1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
|
;;; The constants are hardwired to be inexact for efficiency.
;;; begin Stalin
(define make-model (primitive-procedure make-structure model 6))
(define model-pi (primitive-procedure structure-ref model 0))
(define set-model-pi! (primitive-procedure structure-set! model 0))
(define model-mu (primitive-procedure structure-ref model 1))
(define model-sigma (primitive-procedure structure-ref model 2))
(define model-log-pi (primitive-procedure structure-ref model 3))
(define set-model-log-pi! (primitive-procedure structure-set! model 3))
(define model-sigma-inverse (primitive-procedure structure-ref model 4))
(define model-log-determinant-sigma
(primitive-procedure structure-ref model 5))
(define set-model-log-determinant-sigma!
(primitive-procedure structure-set! model 5))
(define (void) ((lambda ())))
;;; end Stalin
;;; begin Scheme->C
(define make-model vector)
(define (model-pi model) (vector-ref model 0))
(define (set-model-pi! model pi) (vector-set! model 0 pi))
(define (model-mu model) (vector-ref model 1))
(define (model-sigma model) (vector-ref model 2))
(define (model-log-pi model) (vector-ref model 3))
(define (set-model-log-pi! model log-pi) (vector-set! model 3 log-pi))
(define (model-sigma-inverse model) (vector-ref model 4))
(define (model-log-determinant-sigma model) (vector-ref model 5))
(define (set-model-log-determinant-sigma! model log-determinant-sigma)
(vector-set! model 5 log-determinant-sigma))
(define (panic s) (error 'panic s))
(define (void) #f)
;;; end Scheme->C
;;; begin Gambit-C
(define-structure model
pi mu sigma log-pi sigma-inverse log-determinant-sigma)
(define set-model-pi! model-pi-set!)
(define set-model-log-pi! model-log-pi-set!)
(define set-model-log-determinant-sigma! model-log-determinant-sigma-set!)
(define (panic s) (error s))
;;; end Gambit-C
;;; begin Bigloo
(define make-model vector)
(define (model-pi model) (vector-ref model 0))
(define (set-model-pi! model pi) (vector-set! model 0 pi))
(define (model-mu model) (vector-ref model 1))
(define (model-sigma model) (vector-ref model 2))
(define (model-log-pi model) (vector-ref model 3))
(define (set-model-log-pi! model log-pi) (vector-set! model 3 log-pi))
(define (model-sigma-inverse model) (vector-ref model 4))
(define (model-log-determinant-sigma model) (vector-ref model 5))
(define (set-model-log-determinant-sigma! model log-determinant-sigma)
(vector-set! model 5 log-determinant-sigma))
(define (panic s) (error s 'panic 'panic))
(define (void) #f)
;;; end Bigloo
;;; begin Chez
(define make-model vector)
(define (model-pi model) (vector-ref model 0))
(define (set-model-pi! model pi) (vector-set! model 0 pi))
(define (model-mu model) (vector-ref model 1))
(define (model-sigma model) (vector-ref model 2))
(define (model-log-pi model) (vector-ref model 3))
(define (set-model-log-pi! model log-pi) (vector-set! model 3 log-pi))
(define (model-sigma-inverse model) (vector-ref model 4))
(define (model-log-determinant-sigma model) (vector-ref model 5))
(define (set-model-log-determinant-sigma! model log-determinant-sigma)
(vector-set! model 5 log-determinant-sigma))
(define (panic s) (error 'panic s))
;;; end Chez
;;; begin Chicken
(define-record-type model
pi mu sigma log-pi sigma-inverse log-determinant-sigma)
(define (panic s) (error s))
;;; end Chicken
(define (hex-string->number s)
(let loop ((s (string->list s)) (c 0))
(if (null? s)
c
(loop (cdr s) (+ (* 16 c)
(if (char-numeric? (car s))
(- (char->integer (car s)) (char->integer #\0))
(+ (- (char->integer (car s)) (char->integer #\a))
10)))))))
;;; The following code is a modified version of code taken from SLIB.
