1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
|
(define (run-benchmark name count run ok?)
(if (not (ok? (run-bench name count run ok?)))
(begin (display "*** wrong result ***")
(newline))
(begin (display "*** right result ***")
(newline))))
(define (run-bench name count run ok?)
(let loop ((i 0) (result (list 'undefined)))
(if (< i count) (loop (+ i 1) (run)) result)))
(define (fatal-error . args)
(for-each display args)
(newline))
;;; MATRIX -- Obtained from Andrew Wright.
;;; Chez-Scheme compatibility stuff:
(define (box x) (cons x '()))
(define (unbox x) (car x))
(define (set-box! x y) (set-car! x y))
;;; Test that a matrix with entries in {+1, -1} is maximal among the matricies
;;; obtainable by
;;; re-ordering the rows
;;; re-ordering the columns
;;; negating any subset of the columns
;;; negating any subset of the rows
;;; Where we compare two matricies by lexicographically comparing the first
;;; row, then the next to last, etc., and we compare a row by lexicographically
;;; comparing the first entry, the second entry, etc., and we compare two
;;; entries by +1 > -1.
;;; Note, this scheme obeys the useful fact that if (append mat1 mat2) is
;;; maximal, then so is mat1. Thus, we can build up maximal matricies
;;; row by row.
;;;
;;; Once you have chosen the row re-ordering so that you know which row goes
;;; last, the set of columns to negate is fixed (since the last row must be
;;; all +1's).
;;;
;;; Note, the column ordering is really totally determined as follows:
;;; all columns for which the second row is +1 must come before all
;;; columns for which the second row is -1.
;;; among columns for which the second row is +1, all columns for which
;;; the third row is +1 come before those for which the third is
;;; -1, and similarly for columns in which the second row is -1.
;;; etc
;;; Thus, each succeeding row sorts columns withing refinings equivalence
;;; classes.
;;;
;;; Maximal? assumes that mat has atleast one row, and that the first row
;;; is all +1's.
(define maximal?
(lambda (mat)
(let pick-first-row ((first-row-perm (gen-perms mat)))
(if first-row-perm
(and (zunda first-row-perm mat)
(pick-first-row (first-row-perm 'brother)))
#t))))
(define zunda
(lambda (first-row-perm mat)
(let* ((first-row (first-row-perm 'now))
(number-of-cols (length first-row))
(make-row->func
(lambda (if-equal if-different)
(lambda (row)
(let ((vec (make-vector number-of-cols)))
(do ((i 0 (+ i 1))
(first first-row (cdr first))
(row row (cdr row)))
((= i number-of-cols))
(vector-set! vec
i
(if (= (car first) (car row))
if-equal
if-different)))
(lambda (i) (vector-ref vec i))))))
(mat (cdr mat)))
(zebra (first-row-perm 'child)
(make-row->func 1 -1)
(make-row->func -1 1)
mat
number-of-cols))))
(define zebra
(lambda (row-perm row->func+ row->func- mat number-of-cols)
(let -*- ((row-perm row-perm)
(mat mat)
(partitions (list (miota number-of-cols))))
(or (not row-perm)
(and (zulu (car mat)
(row->func+ (row-perm 'now))
partitions
(lambda (new-partitions)
(-*- (row-perm 'child) (cdr mat) new-partitions)))
(zulu (car mat)
(row->func- (row-perm 'now))
partitions
(lambda (new-partitions)
(-*- (row-perm 'child) (cdr mat) new-partitions)))
(let ((new-row-perm (row-perm 'brother)))
(or (not new-row-perm) (-*- new-row-perm mat partitions))))))))
(define zulu
(let ((cons-if-not-null
(lambda (lhs rhs)
(if (null? lhs) rhs (cons lhs rhs)))))
(lambda (old-row new-row-func partitions equal-cont)
(let -*- ((p-in partitions)
(old-row old-row)
(rev-p-out '()))
(let -split- ((partition (car p-in))
(old-row old-row)
(plus '())
(minus '()))
(if (null? partition)
(let -minus- ((old-row old-row)
(m minus))
(if (null? m)
(let ((rev-p-out
(cons-if-not-null
minus
(cons-if-not-null plus rev-p-out)))
(p-in (cdr p-in)))
(if (null? p-in)
(equal-cont (reverse rev-p-out))
(-*- p-in old-row rev-p-out)))
(or (= 1 (car old-row))
(-minus- (cdr old-row) (cdr m)))))
(let ((next (car partition)))
(case (new-row-func next)
((1)
(and (= 1 (car old-row))
(-split- (cdr partition)
(cdr old-row)
(cons next plus)
minus)))
((-1)
(-split- (cdr partition)
old-row
plus
(cons next minus)))))))))))
(define all?
