1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
/*
* Copyright (c) Medical Research Council 2002. All rights reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation for any purpose is hereby granted without fee, provided that
* this copyright and notice appears in all copies.
*
* This file was written as part of the Staden Package at the MRC Laboratory
* of Molecular Biology, Hills Road, Cambridge, CB2 2QH, United Kingdom.
*
* MRC disclaims all warranties with regard to this software.
*
*/
#include <cassert>
#include <cmath> // For std::log10()
#include <cstring> // For std::memset()
#include <algorithm> // For std::max()
#include <dnatable.hpp>
#include <caller_base.hpp>
void BaseCaller::Init()
{
m_nPeakRatio = 0.0;
m_nConfidence = 0.0;
for( int n=0; n<3; n++ )
m_nCall[n] = '-';
for( int n=0; n<2; n++ )
{
m_nPosition[n] = -1;
m_nAmplitude[n] = 0;
}
}
void BaseCaller::MakeCall( Trace& Tr, SimpleMatrix<int>& Peak, int nPos, int nAmbiguityWindow )
{
assert(nPos>=0);
assert(nAmbiguityWindow>0);
call_t Signal[4];
// Initialisation
Init();
// m_nPosition[2] = nPos; jkb 25/06/2003. What should this be?
// Search for peaks and load them in
int peaks = LoadPeaks( Peak, nPos, nAmbiguityWindow, Signal );
// Find biggest peaks position
if( peaks > 0 )
{
int max_sig = 0;
int max_amp = -1;
for( int n=3; n>=0; n-- )
{
if( Signal[n].Position >= 0 )
{
if( Signal[n].Amplitude > max_amp )
{
max_sig = n;
max_amp = Signal[n].Amplitude;
}
}
}
nPos = Signal[max_sig].Position;
}
// Load trace amplitudes for peakless bases
for( int n=0; n<4; n++ )
{
if( Signal[n].Position < 0 )
Signal[n].Amplitude = Tr[n][nPos];
}
// Sort the entire lot by amplitude
SortAscending( Signal );
// Basecall single peak
DNATable Table;
if( peaks == 1 )
{
for( int n=3; n>=0; n-- )
{
if( Signal[n].Position >= 0 )
{
m_nCall[0] = Table.LookupBase( Signal[n].Index );
m_nCall[1] = m_nCall[0];
m_nPosition[0] = Signal[n].Position;
m_nAmplitude[0] = Signal[n].Amplitude;
}
}
}
// Basecall multiple peaks
else if( peaks >= 2 )
{
call_t highest_signal;
int highest_signal_n;
highest_signal.Index = -1;
for( int n=3; n>=0; n-- )
{
if( Signal[n].Position >= 0 )
{
if( highest_signal.Index < 0 )
{
highest_signal = Signal[n];
highest_signal_n = n;
}
else
{
m_nCall[0] = Table.LookupBase( highest_signal.Index, Signal[n].Index );
m_nCall[1] = Table.LookupBase( highest_signal.Index );
m_nCall[2] = Table.LookupBase( Signal[n].Index );
m_nPosition[0] = highest_signal.Position;
m_nAmplitude[0] = highest_signal.Amplitude;
m_nPosition[1] = Signal[n].Position;
m_nAmplitude[1] = Signal[n].Amplitude;
}
}
}
}
// Compute confidence value, just SNR(db) = 20*log(S/N)
double S = Signal[3].Amplitude;
double N = Signal[2].Amplitude;
if( N <= 0.0 )
N = 1.0;
m_nPeakRatio = S / N;
m_nConfidence = m_nPeakRatio
? 20.0 * std::log10( m_nPeakRatio )
: 0;
}
|