
word_count[n] += 1;
hash_values[i] = last_word[n];
last_word[n] = i;
}
}
}
}
int dna_hash8_lookup[256];
void set_hash8_lookup(void) {
/* hashing values */
/* set up table of values for permitted base characters */
int i;
for (i=0;i<256;i++) dna_hash8_lookup[i] = 4;
dna_hash8_lookup['a'] = 0;
dna_hash8_lookup['c'] = 1;
dna_hash8_lookup['g'] = 2;
dna_hash8_lookup['t'] = 3;
dna_hash8_lookup['A'] = 0;
dna_hash8_lookup['C'] = 1;
dna_hash8_lookup['G'] = 2;
dna_hash8_lookup['T'] = 3;
/* dna_hash8_lookup['*'] = 0; */
}
int init_hash8 ( int seq1_len, int seq2_len,
int **hash_values1, int **last_word,
int **word_count, int **hash_values2,
int **diag, int **line ) {
int size_hash, word_length;
word_length = 8;
set_hash8_lookup ();
size_hash = 65536;
if ( NULL == (*hash_values1 = (int *) xmalloc ( sizeof(int)*(seq1_len) ))) {
return -2;
}
if ( ! (*last_word = (int *) xmalloc ( sizeof(int)*size_hash ))) {
return -2;
}
if ( ! (*word_count = (int *) xmalloc ( sizeof(int)*size_hash ))) {
return -2;
}
if ( ! (*hash_values2 = (int *) xmalloc ( sizeof(int)*(seq2_len) ))) {
return -2;
}
if ( ! (*line = (int *) xmalloc ( sizeof(int)*(seq2_len) ))) {
return -2;
}
if ( ! (*diag = (int *) xmalloc ( sizeof(int)*(seq2_len + seq1_len) ))) {
return -2;
}
return 0;
}
void free_hash8 ( int *hash_values1, int *last_word,
int *word_count, int *hash_values2,
int *diag) {
if ( hash_values1 ) xfree ( hash_values1 );
if ( hash_values2 ) xfree ( hash_values2 );
if ( word_count ) xfree ( word_count );
if ( last_word ) xfree ( last_word );
if ( diag ) xfree ( diag );
}
int hash_word8 ( char *seq, int *start_base, int seq_len,
unsigned short *uword) {
/* given a sequence seq, return the hash value for the first word
* after start_base that does not contain an unknown char. Tell
* the caller where this is. If we reach the end of the seq set
* start_base and return -1.
*/
register int i, word_len=8;
register int end_base,base_index,lstart_base;
register int unsigned short luword;
lstart_base = *start_base;
end_base = lstart_base + word_len;
if ( seq_len < end_base ) return -1;
for (i=lstart_base,luword=0,end_base=lstart_base+word_len;i<end_base;i++) {
base_index = dna_hash8_lookup[(unsigned)seq[i]];
if ( 4 == base_index ) {
/* weve hit an unknown char, so lets start again */
lstart_base = i + 1;
end_base = lstart_base + word_len;
if ( seq_len < end_base ) {
*start_base = lstart_base;
return -1;
}
luword = 0;
i = lstart_base - 1;
}
else {
luword = ( luword <<2 ) | base_index;
}
}
*start_base = lstart_base;
*uword = luword;
return 0;
}
int hash_seq8 ( char *seq, int *hash_values, int seq_len) {
/* given a sequence seq, return an array of hash values
If we cannot find at least one word to hash on we return -1
otherwise we return 0.