;;; Copyright (C) 1991, 1993 Aubrey Jaffer.
;
;Permission to copy this software, to redistribute it, and to use it
;for any purpose is granted, subject to the following restrictions and
;understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warrantee or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
(define *most-positive-fixnum* 65535)
(define (logical:logxor n1 n2)
(cond ((= n1 n2) 0)
((zero? n1) n2)
((zero? n2) n1)
(else (+ (* (logical:logxor (logical:ash-4 n1) (logical:ash-4 n2)) 16)
(vector-ref (vector-ref logical:boole-xor (modulo n1 16))
(modulo n2 16))))))
(define (logical:ash-4 x)
(if (negative? x) (+ -1 (quotient (+ 1 x) 16)) (quotient x 16)))
(define logical:boole-xor
'#(#(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)
#(1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14)
#(2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13)
#(3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12)
#(4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11)
#(5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10)
#(6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9)
#(7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8)
#(8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7)
#(9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6)
#(10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5)
#(11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4)
#(12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3)
#(13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2)
#(14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1)
#(15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0)))
(define random:tap 24)
(define random:size 55)
(define (random:size-int l)
(let ((trial (hex-string->number (make-string l #\f))))
(if (and (exact? trial) (positive? trial) (>= *most-positive-fixnum* trial))
l
(random:size-int (- l 1)))))
(define random:chunk-size (* 4 (random:size-int 8)))
(define random:MASK
(hex-string->number (make-string (quotient random:chunk-size 4) #\f)))
(define *random-state* '#())
(let ((random-strings
'#("d909ef3e" "fd330ab3" "e33f7843" "76783fbd" "f3675fb3"
"b54ef879" "0be45590" "a6794679" "0bcd56d3" "fabcdef8"
"9cbd3efd" "3fd3efcd" "e064ef27" "dddecc08" "34444292"
"85444454" "4c519210" "c0366273" "54734567" "70abcddc"
"1bbdac53" "616c5a86" "a982efa9" "105996a0" "5f0cccba"
"1ea055e1" "fe2acd8d" "1891c1d4" "e6690270" "6912bccc"
"2678e141" "61222224" "907abcbb" "4ad6829b" "9cdd1404"
"57798841" "5b892496" "871c9cd1" "d1e67bda" "8b0a3233"
"578ef23f" "28274ef6" "823ef5ef" "845678c5" "e67890a5"
"5890abcb" "851fa9ab" "13efa13a" "b12278d6" "daf805ab"
"a0befc36" "0068a7b5" "e024fd90" "a7b690e2" "27f3571a"
0)))
(set! *random-state* (make-vector (+ random:size 1) 0))
(let ((nibbles (quotient random:chunk-size 4)))
(do ((i 0 (+ i 1))) ((= i random:size))
(vector-set!
*random-state* i
(hex-string->number
(substring (vector-ref random-strings i) 0 nibbles))))))
;;; random:chunk returns an integer in the range of
;;; 0 to (- (expt 2 random:chunk-size) 1)
(define (random:chunk v)
(let* ((p (vector-ref v random:size))
(ans (logical:logxor
(vector-ref v (modulo (- p random:tap) random:size))
(vector-ref v p))))
