1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
|
/* SIM - Local similarity program for use with the LAD/LAV interface.
For the description of the algorithm, see the paper
"A Time-Efficient, Linear-Space Local Similarity Algorithm"
Advances in Applied Mathematics, vol. 12 (1991), pp. 337-357.
SIM finds k best non-intersecting alignments between two sequences or
within a sequence using dynamic programming techniques. The alignments are
reported in order of decreasing similarity score and share no aligned pairs.
SIM requires space proportional to the sum of the input sequence lengths
and the output alignment lengths, so it accommodates 100,000-base
sequences on a workstation.
Users can supply certain combinations of values for the parameters:
M = cost of a matching aligned pair (default = 1)
I = cost of a transition (default is -1)
V = cost of a transversion (default is -1)
O = gap open penalty (default is 6.0)
E = gap extension penalty (default is 0.2)
S = name of file containing substitution scores
Thus the score for an N-symbol indel is -(O + E*N). Values are
specified with a command argument like O=5.5, where the given number
is rounded by SIM to the nearest tenth.
The S parameter cannot be specified if either I or V is specified. A file
named with the S parameter should have the following form:
#
# PAM 200 substitution matrix (scale = 0.346574)
#
# Number of letters in alphabet = 23
# Lowest score = -6, Highest score = 12
#
A R N D C Q E G H I L K M F P S T W Y V B Z X
2 -2 0 0 -2 -1 0 1 -1 -1 -2 -1 -1 -3 1 1 1 -5 -3 0 1 1 0
-2 5 0 -1 -3 1 -1 -3 1 -2 -2 2 0 -3 0 0 -1 1 -4 -2 0 1 0
0 0 2 2 -3 0 1 0 1 -1 -2 1 -2 -2 0 1 0 -4 -1 -2 3 2 0
0 -1 2 3 -4 1 3 0 0 -2 -3 0 -2 -4 -1 0 0 -6 -3 -2 4 3 0
-2 -3 -3 -4 8 -4 -4 -3 -3 -2 -5 -4 -4 -4 -2 0 -2 -6 0 -2 -3 -3 0
-1 1 0 1 -4 4 2 -1 2 -2 -1 0 -1 -4 0 -1 -1 -4 -3 -2 2 4 0
0 -1 1 3 -4 2 3 0 0 -2 -3 0 -2 -4 0 0 0 -6 -3 -2 3 4 0
1 -3 0 0 -3 -1 0 4 -2 -2 -3 -2 -3 -3 -1 1 0 -5 -4 -1 1 0 0
-1 1 1 0 -3 2 0 -2 5 -2 -2 0 -2 -1 0 -1 -1 -3 0 -2 2 2 0
-1 -2 -1 -2 -2 -2 -2 -2 -2 4 2 -1 2 1 -2 -1 0 -5 -1 3 -1 -1 0
-2 -2 -2 -3 -5 -1 -3 -3 -2 2 4 -2 3 1 -2 -2 -1 -4 -1 1 -2 -1 0
-1 2 1 0 -4 0 0 -2 0 -1 -2 4 1 -4 -1 0 0 -3 -4 -2 1 1 0
-1 0 -2 -2 -4 -1 -2 -3 -2 2 3 1 5 0 -2 -1 0 -4 -2 1 -1 0 0
-3 -3 -2 -4 -4 -4 -4 -3 -1 1 1 -4 0 7 -4 -2 -2 0 5 -1 -2 -3 0
1 0 0 -1 -2 0 0 -1 0 -2 -2 -1 -2 -4 5 1 0 -5 -4 -1 0 1 0
1 0 1 0 0 -1 0 1 -1 -1 -2 0 -1 -2 1 2 1 -2 -2 -1 1 1 0
1 -1 0 0 -2 -1 0 0 -1 0 -1 0 0 -2 0 1 3 -4 -2 0 1 0 0
-5 1 -4 -6 -6 -4 -6 -5 -3 -5 -4 -3 -4 0 -5 -2 -4 12 0 -6 -3 -4 0
-3 -4 -1 -3 0 -3 -3 -4 0 -1 -1 -4 -2 5 -4 -2 -2 0 7 -2 -1 -2 0
0 -2 -2 -2 -2 -2 -2 -1 -2 3 1 -2 1 -1 -1 -1 0 -6 -2 4 -1 -1 0
1 0 3 4 -3 2 3 1 2 -1 -2 1 -1 -2 0 1 1 -3 -1 -1 4 4 0
1 1 2 3 -3 4 4 0 2 -1 -1 1 0 -3 1 1 0 -4 -2 -1 4 5 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
The command argument S=PAM200, which is recommended for protein sequences,
is treated specially; the set of weights given above is used, O defaults
to 12 and E defaults to 4. No file named "PAM200" will be read.
For example, to find 7 best non-intersecting alignments of segments from
two DNA sequences in files A and B, and using the above default values
except that transistions are scored 0, use the command
sim 7 A B I=0
As a second example, suppose the PAM120 weights are in a file named
PAM120. Then the command
sim 7 A B S=PAM120 O=10 E=2
runs sim on protein sequence files A and B. Also, the command
sim 7 A B S=PAM200
uses the substitution scores given above, the gap-open penalty 12 and
the gap extension penalty 4. If the command does not specify any of
the parameters M, I, V or S, then sim reads the first 100 characters of
the first sequence; if at least 25 of these differ from A, C, G or T,
then the PAM200 scores are used.
Acknowledgments:
The functions diff() and display() are from Gene Myers. We made the
following two modifications: similarity weights (integer) are used instead
of distance weights (float), and the aligned pairs already output are not
permitted in the subsequent alignments.