*/
register int i,j,k,word_len=8;
int start_base,prev_start_base,end_base,base_index;
unsigned short uword;
if ( seq_len < word_len ) return -1;
/* Get the hash value for the first word that contains no unknowns */
start_base = 0;
if (hash_word8 ( seq, &start_base, seq_len, &uword)) return -1;
for (i=0;i<start_base;i++) hash_values[i] = -1;
/* Now do the rest of the sequence */
hash_values[start_base] = uword;
k = seq_len - word_len + 1;
for (i=start_base+1,j=start_base+word_len; i<k; i++,j++) {
base_index = dna_hash8_lookup[(unsigned)seq[j]];
if ( 4 == base_index ) {
/* weve hit an unknown char, so lets start again */
prev_start_base = i;
start_base = j + 1;
if (hash_word8 ( seq, &start_base, seq_len, &uword)) {
for (i=prev_start_base;i<start_base;i++) hash_values[i] = -1;
return 0;
}
for (i=prev_start_base;i<start_base;i++) hash_values[i] = -1;
hash_values[start_base] = uword;
end_base = start_base + word_len;
i = start_base;
j = i + word_len - 1;
}
else {
uword = ( uword <<2 ) | base_index;
hash_values[i] = uword;
}
}
return 0;
}
int do_hash_con ( int seq1_len, int seq2_len,
int *hash_values1, int *last_word,
int *word_count, int *hash_values2,
int *diag, int *line,
char *seq1, char *seq2, int new_seq1,
int min_match, int half_window, int *x, int *y, int *score ) {
int nrw, word, pw1, pw2, i, ncw, j, match_length, word_length = 8;
int size_hash = 65536;
int diag_pos;
int top_score, min_line, max_line, line_pos, i1, i2, j1, j2, k;
int top_score_pos, new_score, xx, yy;
double n_score;
/* seq2 is the reading which changes each entry, but seq1 is
the vector which may be the same for consecutive
entries, so we use new_seq1 to tell if we need to hash seq1
*/
*score = 0;
if ( seq1_len < min_match ) return -4;
if ( seq2_len < min_match ) return -4;
if ( new_seq1 ) {
if ( hash_seq8 ( seq1, hash_values1, seq1_len ) != 0 ) {
return -1;
}
(void) store_hash ( hash_values1, seq1_len, last_word, word_count,
word_length, size_hash);
}
if ( hash_seq8 ( seq2, hash_values2, seq2_len ) != 0 ) {
return -1;
}
j = seq1_len + seq2_len;
for (i=0;i<j;i++) diag[i] = -word_length;
nrw = seq2_len - word_length + 1;
/* loop for all (nrw) complete words in hash_values2 */
for (pw2=0;pw2<nrw;pw2++) {
word = hash_values2[pw2];
if ( -1 != word ) {
if ( 0 != (ncw = word_count[word]) ) {
for (j=0,pw1=last_word[word];j<ncw;j++) {
diag_pos = seq1_len - pw1 + pw2 - 1;
if ( diag[diag_pos] < pw2 ) {
if ((match_length = match_len (
seq1, pw1, seq1_len,
seq2, pw2, seq2_len))
>= min_match ) {
*score = match_length;
*x = pw1+1;
*y = pw2+1;
return 1;
}
diag[diag_pos] = pw2 + match_length;
}
pw1 = hash_values1[pw1];
}
}
}
}
if ( *score < min_match ) return 0;
/* NONE OF THIS USED */
/* check out this region by adding up the matches
in all the loca hits to see how much of the
reading they cover */
top_score_pos = 0; /* to keep marks compiler happy */
if ( top_score_pos < seq1_len ) {
yy = seq1_len - top_score_pos - 1;
xx = 0;
}
else {
xx = top_score_pos - seq1_len + 1;
yy = 0;
}
top_score = *score;
min_line = yy;
max_line = MIN(seq1_len-yy,seq2_len-xx) - (word_length-1);
for ( i=0;i<max_line;i++) line[i] = 0;
i1 = MAX(0,xx-half_window);
i2 = MIN(i1+max_line+half_window,seq2_len-word_length);
j1 = top_score_pos-half_window;
j2 = top_score_pos+half_window;
for (i=i1;i<i2;i++) {
word = hash_values2[i];
if ( -1 != word ) {
if ( 0 != (ncw = word_count[word]) ) {
pw1 = last_word[word];
for (j=0;j<ncw;j++) {