(vector-set! v p ans)
(vector-set! v random:size (modulo (- p 1) random:size))
ans))
(define (rand)
(do ((ilen 0 (+ 1 ilen))
(s random:MASK (+ random:MASK (* (+ 1 random:MASK) s))))
((>= s (- *most-positive-fixnum* 1))
(let ((slop (modulo (+ s (- 1 *most-positive-fixnum*))
*most-positive-fixnum*)))
(let loop ((n ilen) (r (random:chunk *random-state*)))
(cond ((not (zero? n))
(loop (+ -1 n)
(+ (* r (+ 1 random:MASK)) (random:chunk *random-state*))))
((>= r slop) (modulo r *most-positive-fixnum*))
(else (loop ilen (random:chunk *random-state*)))))))))
;;; End of code taken from SLIB
(define log-math-precision 35.0)
(define minus-infinity (log 0.0))
(define first car)
(define (second1 x) (car (cdr x)))
(define (second2 x) (car (cdr x)))
(define (second3 x) (car (cdr x)))
(define rest cdr)
(define (list-two1 x y) (cons x (cons y '())))
(define (list-two2 x y) (cons x (cons y '())))
(define (list-two3 x y) (cons x (cons y '())))
(define (reduce f l i)
(cond ((null? l) i)
((null? (rest l)) (first l))
(else (let loop ((l (rest l)) (c (first l)))
(if (null? l) c (loop (rest l) (f c (first l))))))))
(define (every-n1 p n)
(let loop ((i 0)) (or (>= i n) (and (p i) (loop (+ i 1))))))
(define (every-n2 p n)
(let loop ((i 0)) (or (>= i n) (and (p i) (loop (+ i 1))))))
(define (sum1 f n)
(let loop ((n (- n 1)) (c 0.0))
(if (negative? n) c (loop (- n 1) (+ c (f n))))))
(define (sum2 f n)
(let loop ((n (- n 1)) (c 0.0))
(if (negative? n) c (loop (- n 1) (+ c (f n))))))
(define (add-exp e1 e2)
(let* ((e-max (max e1 e2))
(e-min (min e1 e2))
(factor (floor e-min)))
(if (= e-max minus-infinity)
minus-infinity
(if (> (- e-max factor) log-math-precision)
e-max
(+ (log (+ (exp (- e-max factor)) (exp (- e-min factor))))
factor)))))
(define (map-n1 f n)
;; needs work: To eliminate REVERSE.
(let loop ((i 0) (c '()))
(if (< i n) (loop (+ i 1) (cons (f i) c)) (reverse c))))
(define (map-n2 f n)
;; needs work: To eliminate REVERSE.
(let loop ((i 0) (c '()))
(if (< i n) (loop (+ i 1) (cons (f i) c)) (reverse c))))
(define (map-n-vector1 f n)
(let ((v (make-vector n)))
(let loop ((i 0))
(if (< i n)
(begin (vector-set! v i (f i))
(loop (+ i 1)))))
v))
(define (map-n-vector2 f n)
(let ((v (make-vector n)))
(let loop ((i 0))
(if (< i n)
(begin (vector-set! v i (f i))
(loop (+ i 1)))))
v))
(define (map-n-vector3 f n)
(let ((v (make-vector n)))
(let loop ((i 0))
(if (< i n)
(begin (vector-set! v i (f i))
(loop (+ i 1)))))
v))
(define (map-n-vector4 f n)
(let ((v (make-vector n)))
(let loop ((i 0))
(if (< i n)
(begin (vector-set! v i (f i))
(loop (+ i 1)))))
v))
(define (map-n-vector5 f n)
(let ((v (make-vector n)))
(let loop ((i 0))
(if (< i n)
(begin (vector-set! v i (f i))
(loop (+ i 1)))))
v))
(define (map-n-vector6 f n)
(let ((v (make-vector n)))
(let loop ((i 0))
(if (< i n)
(begin (vector-set! v i (f i))
(loop (+ i 1)))))
v))
(define (map-n-vector7 f n)
(let ((v (make-vector n)))
(let loop ((i 0))
(if (< i n)
(begin (vector-set! v i (f i))
(loop (+ i 1)))))
v))
(define (map-n-vector8 f n)
(let ((v (make-vector n)))
(let loop ((i 0))
(if (< i n)
(begin (vector-set! v i (f i))
(loop (+ i 1)))))
v))
(define (remove-if-not p l)
;; needs work: To eliminate REVERSE.