(lambda (ok? lst)
(let -*- ((lst lst))
(or (null? lst) (and (ok? (car lst)) (-*- (cdr lst)))))))
(define gen-perms
(lambda (objects)
(let -*- ((zulu-future objects)
(past '()))
(if (null? zulu-future)
#f
(lambda (msg)
(case msg
((now) (car zulu-future))
((brother)
(-*- (cdr zulu-future) (cons (car zulu-future) past)))
((child) (gen-perms (fold past cons (cdr zulu-future))))
((puke)
(cons (car zulu-future) (fold past cons (cdr zulu-future))))
(else (fatal-error gen-perms "Bad msg: ~a" msg))))))))
(define fold
(lambda (lst folder state)
(let -*- ((lst lst)
(state state))
(if (null? lst) state (-*- (cdr lst) (folder (car lst) state))))))
(define miota
(lambda (len)
(let -*- ((i 0))
(if (= i len) '() (cons i (-*- (+ i 1)))))))
(define proc->vector
(lambda (size proc)
(let ((res (make-vector size)))
(do ((i 0 (+ i 1))) ((= i size))
(vector-set! res i (proc i)))
res)))
;;; Given a prime number P, return a procedure which, given a `maker'
;;; procedure, calls it on the operations for the field Z/PZ.
(define make-modular
(lambda (modulus)
(let* ((reduce (lambda (x) (modulo x modulus)))
(coef-zero? (lambda (x) (zero? (reduce x))))
(coef-+ (lambda (x y) (reduce (+ x y))))
(coef-negate (lambda (x) (reduce (- x))))
(coef-* (lambda (x y) (reduce (* x y))))
(coef-recip
(let ((inverses
(proc->vector (- modulus 1)
(lambda (i)
(extended-gcd (+ i 1)
modulus
(lambda (gcd inverse ignore)
inverse))))))
; Coef-recip.
(lambda (x)
(let ((x (reduce x)))
(vector-ref inverses (- x 1)))))))
(lambda (maker)
(maker 0 ; coef-zero
1 ; coef-one
coef-zero?
coef-+
coef-negate
coef-*
coef-recip)))))
;;; Extended Euclidean algorithm.
;;; (extended-gcd a b cont) computes the gcd of a and b, and expresses it
;;; as a linear combination of a and b. It returns calling cont via
;;; (cont gcd a-coef b-coef)
;;; where gcd is the GCD and is equal to a-coef * a + b-coef * b.
(define extended-gcd
(let ((n->sgn/abs
(lambda (x cont)
(if (>= x 0) (cont 1 x) (cons -1 (- x))))))
(lambda (a b cont)
(n->sgn/abs a
(lambda (p-a p)
(n->sgn/abs b
(lambda (q-b q)
(let -*- ((p p)
(p-a p-a)
(p-b 0)
(q q)
(q-a 0)
(q-b q-b))
(if (zero? q)
(cont p p-a p-b)
(let ((mult (quotient p q)))
(-*- q
q-a
q-b
(- p (* mult q))
(- p-a (* mult q-a))
(- p-b (* mult q-b)))))))))))))
;;; Given elements and operations on the base field, return a procedure which
;;; computes the row-reduced version of a matrix over that field. The result
;;; is a list of rows where the first non-zero entry in each row is a 1 (in
;;; the coefficient field) and occurs to the right of all the leading non-zero
;;; entries of previous rows. In particular, the number of rows is the rank
;;; of the original matrix, and they have the same row-space.
;;; The items related to the base field which are needed are:
;;; coef-zero additive identity
;;; coef-one multiplicative identity
;;; coef-zero? test for additive identity
;;; coef-+ addition (two args)
;;; coef-negate additive inverse
;;; coef-* multiplication (two args)
;;; coef-recip multiplicative inverse
;;; Note, matricies are stored as lists of rows (i.e., lists of lists).