*/
#define DEFAULT_M 1.0
#define DEFAULT_I -1.0
#define DEFAULT_V -1.0
#define DEFAULT_O 6.0
#define DEFAULT_E 0.2
#define DEFAULT_PAM_O 12.0
#define DEFAULT_PAM_E 4.0
#include <stdio.h>
#include <ctype.h>
#include "sip_sim.h"
int big_pass( char A[], char B[], long M, long N, long K, long nseq);
int locate( char A[], char B[], long nseq);
int small_pass( char A[], char B[], long count, long nseq);
long addnode(long c, long ci, long cj, long i, long j, long K, long cost);
int no_cross( void );
void fatal(char *msg);
void fatalf(char *msg, char *val);
/*static FILE *ckopen(char *name, char *mode);*/
#if 0
static char *name1, *name2; /* names of sequence files */
static char
achars[] = "ARNDCQEGHILKMFPSTWYVBZX"; /* amino acid names */
static int
alpha = 23; /* alphabet size */
static int wgts[23][23] = { /* the PAM200 matrix */
{ 2,-2, 0, 0,-2,-1, 0, 1,-1,-1,-2,-1,-1,-3, 1, 1, 1,-5,-3, 0, 1, 1, 0},
{-2, 5, 0,-1,-3, 1,-1,-3, 1,-2,-2, 2, 0,-3, 0, 0,-1, 1,-4,-2, 0, 1, 0},
{ 0, 0, 2, 2,-3, 0, 1, 0, 1,-1,-2, 1,-2,-2, 0, 1, 0,-4,-1,-2, 3, 2, 0},
{ 0,-1, 2, 3,-4, 1, 3, 0, 0,-2,-3, 0,-2,-4,-1, 0, 0,-6,-3,-2, 4, 3, 0},
{-2,-3,-3,-4, 8,-4,-4,-3,-3,-2,-5,-4,-4,-4,-2, 0,-2,-6, 0,-2,-3,-3, 0},
{-1, 1, 0, 1,-4, 4, 2,-1, 2,-2,-1, 0,-1,-4, 0,-1,-1,-4,-3,-2, 2, 4, 0},
{ 0,-1, 1, 3,-4, 2, 3, 0, 0,-2,-3, 0,-2,-4, 0, 0, 0,-6,-3,-2, 3, 4, 0},
{ 1,-3, 0, 0,-3,-1, 0, 4,-2,-2,-3,-2,-3,-3,-1, 1, 0,-5,-4,-1, 1, 0, 0},
{-1, 1, 1, 0,-3, 2, 0,-2, 5,-2,-2, 0,-2,-1, 0,-1,-1,-3, 0,-2, 2, 2, 0},
{-1,-2,-1,-2,-2,-2,-2,-2,-2, 4, 2,-1, 2, 1,-2,-1, 0,-5,-1, 3,-1,-1, 0},
{-2,-2,-2,-3,-5,-1,-3,-3,-2, 2, 4,-2, 3, 1,-2,-2,-1,-4,-1, 1,-2,-1, 0},
{-1, 2, 1, 0,-4, 0, 0,-2, 0,-1,-2, 4, 1,-4,-1, 0, 0,-3,-4,-2, 1, 1, 0},
{-1, 0,-2,-2,-4,-1,-2,-3,-2, 2, 3, 1, 5, 0,-2,-1, 0,-4,-2, 1,-1, 0, 0},
{-3,-3,-2,-4,-4,-4,-4,-3,-1, 1, 1,-4, 0, 7,-4,-2,-2, 0, 5,-1,-2,-3, 0},
{ 1, 0, 0,-1,-2, 0, 0,-1, 0,-2,-2,-1,-2,-4, 5, 1, 0,-5,-4,-1, 0, 1, 0},
{ 1, 0, 1, 0, 0,-1, 0, 1,-1,-1,-2, 0,-1,-2, 1, 2, 1,-2,-2,-1, 1, 1, 0},
{ 1,-1, 0, 0,-2,-1, 0, 0,-1, 0,-1, 0, 0,-2, 0, 1, 3,-4,-2, 0, 1, 0, 0},
{-5, 1,-4,-6,-6,-4,-6,-5,-3,-5,-4,-3,-4, 0,-5,-2,-4,12, 0,-6,-3,-4, 0},
{-3,-4,-1,-3, 0,-3,-3,-4, 0,-1,-1,-4,-2, 5,-4,-2,-2, 0, 7,-2,-1,-2, 0},
{ 0,-2,-2,-2,-2,-2,-2,-1,-2, 3, 1,-2, 1,-1,-1,-1, 0,-6,-2, 4,-1,-1, 0},
{ 1, 0, 3, 4,-3, 2, 3, 1, 2,-1,-2, 1,-1,-2, 0, 1, 1,-3,-1,-1, 4, 4, 0},
{ 1, 1, 2, 3,-3, 4, 4, 0, 2,-1,-1, 1, 0,-3, 1, 1, 0,-4,-2,-1, 4, 5, 0},
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
};
main(argc, argv) int argc; char *argv[];
{ long M, N, K; /* Sequence lengths and k */
char *A, *B; /* The two sequences */
int i, j, gave_M, gave_I, gave_V, gave_O, gave_E, gave_S, gave_PAM200,
non_DNA;
long V[128][128], Q,R; /* Converted integer weights */
float parm_M, parm_I, parm_V, parm_O, parm_E, v;
double atof();
char *strchr(), *strcpy(), filename[1000];
if ( argc < 4)
fatal("SIM k file1 file2 [M=] [I=] [V=] [O=] [E=] [S=]");
/* read k: the desired number of local alignments */
sscanf(argv[1],"%d", &K);
if (K == 0)
fatal("specified 0 alignments");
name1 = argv[2];
name2 = argv[3];
M = get_seq(argv[2], &A);
--A; /* subscripts start with 1 */
if (strcmp(argv[2],argv[3])) { /* sequences are different */
N = get_seq(argv[3], &B);
--B;
}
parm_M = DEFAULT_M;
parm_I = DEFAULT_I;
parm_V = DEFAULT_V;
parm_O = DEFAULT_O;
parm_E = DEFAULT_E;
gave_M = gave_I = gave_V = gave_O = gave_E = gave_S = gave_PAM200 = 0;
while (--argc > 3) {
if (argv[argc][1] != '=')
fatalf("argument %d has improper form", argc);
if (argv[argc][1] != 'S')
v = atof(argv[argc]+2);
switch (argv[argc][0]) {
case 'M': parm_M = v; gave_M = 1; break;
case 'I': parm_I = v; gave_I = 1; break;
case 'V': parm_V = v; gave_V = 1; break;
case 'O': parm_O = v; gave_O = 1; break;
case 'E': parm_E = v; gave_E = 1; break;