(let loop ((l l) (c '()))
(cond ((null? l) (reverse c))
((p (first l)) (loop (rest l) (cons (first l) c)))
(else (loop (rest l) c)))))
(define (positionv x l)
(let loop ((l l) (i 0))
(cond ((null? l) #f)
((eqv? x (first l)) i)
(else (loop (rest l) (+ i 1))))))
(define (make-matrix1 m n) (map-n-vector1 (lambda (i) (make-vector n)) m))
(define (make-matrix2 m n) (map-n-vector2 (lambda (i) (make-vector n)) m))
(define (make-matrix3 m n) (map-n-vector3 (lambda (i) (make-vector n)) m))
(define (make-matrix4 m n) (map-n-vector4 (lambda (i) (make-vector n)) m))
(define (make-matrix-initial m n initial)
(map-n-vector5 (lambda (i) (make-vector n initial)) m))
(define (matrix-rows a) (vector-length a))
(define (matrix-columns a) (vector-length (vector-ref a 0)))
(define (matrix-ref a i j) (vector-ref (vector-ref a i) j))
(define (matrix-set! a i j x) (vector-set! (vector-ref a i) j x))
(define (matrix-row-ref a i) (vector-ref a i))
(define (matrix-row-set! a i v) (vector-set! a i v))
(define (determinant a)
(if (not (= (matrix-rows a) (matrix-columns a)))
(panic "Can only find determinant of a square matrix"))
(call-with-current-continuation
(lambda (return)
(let* ((n (matrix-rows a))
(b (make-matrix1 n n))
(d 1.0))
(do ((i 0 (+ i 1))) ((= i n))
(do ((j 0 (+ j 1))) ((= j n)) (matrix-set! b i j (matrix-ref a i j))))
(do ((i 0 (+ i 1))) ((= i n))
;; partial pivoting reduces rounding errors
(let ((greatest (abs (matrix-ref b i i)))
(index i))
(do ((j (+ i 1) (+ j 1))) ((= j n))
(let ((x (abs (matrix-ref b j i))))
(if (> x greatest) (begin (set! index j) (set! greatest x)))))
(if (= greatest 0.0) (return 0.0))
(if (not (= index i))
(let ((v (matrix-row-ref b i)))
(matrix-row-set! b i (matrix-row-ref b index))
(matrix-row-set! b index v)
(set! d (- d))))
(let ((c (matrix-ref b i i)))
(set! d (* d c))
(do ((j i (+ j 1))) ((= j n))
(matrix-set! b i j (/ (matrix-ref b i j) c)))
(do ((j (+ i 1) (+ j 1))) ((= j n))
(let ((e (matrix-ref b j i)))
(do ((k (+ i 1) (+ k 1))) ((= k n))
(matrix-set!
b j k (- (matrix-ref b j k) (* e (matrix-ref b i k))))))))))
d))))
(define (invert-matrix! a b)
(if (not (= (matrix-rows a) (matrix-columns a)))
(panic "Can only invert a square matrix"))
(let* ((n (matrix-rows a))
(c (make-matrix2 n n)))
(do ((i 0 (+ i 1))) ((= i n))
(do ((j 0 (+ j 1))) ((= j n))
(matrix-set! b i j 0.0)
(matrix-set! c i j (matrix-ref a i j))))
(do ((i 0 (+ i 1))) ((= i n)) (matrix-set! b i i 1.0))
(do ((i 0 (+ i 1))) ((= i n))
(if (zero? (matrix-ref c i i))
(call-with-current-continuation
(lambda (return)
(do ((j 0 (+ j 1))) ((= j n))
(if (and (> j i) (not (zero? (matrix-ref c j i))))
(begin (let ((e (vector-ref c i)))
(vector-set! c i (vector-ref c j))
(vector-set! c j e))
(let ((e (vector-ref b i)))
(vector-set! b i (vector-ref b j))
(vector-set! b j e))
(return (void)))))
(panic "Matrix is singular"))))
(let ((d (/ (matrix-ref c i i))))
(do ((j 0 (+ j 1))) ((= j n))
(matrix-set! c i j (* d (matrix-ref c i j)))
(matrix-set! b i j (* d (matrix-ref b i j))))
(do ((k 0 (+ k 1))) ((= k n))
(let ((d (- (matrix-ref c k i))))
(if (not (= k i))
(do ((j 0 (+ j 1))) ((= j n))
(matrix-set!