k = i - pw1 + seq1_len - 1;
if((k>j1)&&(k<j2)) {
line_pos = pw1 - min_line;
if ( (line_pos > 0) && (line_pos < max_line) ) line[line_pos]=1;
}
pw1 = hash_values1[pw1];
}
}
}
}
for (i=0,new_score=0;i<max_line;i++) new_score += line[i];
n_score = 100.0 * (double)new_score/(double)(max_line-1);
*score = (int) (n_score + 0.5);
return 1;
}
int do_it_con ( char *vector_seq, int max_vector,
FILE *fp_s, FILE *fp_i, FILE *fp_p, FILE *fp_f,
int word_length, int min_match, int percent_cut,
int window_size, int tmode, int mode_v, char *fofn_s,
int mode_i) {
char *seq, *expt_file_name;
Exp_info *e;
int ql,qr,seq_length,i;
/* for this algorithm */
int *hash_values1, *hash_values2, *last_word, *word_count;
int *diag, *line;
int vector_length, x, y, ret, eret;
char *vfile_name;
int num_files, file_num, num_vfiles, vfile_num;
FILE *vf;
int sl, sr; /* sequencing vector left and right */
int new_vector = 0;
int score, score_f, score_r;
int lg, rg, xf, xr, yf, yr;
int match_found, half_window;
int size_hash = 65536;
half_window = MAX(1,window_size/2);
if ( min_match < 8 ) min_match = 8;
if ( init_hash8 ( max_vector, MAX_READ,
&hash_values1, &last_word, &word_count,
&hash_values2, &diag, &line ))
return -1;
if ( mode_i ) {
if (( num_files = get_filenames ( fp_i )) < 1 )
return -1;
}
else {
num_files = 1;
}
if ( mode_v ) {
if (( num_vfiles = get_vfilenames ( fp_s, fofn_s )) < 1 )
return -1;
}
else {
num_vfiles = 1;
}
/* for each vector sequence */
for ( vfile_num = 0; (vfile_num < num_vfiles) &&
(vfile_name=vfile_names[vfile_num]); vfile_num++ ) {
if ( tmode ) {
printf(">>>>>>>>>>>>>>>>>>>>>>>>>>> %s\n", vfile_names[vfile_num]);
}
if ( !(vf = fopen(vfile_names[vfile_num], "r"))) {
fprintf(stderr, "Error: could not open sequence file %s\n", vfile_name);
continue;
}
ret = get_text_seq ( vector_seq, max_vector, &vector_length, vf);
fclose(vf);
if ( ret ) {
fprintf(stderr, "Error: could not read vector file %s\n", vfile_name);
continue;
}
if ( hash_seq8 ( vector_seq, hash_values1, vector_length ) != 0 ) {
fprintf(stderr, "Error: could not hash sequence file %s\n", vfile_name);
continue;
}
(void) store_hash ( hash_values1, vector_length, last_word, word_count,
word_length, size_hash );
/* for all the readings that are left */
for ( file_num = 0; file_num < num_files; file_num++ ) {
if ( expt_file_name=file_names[file_num]) {
if ( tmode ) {
printf(">>>>>>>>>>>>>>>>>>>>>> %s\n", expt_file_name );
}
e = exp_read_info ( expt_file_name );
if ( e == NULL ) {
eret = vep_error ( fp_f, expt_file_name, 1 );
exp_destroy_info ( e );
file_names[file_num] = NULL;
continue;
}
else {
if ( exp_Nentries ( e, EFLT_SQ ) < 1 ) {
eret = vep_error ( fp_f, expt_file_name, 2 );
exp_destroy_info ( e );
file_names[file_num] = NULL;
continue;
}
else {
char *expline;
seq = exp_get_entry ( e, EFLT_SQ );
seq_length = strlen ( seq );
ql = 0;
qr = seq_length + 1;
if ( exp_Nentries ( e, EFLT_QL )) {
expline = exp_get_entry ( e, EFLT_QL );
ql = atoi ( expline );
}
if ( exp_Nentries ( e, EFLT_QR )) {
expline = exp_get_entry ( e, EFLT_QR );
qr = atoi ( expline );
}
sl = 0;
sr = seq_length + 1;
if ( exp_Nentries ( e, EFLT_SL )) {
expline = exp_get_entry ( e, EFLT_SL );
sl = atoi ( expline );
}
if ( exp_Nentries ( e, EFLT_SR )) {
expline = exp_get_entry ( e, EFLT_SR );
sr = atoi ( expline );
}
/* we have to search both strands so we call do_hash
with the read in its original sense, then its
complement.