case 'S':
if (strcmp(argv[argc]+2, "PAM200") == 0)
gave_PAM200 = 1;
else {
strcpy(filename,argv[argc]+2); gave_S=1;
}
break;
default: fatal("options are M, I, V, O, E and S.");
}
}
if (gave_S && (gave_I || gave_V))
fatal("Cannot give S parameter with I or V.");
if (gave_PAM200 && (gave_I || gave_V || gave_S))
fatal("Cannot use PAM200 with parameters, I, V, or S.");
if (!gave_S && !gave_PAM200 && !gave_M && !gave_I && !gave_V) {
/* Does first sequence look like a protein? */
j = (M < 100)? M : 100;
for (non_DNA = i = 0; i < j; ++i)
if (strchr("ACGT", A[i]) == NULL)
++non_DNA;
if (non_DNA >= j/4)
gave_PAM200 = 1;
}
if (gave_PAM200) {
if (!gave_O)
parm_O = DEFAULT_PAM_O;
if (!gave_E)
parm_E = DEFAULT_PAM_E;
}
printf("#:lav\n\n");
printf("d {\n \"SIM output with parameters:\n");
if (gave_PAM200)
printf(" Used PAM200 matrix\n");
else if (gave_S)
printf(" substitution scores in %s\n", filename);
else
printf(" M = %g, I = %g, V = %g\n", parm_M, parm_I, parm_V);
printf(" O = %g, E = %g\"\n}\n", parm_O, parm_E);
/* set up scoring matrix */
if (gave_PAM200) {
/* set up scoring matrix */
for (i = 0; i < alpha; ++i)
for (j = 0; j < alpha; ++j)
V[achars[i]][achars[j]] = 10*wgts[i][j];
} else if (gave_S) {
FILE *ckopen(), *fp;
char buf[200], *p, *fgets(), alph[128];
int alph_size;
float weight;
fp = ckopen(filename, "r");
while (fgets(buf, 200, fp))
if (buf[0] == ' ' || isupper(buf[0]))
break;
for (alph_size = 0, p = buf; *p != '\0'; ++p)
if (isupper(*p))
alph[alph_size++] = *p;
for (i = 0; i < alph_size; ++i)
for (j = 0; j <= alph_size; ++j) {
fscanf(fp, "%f", &weight);
V[alph[i]][alph[j]] = 10*weight;
}
fclose(fp);
} else {
parm_M += (parm_M > 0) ? 0.05 : -0.05;
V['A']['A'] = V['C']['C'] = V['G']['G'] = V['T']['T']
= 10*parm_M;
parm_I += (parm_I > 0) ? 0.05 : -0.05;
V['A']['G'] = V['G']['A'] = V['C']['T'] = V['T']['C']
= 10*parm_I;
parm_V += (parm_V > 0) ? 0.05 : -0.05;
V['A']['C'] = V['A']['T'] = V['C']['A'] = V['C']['G'] =
V['G']['C'] = V['G']['T'] = V['T']['A'] = V['T']['G']
= 10*parm_V;
}
parm_O += (parm_O > 0) ? 0.05 : -0.05;
Q = 10 * parm_O;
parm_E += (parm_E > 0) ? 0.05 : -0.05;
R = 10 * parm_E;
if (strcmp(argv[2], argv[3]))
SIM(A,B,M,N,K,V,Q,R,2L);
else
SIM(A,A,M,M,K,V,Q,R,1L);
if (strcmp(argv[2], argv[3]) == 0) {
/* self-comparison; insert trivial diagonal */
printf("a {\n s 0.0\n b 1 1\n e %d %d\n", M, M);
printf(" l 1 1 %d %d 0.0\n}\n", M, M);
}
exit(0);
}
#endif
#if 0
/* get_seq - read a sequence */
int get_seq(file_name, seqptr)
char *file_name, **seqptr;
{
FILE *qp, *ckopen();
char *p, *fgets(), *strchr(), *ckalloc();
int c;
long n;
qp = ckopen(file_name, "r");
for (n = 0; (c = getc(qp)) != EOF; )
if (c != '\n')
++n;
*seqptr = ckalloc((n+1)*sizeof(char));
rewind(qp);
for (p = *seqptr; ; ) {
if (fgets(p, (int)n, qp) == NULL) {
fclose(qp);
*p = '\0';
break;
}
if (p == *seqptr && !isupper(*p))
continue;
while (isupper(*p))
++p;
if (*p != '\n' && *p != '\0')
fatalf("Illegal character %c in query sequence.", *p);
}
return p - *seqptr;
}
#endif
static long (*v)[128]; /* substitution scores */
static long q, r; /* gap penalties */
static long qr; /* qr = q + r */
typedef struct ONE { long COL ; struct ONE *NEXT ;} pair, *pairptr;
static pairptr *row, z; /* for saving used aligned pairs */
static short tt;
typedef struct NODE
{ long SCORE;
long STARI;
long STARJ;
long ENDI;
long ENDJ;
long TOP;
long BOT;
long LEFT;
long RIGHT; } vertex, *vertexptr;
static vertexptr *LIST; /* an array for saving k best scores */
static vertexptr low = 0; /* lowest score node in LIST */
static vertexptr most = 0; /* latestly accessed node in LIST */
static long numnode; /* the number of nodes in LIST */
static long *CC, *DD; /* saving matrix scores */
static long *RR, *SS, *EE, *FF; /* saving start-points */