c k j (+ (matrix-ref c k j) (* d (matrix-ref c i j))))
(matrix-set!
b k j (+ (matrix-ref b k j) (* d (matrix-ref b i j))))))))))))
(define (jacobi! a)
(if (not (and (= (matrix-rows a) (matrix-columns a))
(every-n1 (lambda (i)
(every-n2 (lambda (j)
(= (matrix-ref a i j) (matrix-ref a j i)))
(matrix-rows a)))
(matrix-rows a))))
(panic "Can only compute eigenvalues/eigenvectors of a symmetric matrix"))
(let* ((n (matrix-rows a))
(d (make-vector n))
(v (make-matrix-initial n n 0.0))
(b (make-vector n))
(z (make-vector n 0.0)))
(do ((ip 0 (+ ip 1))) ((= ip n))
(matrix-set! v ip ip 1.0)
(vector-set! b ip (matrix-ref a ip ip))
(vector-set! d ip (matrix-ref a ip ip)))
(let loop ((i 0))
(if (> i 50) (panic "Too many iterations in JACOBI!"))
(let ((sm (sum1 (lambda (ip)
(sum2 (lambda (ir)
(let ((iq (+ ip ir 1)))
(abs (matrix-ref a ip iq))))
(- n ip 1)))
(- n 1))))
(if (not (zero? sm))
(begin
(let ((tresh (if (< i 3) (/ (* 0.2 sm) (* n n)) 0.0)))
(do ((ip 0 (+ ip 1))) ((= ip (- n 1)))
(do ((ir 0 (+ ir 1))) ((= ir (- n ip 1)))
(let* ((iq (+ ip ir 1))
(g (* 100.0 (abs (matrix-ref a ip iq)))))
(cond
((and (> i 3)
(= (+ (abs (vector-ref d ip)) g) (abs (vector-ref d ip)))
(= (+ (abs (vector-ref d iq)) g) (abs (vector-ref d iq))))
(matrix-set! a ip iq 0.0))
((> (abs (matrix-ref a ip iq)) tresh)
(let* ((h (- (vector-ref d iq) (vector-ref d ip)))
(t (if (= (+ (abs h) g) (abs h))
(/ (matrix-ref a ip iq) h)
(let ((theta (/ (* 0.5 h) (matrix-ref a ip iq))))
(if (negative? theta)
(- (/ (+ (abs theta)
(sqrt (+ (* theta theta) 1.0)))))
(/ (+ (abs theta)
(sqrt (+ (* theta theta) 1.0))))))))
(c (/ (sqrt (+ (* t t) 1.0))))
(s (* t c))
(tau (/ s (+ c 1.0)))
(h (* t (matrix-ref a ip iq))))
(define (rotate a i j k l)
(let ((g (matrix-ref a i j))
(h (matrix-ref a k l)))
(matrix-set! a i j (- g (* s (+ h (* g tau)))))
(matrix-set! a k l (+ h (* s (- g (* h tau)))))))
(vector-set! z ip (- (vector-ref z ip) h))
(vector-set! z iq (+ (vector-ref z iq) h))
(vector-set! d ip (- (vector-ref d ip) h))
(vector-set! d iq (+ (vector-ref d iq) h))
(matrix-set! a ip iq 0.0)
(do ((j 0 (+ j 1))) ((= j n))
(cond ((< j ip) (rotate a j ip j iq))
((< ip j iq) (rotate a ip j j iq))
((< iq j) (rotate a ip j iq j)))
(rotate v j ip j iq)))))))))
(do ((ip 0 (+ ip 1))) ((= ip n))
(vector-set! b ip (+ (vector-ref b ip) (vector-ref z ip)))
(vector-set! d ip (vector-ref b ip))
(vector-set! z ip 0.0))
(loop (+ i 1))))))