*/
match_found = 0;
score_f = score_r = 0;
lg = MAX ( ql, sl ) - 1;
lg = MAX ( lg, 0 );
rg = MIN ( qr, sr ) - 1;
rg = MIN ( rg, seq_length-1 );
/* printf("lg %d rg %d\n",lg,rg); */
if ( rg - lg + 1 < min_match ) {
eret = vep_error ( fp_f, expt_file_name, 3 );
exp_destroy_info ( e );
file_names[file_num] = NULL;
continue;
}
ret = do_hash_con ( vector_length, rg-lg+1,
hash_values1, last_word,
word_count, hash_values2, diag, line,
vector_seq, &seq[lg], new_vector,
min_match, half_window,
&x, &y, &score);
if ( ret < 0 ) {
eret = vep_error ( fp_f, expt_file_name, 5 );
exp_destroy_info ( e );
file_names[file_num] = NULL;
continue;
}
if ( ret ) {
if ( score >= percent_cut ) {
xf = x;
yf = y + lg;
score_f = score;
match_found = 1;
/* printf("forward score %d at %d %d\n",score_f,xf,yf); */
if ( !tmode ) {
char mess[2048]; /* twice vfile_name ! */
if (exp_put_str(e, EFLT_PS, "contaminated",
strlen("contaminated"))) {
eret = vep_error ( fp_f, expt_file_name, 4 );
exp_destroy_info ( e );
file_names[file_num] = NULL;
continue;
}
sprintf(mess, "CONT = %d..%d\n%d %d %s",
yf,yf+score-1,xf,score,vfile_name);
exp_put_str(e, EFLT_TG, mess, strlen(mess));
if ( fp_f ) fprintf ( fp_f, "%s\n",expt_file_name);
file_names[file_num] = NULL;
}
else {
printf("match %d at %d %d\n",score,xf,yf);
}
}
}
if ( !match_found ) {
complement_seq ( &seq[lg], rg-lg+1);
ret = do_hash_con ( vector_length, rg-lg+1,
hash_values1, last_word,
word_count, hash_values2, diag, line,
vector_seq, &seq[lg], new_vector,
min_match, half_window,
&x, &y, &score);
if ( ret < 0 ) {
eret = vep_error ( fp_f, expt_file_name, 5 );
exp_destroy_info ( e );
file_names[file_num] = NULL;
continue;
}
if ( ret ) {
if ( score >= percent_cut ) {
xr = x;
yr = rg - lg - y + lg - score + 3;
score_r = score;
match_found = 1;
/* printf("reverse score %d at %d %d\n",score,xr,yr); */
if ( !tmode ) {
char mess[2048]; /* twice vfile_name ! */
if (exp_put_str(e, EFLT_PS, "contaminated",
strlen("contaminated"))) {
eret = vep_error ( fp_f, expt_file_name, 4 );
exp_destroy_info ( e );
file_names[file_num] = NULL;
continue;
}
sprintf(mess, "CONT = %d..%d\n%d %d %s",
yr,yr+score-1,xr,score,vfile_name);
exp_put_str(e, EFLT_TG, mess, strlen(mess));
if ( fp_f ) fprintf ( fp_f, "%s\n",expt_file_name);
file_names[file_num] = NULL;
}
else {
printf("---match %d at %d %d\n",score,xr,yr);
}
}
match_found = 1;
}
}
if ( tmode && !match_found ) printf("no match\n");
}
}
exp_destroy_info ( e );
if (!(tmode)) (void) write_dot();
}
}
}
/*fprintf ( fp_p, "%s\n",expt_file_name); */
/* screening finished so write out those that have not failed */
if ( fp_p ) {
for(i=0;i<num_files;i++) {
if ( file_names[i] ) fprintf( fp_p, "%s\n", file_names[i]);
}
}
free_hash8 ( hash_values1, last_word,
word_count, hash_values2,
diag );
return 0;
}
int get_text_seq ( char *seq, int max_len, int *seq_len, FILE *fp )
/* read in a staden format (yuk) sequence file */
/* Deal with 2 special line types: comments that have ";" in column 0
and contig consensus sequence headers that have "<----abc.00001---->"
embedded in them */
{
#define MAX_SEQ_LINE 101
char line[MAX_SEQ_LINE];
int j;
*seq_len = 0;
while ( fgets( line,sizeof(line),fp ) != NULL ) {
/* Check for special lines of type ";"*/
if ( ';' != line[0] ) {
for (j = 0;j < MAX_SEQ_LINE && line[j]; j++) {
if ( '<' == line[j] ) j += 20;
if (isalpha ( (int) line[j]) || (int) line[j] == '-') {
if ( *seq_len >= max_len) return -1;
seq[*seq_len] = line[j];
*seq_len += 1;
}
}
}
}
return 0;
}