static long *HH, *WW; /* saving matrix scores */
static long *II, *JJ, *XX, *YY; /* saving start-points */
static long m1, mm, n1, nn; /* boundaries of recomputed area */
static long rl, cl; /* left and top boundaries */
static long min; /* minimum score in LIST */
static short flag; /* indicate if recomputation necessary*/
/* DIAG() assigns value to x if (ii,jj) is never used before */
#define DIAG(ii, jj, x, value) \
{ for ( tt = 1, z = row[(ii)]; z != 0; z = z->NEXT ) \
if ( z->COL == (jj) ) \
{ tt = 0; break; } \
if ( tt ) \
x = ( value ); \
}
/* replace (ss1, xx1, yy1) by (ss2, xx2, yy2) if the latter is large */
#define ORDER(ss1, xx1, yy1, ss2, xx2, yy2) \
{ if ( ss1 < ss2 ) \
{ ss1 = ss2; xx1 = xx2; yy1 = yy2; } \
else \
if ( ss1 == ss2 ) \
{ if ( xx1 < xx2 ) \
{ xx1 = xx2; yy1 = yy2; } \
else \
if ( xx1 == xx2 && yy1 < yy2 ) \
yy1 = yy2; \
} \
}
/* The following definitions are for function diff() */
long diff(char *A, char *B, long M, long N, long tb, long te);
void display(char A[], char B[], long M, long N, long S[], long AP, long BP);
static long zero = 0; /* long type zero */
#define gap(k) ((k) <= 0 ? 0 : q+r*(k)) /* k-symbol indel score */
static align_int *sapp; /* Current script append ptr */
static long last; /* Last script op appended */
static long I, J; /* current positions of A ,B */
static long no_mat; /* number of matches */
static long no_mis; /* number of mismatches */
static long al_len; /* length of alignment */
/* Append "Delete k" op */
#define DEL(k) \
{ I += k; \
al_len += k; \
if (last < 0) \
last = sapp[-1] -= (k); \
else \
last = *sapp++ = -(k); \
}
/* Append "Insert k" op */
#define INS(k) \
{ J += k; \
al_len += k; \
if (last < 0) \
{ sapp[-1] = (k); *sapp++ = last; } \
else \
last = *sapp++ = (k); \
}
/* Append "Replace" op */
#define REP \
{ last = *sapp++ = 0; \
al_len += 1; \
}
void init_sim_globals(void)
{
zero = 0;
low = 0;
most = 0;
}
/* SIM(A,B,M,N,K,V,Q,R) reports K best non-intersecting alignments of
the segments of A and B in order of similarity scores, where
V[a][b] is the score of aligning a and b, and -(Q+R*i) is the score
of an i-symbol indel. */
long SIM(char *A,
char *B,
long M,
long N,
long K,
long V[][128],
long Q,
long R,
long nseq,
float score_align,
align_int **S,
long *start_i,
long *start_j,
long *end_i,
long *end_j)
{ long endi, endj, stari, starj; /* endpoint and startpoint */
long score; /* the max score in LIST */
long count; /* maximum size of list */
register long i, j; /* row and column indices */
#if 0
char *ckalloc(); /* space-allocating function */
long *S; /* saving operations for diff */
#endif
vertexptr cur; /* temporary pointer */
vertexptr findmax(void); /* return the largest score node */
init_sim_globals();
/* allocate space for all vectors */
j = (N + 1) * sizeof(long);
CC = ( long * ) ckalloc(j);
DD = ( long * ) ckalloc(j);
RR = ( long * ) ckalloc(j);
SS = ( long * ) ckalloc(j);
EE = ( long * ) ckalloc(j);
FF = ( long * ) ckalloc(j);
i = (M + 1) * sizeof(long);
HH = ( long * ) ckalloc(i);
WW = ( long * ) ckalloc(i);
II = ( long * ) ckalloc(i);
JJ = ( long * ) ckalloc(i);
XX = ( long * ) ckalloc(i);
YY = ( long * ) ckalloc(i);
#if 0
S = ( align_int * ) ckalloc(i + j);
#endif
row = ( pairptr * ) ckalloc( (M + 1) * sizeof(pairptr));
/* set up list for each row */
for ( i = 1; i <= M; i++ )
if ( nseq == 2 )
row[i] = 0;
else
{ row[i] = z = ( pairptr ) ckalloc( (long) sizeof(pair));
z->COL = i;
z->NEXT = 0;
}
v = V;
q = Q;
r = R;
qr = q + r;
LIST = ( vertexptr * ) ckalloc( K * sizeof(vertexptr));
for ( i = 0; i < K ; i++ )
LIST[i] = ( vertexptr ) ckalloc( (long) sizeof(vertex));
#if 0
printf("s {\n \"%s\" 1 %d\n \"%s\" 1 %d\n}\n", name1, M, name2, N);
printf("k {\n \"%% match\"\n}\n");
#endif
numnode = min = 0;
big_pass(A,B,M,N,K,nseq);