(do ((i 0 (+ i 1))) ((= i (- n 1)))
(let ((k i)
(p (vector-ref d i)))
(do ((l 0 (+ l 1))) ((= l (- n i 1)))
(let* ((j (+ i l 1)))
(if (>= (vector-ref d j) p)
(begin (set! k j) (set! p (vector-ref d j))))))
(if (not (= k i))
(begin (vector-set! d k (vector-ref d i))
(vector-set! d i p)
(do ((j 0 (+ j 1))) ((= j n))
(let ((p (matrix-ref v j i)))
(matrix-set! v j i (matrix-ref v j k))
(matrix-set! v j k p)))))))
(list-two1 d v)))
(define (clip-eigenvalues! a v)
(let* ((j (jacobi! a))
(l (first j))
(e (second1 j)))
(do ((k1 0 (+ k1 1))) ((= k1 (vector-length a)))
(let ((a-k1 (vector-ref a k1))
(e-k1 (vector-ref e k1)))
(do ((k2 0 (+ k2 1))) ((= k2 (vector-length a-k1)))
(let ((e-k2 (vector-ref e k2))
(s 0.0))
(do ((k 0 (+ k 1))) ((= k (vector-length a)))
(set! s (+ s (* (vector-ref e-k1 k)
(max (vector-ref v k) (vector-ref l k))
(vector-ref e-k2 k)))))
(vector-set! a-k1 k2 s)))))))
;;; EM
(define (e-step! x z models)
(do ((i 0 (+ i 1))) ((= i (vector-length x)))
(let ((xi (vector-ref x i))
(zi (vector-ref z i)))
(do ((j 0 (+ j 1))) ((= j (vector-length models)))
;; Compute for each model.
(let* ((model (vector-ref models j))
(log-pi (model-log-pi model))
(mu (model-mu model))
(sigma-inverse (model-sigma-inverse model))
(log-determinant-sigma (model-log-determinant-sigma model))
(t 0.0))
;; Compute likelihoods (note: up to constant for all models).
(set! t 0.0)
(do ((k1 0 (+ k1 1))) ((= k1 (vector-length xi)))
(let ((sigma-inverse-k1 (vector-ref sigma-inverse k1)))
(do ((k2 0 (+ k2 1))) ((= k2 (vector-length xi)))
(set! t (+ t (* (- (vector-ref xi k1) (vector-ref mu k1))
(vector-ref sigma-inverse-k1 k2)
(- (vector-ref xi k2) (vector-ref mu k2))))))))
(vector-set! zi j (- log-pi (* 0.5 (+ log-determinant-sigma t))))))))
(let ((l 0.0))
(do ((i 0 (+ i 1))) ((= i (vector-length x)))
(let ((s minus-infinity)
(zi (vector-ref z i)))
;; Normalize ownerships to sum to one.
(do ((j 0 (+ j 1))) ((= j (vector-length models)))
(set! s (add-exp s (vector-ref zi j))))
(do ((j 0 (+ j 1))) ((= j (vector-length models)))
(vector-set! zi j (exp (- (vector-ref zi j) s))))
(set! l (+ l s))))
;; Return log likelihood.
l))
(define (m-step! x models z clip)
(let ((kk (vector-length (vector-ref x 0))))
;; For each model, optimize parameters.
(do ((j 0 (+ j 1))) ((= j (vector-length models)))
(let* ((model (vector-ref models j))
(mu (model-mu model))
(sigma (model-sigma model))
(s 0.0))
;; Optimize values.