/* johnt 30/6/99 must explicitly import globals from DLLs with Visual C++*/
#ifdef _MSC_VER
# define DLL_IMPORT __declspec(dllimport)
#else
# define DLL_IMPORT
#endif
extern DLL_IMPORT char *optarg;
extern DLL_IMPORT int optind;
void usage(int min_match ) {
fprintf(stderr,
"Usage: screen_seq [options and parameters]\n"
"Where options are:\n"
" [-l minimum match (%d)] [-m Max sequence length (%d)]\n"
" [-i readings to screen fofn] [-I reading to screen]\n"
" [-s seqs to screen against fofn] [-S seq to screen against]\n"
" [-t test only]\n"
" [-p passed fofn] [-f failed fofn]\n",
min_match, MAX_VECTOR_D);
exit(1);
}
/* program to find readings that are contaminant DNA */
int main(int argc, char **argv) {
int c;
int min_match, max_vector, min_match_d, percent_cut;
int mode_v, mode_i,i,tmode,mr_s,mr_fofn, mv_s,mv_fofn;
int window_size;
char *fofn_p, *fofn_f, *fofn_i, *fofn_s = NULL, *vector_seq;
FILE *fp_p, *fp_f, *fp_i, *fp_s = NULL;
fofn_p = fofn_f = fofn_i = NULL;
fp_p = fp_f = fp_i = NULL;
max_vector = MAX_VECTOR_D;
min_match_d = 25;
min_match = -1;
percent_cut = -1;
window_size = -1;
mode_v = mode_i = -1;
tmode = 0;
mr_s = mr_fofn = mv_s = mv_fofn = 0;
while ((c = getopt(argc, argv, "l:m:i:I:p:f:s:S:t")) != -1) {
switch (c) {
case 'l':
min_match = atoi(optarg);
break;
case 'm':
max_vector = atoi(optarg);
break;
case 't':
tmode = TEST_ONLY;
break;
case 'i': /* sequences to screen fofn */
mr_fofn = 1;
fofn_i = optarg;
break;
case 'I': /* sequence to screen */
mr_s = 1;
fofn_i = optarg;
break;
case 's': /* sequences to screen against fofn */
fofn_s = optarg;
mv_fofn = 1;
break;
case 'S': /* sequence to screen against */
fofn_s = optarg;
mv_s = 1;
break;
case 'p': /* passed file fofn */
fofn_p = optarg;
break;
case 'f': /* fails file fofn */
fofn_f = optarg;
break;
default:
usage( min_match_d);
}
}
if ( optind < 2 ) usage( min_match_d );
if ( mr_s && mr_fofn ) usage( min_match_d );
if ( mv_s && mv_fofn ) usage( min_match_d);
if ( min_match < 0 ) min_match = min_match_d;
if ( max_vector < MIN_VECTOR ) max_vector = MIN_VECTOR;
if ( mr_fofn ) {
fp_i = fopen(fofn_i, "r");
if (fp_i == NULL ) {
fprintf(stderr, "Failed to open file of file names to screen\n");
return -1;
}
mode_i = 1;
}
if ( mr_s ) {
if ( NULL == (file_names[0] =
(char *) malloc ( sizeof(char *)*(strlen(fofn_i)+1) ))) {
fprintf(stderr, "Failed to open single file to screen\n");
return -1;
}
file_names[0] = fofn_i;
mode_i = 0;
}
if ( mv_fofn ) {
fp_s = fopen(fofn_s, "r");
if (fp_s == NULL ) {
fprintf(stderr, "Failed to open file of file names to screen against\n");
return -1;
}
mode_v = 1;
}
if ( mv_s ) {
if ( NULL == (vfile_names[0] =
(char *) malloc ( sizeof(char *)*(strlen(fofn_s)+1) ))) {
fprintf(stderr, "Failed to open single file to screen against\n");
return -1;
}
vfile_names[0] = fofn_s;
mode_v = 0;
}
if ( fofn_p ) {
fp_p = fopen(fofn_p, "w");
if (fp_p == NULL ) {
fprintf(stderr, "Failed to open file of passed file names\n");
return -1;
}
}
if ( fofn_f ) {
fp_f = fopen(fofn_f, "w");
if (fp_f == NULL ) {
fprintf(stderr, "Failed to open file of failed file names\n");
return -1;
}
}
set_dna_lookup();
set_char_set(1); /* FIXME DNA*/
if ( ! (vector_seq = (char *) xmalloc ( sizeof(char)*max_vector ))) return -1;
if ( (mode_v == -1) || (mode_i == -1) ) usage( min_match_d );
percent_cut = min_match;
window_size = 7;
i = do_it_con ( vector_seq, max_vector, fp_s, fp_i, fp_p, fp_f, 8, min_match,
percent_cut, window_size, tmode, mode_v, fofn_s, mode_i );
fprintf(stdout,"\n");
xfree ( vector_seq );
exit(0);
}
|