/* Report the K best alignments one by one. After each alignment is
output, recompute part of the matrix. First determine the size
of the area to be recomputed, then do the recomputation */
for ( count = K - 1; count >= 0 ; count-- )
{ if ( numnode == 0 ) {
verror(ERR_WARN, "local alignment",
"The number of alignments computed is too large");
return -1;
}
cur = findmax(); /* Return a pointer to a node with max score*/
score = cur->SCORE;
/* if searching for all alignments above a certain score */
if (score_align > -1 && (score/10.0) < score_align)
return (K-count-1);
stari = ++cur->STARI;
starj = ++cur->STARJ;
endi = cur->ENDI;
endj = cur->ENDJ;
m1 = cur->TOP;
mm = cur->BOT;
n1 = cur->LEFT;
nn = cur->RIGHT;
rl = endi - stari + 1;
cl = endj - starj + 1;
I = stari - 1;
J = starj - 1;
sapp = S[K-count-1];
last = 0;
al_len = 0;
no_mat = 0;
no_mis = 0;
diff(&A[stari]-1, &B[starj]-1,rl,cl,q,q);
/* Output the best alignment */
#if 0
printf("a {\n s %1.1lf\n b %d %d\n e %d %d\n",
score/10.0, stari, starj, endi, endj);
display(&A[stari]-1,&B[starj]-1,rl,cl,S[K-count-1],stari,starj);
printf("}\n");
#endif
start_i[K-count-1] = stari;
start_j[K-count-1] = starj;
end_i[K-count-1] = endi;
end_j[K-count-1] = endj;
fflush(stdout);
if ( count )
{ flag = 0;
locate(A,B,nseq);
if ( flag )
small_pass(A,B,count,nseq);
}
}
return K;
}
/* A big pass to compute K best classes */
int big_pass(A,B,M,N,K,nseq) char A[],B[]; long M,N,K,nseq;
{ register long i, j; /* row and column indices */
register long c; /* best score at current point */
register long f; /* best score ending with insertion */
register long d; /* best score ending with deletion */
register long p; /* best score at (i-1, j-1) */
register long ci, cj; /* end-point associated with c */
register long di, dj; /* end-point associated with d */
register long fi, fj; /* end-point associated with f */
register long pi, pj; /* end-point associated with p */
long *va; /* pointer to v(A[i], B[j]) */
/* long addnode(); */ /* function for inserting a node */
/* Compute the matrix and save the top K best scores in LIST
CC : the scores of the current row
RR and EE : the starting point that leads to score CC
DD : the scores of the current row, ending with deletion
SS and FF : the starting point that leads to score DD */
/* Initialize the 0 th row */
for ( j = 1; j <= N ; j++ )
{ CC[j] = 0;
RR[j] = 0;
EE[j] = j;
DD[j] = - (q);
SS[j] = 0;
FF[j] = j;
}
for ( i = 1; i <= M; i++)
{ c = 0; /* Initialize column 0 */
f = - (q);
ci = fi = i;
va = v[A[i]];
if ( nseq == 2 )
{ p = 0;
pi = i - 1;
cj = fj = pj = 0;
}
else
{ p = CC[i];
pi = RR[i];
pj = EE[i];
cj = fj = i;
}
for ( j = (nseq == 2 ? 1 : (i+1)) ; j <= N ; j++ )
{ f = f - r;
c = c - qr;
ORDER(f, fi, fj, c, ci, cj)
c = CC[j] - qr;
ci = RR[j];
cj = EE[j];
d = DD[j] - r;
di = SS[j];
dj = FF[j];
ORDER(d, di, dj, c, ci, cj)
c = 0;
DIAG(i, j, c, p+va[B[j]]) /* diagonal */
if ( c <= 0 )
{ c = 0; ci = i; cj = j; }
else
{ ci = pi; cj = pj; }
ORDER(c, ci, cj, d, di, dj)
ORDER(c, ci, cj, f, fi, fj)
p = CC[j];
CC[j] = c;
pi = RR[j];
pj = EE[j];
RR[j] = ci;
EE[j] = cj;
DD[j] = d;
SS[j] = di;
FF[j] = dj;
if ( c > min ) /* add the score into list */
min = addnode(c, ci, cj, i, j, K, min);
}
}
return 0;
}
/* Determine the left and top boundaries of the recomputed area */
int locate(A,B,nseq) char A[],B[]; long nseq;
{ register long i, j; /* row and column indices */
register long c; /* best score at current point */
register long f; /* best score ending with insertion */
register long d; /* best score ending with deletion */
register long p; /* best score at (i-1, j-1) */
register long ci, cj; /* end-point associated with c */
register long di=0, dj=0; /* end-point associated with d */
register long fi, fj; /* end-point associated with f */