(do ((i 0 (+ i 1))) ((= i (vector-length x)))
(set! s (+ s (vector-ref (vector-ref z i) j))))
(let ((si (/ s)))
(do ((k 0 (+ k 1))) ((= k kk))
(let ((m 0.0))
(do ((i 0 (+ i 1))) ((= i (vector-length x)))
(set! m (+ m (* (vector-ref (vector-ref z i) j)
(vector-ref (vector-ref x i) k)))))
(vector-set! mu k (* si m)))))
(let ((si (/ s)))
(do ((k1 0 (+ k1 1))) ((= k1 kk))
(let ((sigma-k1 (vector-ref sigma k1))
(mu-k1 (vector-ref mu k1)))
(do ((k2 0 (+ k2 1))) ((= k2 kk))
(let ((mu-k2 (vector-ref mu k2))
(m 0.0))
(do ((i 0 (+ i 1))) ((= i (vector-length x)))
(set! m (+ m (* (vector-ref (vector-ref z i) j)
(* (- (vector-ref (vector-ref x i) k1) mu-k1)
(- (vector-ref (vector-ref x i) k2) mu-k2))))))
(vector-set! sigma-k1 k2 (* si m)))))))
(clip-eigenvalues! sigma clip)
(set-model-pi! model (/ s (vector-length x)))
(set-model-log-pi! model (log (/ s (vector-length x))))
(invert-matrix! sigma (model-sigma-inverse model))
(set-model-log-determinant-sigma! model (log (determinant sigma)))))))
(define (em! x z models clip em-kick-off-tolerance em-convergence-tolerance)
(let loop ((old-log-likelihood minus-infinity) (starting? #t))
(let ((log-likelihood (e-step! x z models)))
(cond
((or (and starting? (> log-likelihood old-log-likelihood))
(> log-likelihood (+ old-log-likelihood em-convergence-tolerance)))
(m-step! x models z clip)
(loop log-likelihood
(and starting?
(not (= (vector-length models) 1))
(or (= old-log-likelihood minus-infinity)
(< log-likelihood
(+ old-log-likelihood em-kick-off-tolerance))))))
(else old-log-likelihood)))))
(define (noise epsilon)
(- (* 2.0 epsilon (/ (exact->inexact (rand)) *most-positive-fixnum*))
epsilon))
(define (initial-z ii jj)
(map-n-vector6
(lambda (i)
(let ((zi (map-n-vector7 (lambda (j)
(+ (/ (exact->inexact jj))
(noise (/ (exact->inexact jj)))))
jj))
(s 0.0))
(do ((j 0 (+ j 1))) ((= j jj)) (set! s (+ s (vector-ref zi j))))
(let ((si (/ s)))
(do ((j 0 (+ j 1))) ((= j jj))
(vector-set! zi j (* si (vector-ref zi j)))))
zi))
ii))
(define (ems x clip em-kick-off-tolerance em-convergence-tolerance
ems-convergence-tolerance)
(let loop ((jj 1)
(old-z (void))
(old-models (void))
(old-log-likelihood minus-infinity))
(let* ((kk (vector-length (vector-ref x 0)))
(z (initial-z (vector-length x) jj))
(models (map-n-vector8
(lambda (j)
;; needs work: Should replace 0.0 with ((LAMBDA ())).
(make-model 0.0
(make-vector kk)
(make-matrix3 kk kk)
0.0
(make-matrix4 kk kk)
0.0))
jj)))
(m-step! x models z clip)
(let ((new-log-likelihood
(em!
x z models clip em-kick-off-tolerance em-convergence-tolerance)))
(if (> (- (/ old-log-likelihood new-log-likelihood) 1.0)
ems-convergence-tolerance)
(loop (+ jj 1) z models new-log-likelihood)
(list-two2 old-z old-models))))))
(define (em-clusterer x clip em-kick-off-tolerance em-convergence-tolerance
ems-convergence-tolerance)
(let* ((z-models (ems x clip em-kick-off-tolerance
em-convergence-tolerance
ems-convergence-tolerance))
(z (first z-models))
(models (second2 z-models)))
(e-step! x z models)
(let ((clusters
(map-n1 (lambda (i)
(let ((zi (vector->list (vector-ref z i))))
(list-two3
i (positionv (reduce max zi minus-infinity) zi))))
(vector-length z))))
(map-n2 (lambda (j)
(map (lambda (cluster) (vector-ref x (first cluster)))
(remove-if-not (lambda (cluster) (= (second3 cluster) j))
clusters)))
(vector-length (vector-ref z 0))))))
(do ((i 0 (+ i 1))) ((= i 100))
(write
(em-clusterer
'#(#(1.0) #(2.0) #(3.0) #(11.0) #(12.0) #(13.0)) '#(1.0) 10.0 1.0 0.01))
(newline))
|