register long pi, pj; /* end-point associated with p */
short cflag, rflag; /* for recomputation */
long *va; /* pointer to v(A[i], B[j]) */
/* long addnode(); */ /* function for inserting a node */
long limit; /* the bound on j */
/* Reverse pass
rows
CC : the scores on the current row
RR and EE : the endpoints that lead to CC
DD : the deletion scores
SS and FF : the endpoints that lead to DD
columns
HH : the scores on the current columns
II and JJ : the endpoints that lead to HH
WW : the deletion scores
XX and YY : the endpoints that lead to WW
*/
for ( j = nn; j >= n1 ; j-- )
{ CC[j] = 0;
EE[j] = j;
DD[j] = - (q);
FF[j] = j;
if ( nseq == 2 || j > mm )
RR[j] = SS[j] = mm + 1;
else
RR[j] = SS[j] = j;
}
for ( i = mm; i >= m1; i-- )
{ c = p = 0;
f = - (q);
ci = fi = i;
pi = i + 1;
cj = fj = pj = nn + 1;
va = v[A[i]];
if ( nseq == 2 || n1 > i )
limit = n1;
else
limit = i + 1;
for ( j = nn; j >= limit ; j-- )
{ f = f - r;
c = c - qr;
ORDER(f, fi, fj, c, ci, cj)
c = CC[j] - qr;
ci = RR[j];
cj = EE[j];
d = DD[j] - r;
di = SS[j];
dj = FF[j];
ORDER(d, di, dj, c, ci, cj)
c = 0;
DIAG(i, j, c, p+va[B[j]]) /* diagonal */
if ( c <= 0 )
{ c = 0; ci = i; cj = j; }
else
{ ci = pi; cj = pj; }
ORDER(c, ci, cj, d, di, dj)
ORDER(c, ci, cj, f, fi, fj)
p = CC[j];
CC[j] = c;
pi = RR[j];
pj = EE[j];
RR[j] = ci;
EE[j] = cj;
DD[j] = d;
SS[j] = di;
FF[j] = dj;
if ( c > min )
flag = 1;
}
if ( nseq == 2 || i < n1 )
{ HH[i] = CC[n1];
II[i] = RR[n1];
JJ[i] = EE[n1];
WW[i] = f;
XX[i] = fi;
YY[i] = fj;
}
}
for ( rl = m1, cl = n1; ; )
{ for ( rflag = cflag = 1; ( rflag && m1 > 1 ) || ( cflag && n1 > 1 ) ; )
{ if ( rflag && m1 > 1 ) /* Compute one row */
{ rflag = 0;
m1--;
c = p = 0;
f = - (q);
ci = fi = m1;
pi = m1 + 1;
cj = fj = pj = nn + 1;
va = v[A[m1]];
for ( j = nn; j >= n1 ; j-- )
{ f = f - r;
c = c - qr;
ORDER(f, fi, fj, c, ci, cj)
c = CC[j] - qr;
ci = RR[j];
cj = EE[j];
d = DD[j] - r;
di = SS[j];
dj = FF[j];
ORDER(d, di, dj, c, ci, cj)
c = 0;
DIAG(m1, j, c, p+va[B[j]]) /* diagonal */
if ( c <= 0 )
{ c = 0; ci = m1; cj = j; }
else
{ ci = pi; cj = pj; }
ORDER(c, ci, cj, d, di, dj)
ORDER(c, ci, cj, f, fi, fj)
p = CC[j];
CC[j] = c;
pi = RR[j];
pj = EE[j];
RR[j] = ci;
EE[j] = cj;
DD[j] = d;
SS[j] = di;
FF[j] = dj;
if ( c > min )
flag = 1;
if ( ! rflag && ( ci > rl && cj > cl || di > rl && dj > cl
|| fi > rl && fj > cl ) )
rflag = 1;
}
HH[m1] = CC[n1];
II[m1] = RR[n1];
JJ[m1] = EE[n1];
WW[m1] = f;
XX[m1] = fi;
YY[m1] = fj;
if ( ! cflag && ( ci > rl && cj > cl || di > rl && dj > cl
|| fi > rl && fj > cl ) )
cflag = 1;
}
if ( nseq == 1 && n1 == (m1 + 1) && ! rflag )
cflag = 0;
if ( cflag && n1 > 1 ) /* Compute one column */
{ cflag = 0;
n1--;
c = 0;
f = - (q);
cj = fj = n1;
va = v[B[n1]];
if ( nseq == 2 || mm < n1 )
{ p = 0;
ci = fi = pi = mm + 1;
pj = n1 + 1;
limit = mm;
}
else
{ p = HH[n1];
pi = II[n1];
pj = JJ[n1];
ci = fi = n1;
limit = n1 - 1;
}
for ( i = limit; i >= m1 ; i-- )
{ f = f - r;
c = c - qr;
ORDER(f, fi, fj, c, ci, cj)
c = HH[i] - qr;
ci = II[i];
cj = JJ[i];
d = WW[i] - r;
di = XX[i];
dj = YY[i];
ORDER(d, di, dj, c, ci, cj)
c = 0;
DIAG(i, n1, c, p+va[A[i]])
if ( c <= 0 )
{ c = 0; ci = i; cj = n1; }
else
{ ci = pi; cj = pj; }
ORDER(c, ci, cj, d, di, dj)
ORDER(c, ci, cj, f, fi, fj)
p = HH[i];
HH[i] = c;
pi = II[i];
pj = JJ[i];
II[i] = ci;
JJ[i] = cj;
WW[i] = d;
XX[i] = di;
YY[i] = dj;
if ( c > min )
flag = 1;
if ( ! cflag && ( ci > rl && cj > cl || di > rl && dj > cl
|| fi > rl && fj > cl ) )
cflag = 1;
}
CC[n1] = HH[m1];
RR[n1] = II[m1];
EE[n1] = JJ[m1];
DD[n1] = f;
SS[n1] = fi;
FF[n1] = fj;
if ( ! rflag && ( ci > rl && cj > cl || di > rl && dj > cl
|| fi > rl && fj > cl ) )
rflag = 1;
}
}
if ( m1 == 1 && n1 == 1 || no_cross() )
break;
}
m1--;
n1--;
return 0;
}
/* recompute the area on forward pass */
int small_pass(A,B,count,nseq) char A[], B[]; long count, nseq;
{ register long i, j; /* row and column indices */
register long c; /* best score at current point */
register long f; /* best score ending with insertion */
register long d; /* best score ending with deletion */
register long p; /* best score at (i-1, j-1) */
register long ci, cj; /* end-point associated with c */
register long di, dj; /* end-point associated with d */
register long fi, fj; /* end-point associated with f */
register long pi, pj; /* end-point associated with p */
long *va; /* pointer to v(A[i], B[j]) */
/* long addnode();*/ /* function for inserting a node */
long limit; /* lower bound on j */
for ( j = n1 + 1; j <= nn ; j++ )
{ CC[j] = 0;
RR[j] = m1;
EE[j] = j;
DD[j] = - (q);
SS[j] = m1;
FF[j] = j;
}
for ( i = m1 + 1; i <= mm; i++)
{ c = 0; /* Initialize column 0 */
f = - (q);
ci = fi = i;
va = v[A[i]];
if ( nseq == 2 || i <= n1 )
{ p = 0;
pi = i - 1;
cj = fj = pj = n1;
limit = n1 + 1;
}
else
{ p = CC[i];
pi = RR[i];
pj = EE[i];
cj = fj = i;
limit = i + 1;
}
for ( j = limit ; j <= nn ; j++ )
{ f = f - r;
c = c - qr;
ORDER(f, fi, fj, c, ci, cj)
c = CC[j] - qr;
ci = RR[j];
cj = EE[j];
d = DD[j] - r;
di = SS[j];
dj = FF[j];
ORDER(d, di, dj, c, ci, cj)
c = 0;
DIAG(i, j, c, p+va[B[j]]) /* diagonal */
if ( c <= 0 )
{ c = 0; ci = i; cj = j; }
else
{ ci = pi; cj = pj; }
ORDER(c, ci, cj, d, di, dj)
ORDER(c, ci, cj, f, fi, fj)
p = CC[j];
CC[j] = c;
pi = RR[j];
pj = EE[j];
RR[j] = ci;
EE[j] = cj;
DD[j] = d;
SS[j] = di;
FF[j] = dj;
if ( c > min ) /* add the score into list */
min = addnode(c, ci, cj, i, j, count, min);
}
}
return 0;
}
/* Add a new node into list. */
long addnode(c, ci, cj, i, j, K, cost) long c, ci, cj, i, j, K, cost;
{ short found; /* 1 if the node is in LIST */
register long d;
found = 0;
if ( most != 0 && most->STARI == ci && most->STARJ == cj )
found = 1;
else
for ( d = 0; d < numnode ; d++ )
{ most = LIST[d];
if ( most->STARI == ci && most->STARJ == cj )
{ found = 1;
break;
}
}
if ( found )
{ if ( most->SCORE < c )
{ most->SCORE = c;
most->ENDI = i;
most->ENDJ = j;
}
if ( most->TOP > i ) most->TOP = i;
if ( most->BOT < i ) most->BOT = i;
if ( most->LEFT > j ) most->LEFT = j;
if ( most->RIGHT < j ) most->RIGHT = j;
}
else
{ if ( numnode == K ) /* list full */
most = low;
else
most = LIST[numnode++];
most->SCORE = c;
most->STARI = ci;
most->STARJ = cj;
most->ENDI = i;
most->ENDJ = j;
most->TOP = most->BOT = i;
most->LEFT = most->RIGHT = j;
}
if ( numnode == K )
{ if ( low == most || ! low )
{ for ( low = LIST[0], d = 1; d < numnode ; d++ )
if ( LIST[d]->SCORE < low->SCORE )
low = LIST[d];
}
return ( low->SCORE ) ;
}
else
return cost;
}
/* Find and remove the largest score in list */
vertexptr findmax(void)
{ vertexptr cur;
register long i, j;
for ( j = 0, i = 1; i < numnode ; i++ )
if ( LIST[i]->SCORE > LIST[j]->SCORE )
j = i;
cur = LIST[j];
if ( j != --numnode )
{ LIST[j] = LIST[numnode];
LIST[numnode] = cur;
}
most = LIST[0];
if ( low == cur ) low = LIST[0];
return ( cur );
}
/* return 1 if no node in LIST share vertices with the area */
int no_cross( void )
{ vertexptr cur;
register long i;
for ( i = 0; i < numnode; i++ )
{ cur = LIST[i];
if ( cur->STARI <= mm && cur->STARJ <= nn && cur->BOT >= m1-1 &&
cur->RIGHT >= n1-1 && ( cur->STARI < rl || cur->STARJ < cl ))
{ if ( cur->STARI < rl ) rl = cur->STARI;
if ( cur->STARJ < cl ) cl = cur->STARJ;
flag = 1;
break;
}
}
if ( i == numnode )
return 1;
else
return 0;
}
/* diff(A,B,M,N,tb,te) returns the score of an optimum conversion between
A[1..M] and B[1..N] that begins(ends) with a delete if tb(te) is zero
and appends such a conversion to the current script. */
long diff(A,B,M,N,tb,te) char *A, *B; long M, N; long tb, te;
{ long midi, midj, type; /* Midpoint, type, and cost */
long midc;
{ register long i, j;
register long c, e, d, s;
long t, *va;
#if 0
char *ckalloc();
#endif
/* Boundary cases: M <= 1 or N == 0 */
if (N <= 0)
{ if (M > 0) DEL(M)
return - gap(M);
}
if (M <= 1)
{ if (M <= 0)
{ INS(N);
return - gap(N);
}
if (tb > te) tb = te;
midc = - (tb + r + gap(N) );
midj = 0;
va = v[A[1]];
for (j = 1; j <= N; j++)
{ for ( tt = 1, z = row[I+1]; z != 0; z = z->NEXT )
if ( z->COL == j+J )
{ tt = 0; break; }
if ( tt )
{ c = va[B[j]] - ( gap(j-1) + gap(N-j) );
if (c > midc)
{ midc = c;
midj = j;
}
}
}
if (midj == 0)
{ INS(N) DEL(1) }
else
{ if (midj > 1) INS(midj-1)
REP
if ( A[1] == B[midj] )
no_mat += 1;
else
no_mis += 1;
/* mark (A[I],B[J]) as used: put J into list row[I] */
I++; J++;
z = ( pairptr ) ckalloc( (long) sizeof(pair));
z->COL = J;
z->NEXT = row[I];
row[I] = z;
if (midj < N) INS(N-midj)
}
return midc;
}
/* Divide: Find optimum midpoint (midi,midj) of cost midc */
midi = M/2; /* Forward phase: */
CC[0] = 0; /* Compute C(M/2,k) & D(M/2,k) for all k */
t = -q;
for (j = 1; j <= N; j++)
{ CC[j] = t = t-r;
DD[j] = t-q;
}
t = -tb;
for (i = 1; i <= midi; i++)
{ s = CC[0];
CC[0] = c = t = t-r;
e = t-q;
va = v[A[i]];
for (j = 1; j <= N; j++)
{ if ((c = c - qr) > (e = e - r)) e = c;
if ((c = CC[j] - qr) > (d = DD[j] - r)) d = c;
DIAG(i+I, j+J, c, s+va[B[j]])
if (c < d) c = d;
if (c < e) c = e;
s = CC[j];
CC[j] = c;
DD[j] = d;
}
}
DD[0] = CC[0];
RR[N] = 0; /* Reverse phase: */
t = -q; /* Compute R(M/2,k) & S(M/2,k) for all k */
for (j = N-1; j >= 0; j--)
{ RR[j] = t = t-r;
SS[j] = t-q;
}
t = -te;
for (i = M-1; i >= midi; i--)
{ s = RR[N];
RR[N] = c = t = t-r;
e = t-q;
va = v[A[i+1]];
for (j = N-1; j >= 0; j--)
{ if ((c = c - qr) > (e = e - r)) e = c;
if ((c = RR[j] - qr) > (d = SS[j] - r)) d = c;
DIAG(i+1+I, j+1+J, c, s+va[B[j+1]])
if (c < d) c = d;
if (c < e) c = e;
s = RR[j];
RR[j] = c;
SS[j] = d;
}
}
SS[N] = RR[N];
midc = CC[0]+RR[0]; /* Find optimal midpoint */
midj = 0;
type = 1;
for (j = 0; j <= N; j++)
if ((c = CC[j] + RR[j]) >= midc)
if (c > midc || CC[j] != DD[j] && RR[j] == SS[j])
{ midc = c;
midj = j;
}
for (j = N; j >= 0; j--)
if ((c = DD[j] + SS[j] + q) > midc)
{ midc = c;
midj = j;
type = 2;
}
}
/* Conquer: recursively around midpoint */
if (type == 1)
{ diff(A,B,midi,midj,tb,q);
diff(A+midi,B+midj,M-midi,N-midj,q,te);
}
else
{ diff(A,B,midi-1,midj,tb,zero);
DEL(2);
diff(A+midi+1,B+midj,M-midi-1,N-midj,zero,te);
}
return midc;
}
/* Alignment display routine */
void display(A,B,M,N,S,AP,BP) char A[], B[]; long M, N; long S[], AP, BP;
{ long i, j, op, start_i, start_j, match, mis_match;
for (i = j = 0; i < M || j < N; ) {
start_i = i;
start_j = j;
match = mis_match = 0;
while (i < M && j < N && *S == 0) {
++i;
++j;
if (A[i] == B[j])
++match;
else
++mis_match;
S++;
}
/*printf(" l %d %d %d %d %1.1f\n", AP+start_i, BP+start_j, AP+i-1,
BP+j-1, (float)(100*match)/(float)(match+mis_match));*/
printf(" %ld %ld %ld %ld %1.1f\n", AP+start_i, BP+start_j, AP+i-1,
BP+j-1, (float)(100*match)/(float)(match+mis_match));
if (i < M || j < N) {
if ((op = *S++) > 0)
j += op;
else
i -= op;
}
}
}
/* lib.c - library of C procedures. */
/* fatal - print message and die */
void fatal(msg)
char *msg;
{
fprintf(stderr, "%s\n", msg);
exit(1);
}
/* fatalf - format message, print it, and die */
void fatalf(msg, val)
char *msg, *val;
{
fprintf(stderr, msg, val);
putc('\n', stderr);
exit(1);
}
#if 0
/* ckopen - open file; check for success */
static FILE *ckopen(char *name, char *mode)
{
FILE *fopen(), *fp;
if ((fp = fopen(name, mode)) == NULL)
fatalf("Cannot open %s.", name);
return(fp);
}
#endif
#if 0
/* ckalloc - allocate space; check for success */
static char *ckalloc(long amount)
{
char *malloc(), *p;
if ((p = malloc( (unsigned) amount)) == NULL)
fatal("Ran out of memory.");
return(p);
}
#endif
|