(define make-row-reduce
(lambda (coef-zero coef-one coef-zero? coef-+ coef-negate coef-* coef-recip)
(lambda (mat)
(let -*- ((mat mat))
(if (or (null? mat) (null? (car mat)))
'()
(let -**- ((in mat)
(out '()))
(if (null? in)
(map (lambda (x) (cons coef-zero x)) (-*- out))
(let* ((prow (car in))
(pivot (car prow))
(prest (cdr prow))
(in (cdr in)))
(if (coef-zero? pivot)
(-**- in (cons prest out))
(let ((zap-row
(map (let ((mult (coef-recip pivot)))
(lambda (x) (coef-* mult x)))
prest)))
(cons
(cons coef-one zap-row)
(map (lambda (x) (cons coef-zero x))
(-*-
(fold in
(lambda (row mat)
(cons
(let ((first-col (car row))
(rest-row (cdr row)))
(if (coef-zero? first-col)
rest-row
(map
(let ((mult (coef-negate first-col)))
(lambda (f z)
(coef-+ f (coef-* mult z))))
rest-row
zap-row)))
mat))
out))))))))))))))
;;; Given elements and operations on the base field, return a procedure which
;;; when given a matrix and a vector tests to see if the vector is in the
;;; row-space of the matrix. This returned function is curried.
;;; The items related to the base field which are needed are:
;;; coef-zero additive identity
;;; coef-one multiplicative identity
;;; coef-zero? test for additive identity
;;; coef-+ addition (two args)
;;; coef-negate additive inverse
;;; coef-* multiplication (two args)
;;; coef-recip multiplicative inverse
;;; Note, matricies are stored as lists of rows (i.e., lists of lists).
(define make-in-row-space?
(lambda (coef-zero coef-one coef-zero? coef-+ coef-negate coef-* coef-recip)
(let ((row-reduce (make-row-reduce coef-zero
coef-one
coef-zero?
coef-+
coef-negate
coef-*
coef-recip)))
(lambda (mat)
(let ((mat (row-reduce mat)))
(lambda (row)
(let -*- ((row row)
(mat mat))
(if (null? row)
#t
(let ((r-first (car row))
(r-rest (cdr row)))
(cond ((coef-zero? r-first)
(-*- r-rest
(map cdr
(if (or (null? mat) (coef-zero? (caar mat)))
mat
(cdr mat)))))
((null? mat) #f)
(else
(let* ((zap-row (car mat))
(z-first (car zap-row))
(z-rest (cdr zap-row))
(mat (cdr mat)))
(if (coef-zero? z-first)
#f
(-*- (map
(let ((mult (coef-negate r-first)))
(lambda (r z)
(coef-+ r (coef-* mult z))))
r-rest
z-rest)
(map cdr mat)))))))))))))))
;;; Given a prime number, return a procedure which takes integer matricies
;;; and returns their row-reduced form, modulo the prime.
(define make-modular-row-reduce
(lambda (modulus)
((make-modular modulus)
make-row-reduce)))
(define make-modular-in-row-space?
(lambda (modulus) ((make-modular modulus) make-in-row-space?)))
;;; Usual utilities.
;;; Given a bound, find a prime greater than the bound.
(define find-prime
(lambda (bound)
(let* ((primes (list 2))
(last (box primes))
(is-next-prime?
(lambda (trial)
(let -*- ((primes primes))
(or (null? primes)
(let ((p (car primes)))
(or (< trial (* p p))
(and (not (zero? (modulo trial p)))
(-*- (cdr primes))))))))))
(if (> 2 bound)
2
(let -*- ((trial 3))
(if (is-next-prime? trial)
(let ((entry (list trial)))
(set-cdr! (unbox last) entry)
(set-box! last entry)
(if (> trial bound) trial (-*- (+ trial 2))))
(-*- (+ trial 2))))))))
;;; Given the size of a square matrix consisting only of +1's and -1's,
;;; return an upper bound on the determinant.
(define det-upper-bound
(lambda (size)
(let ((main-part (expt size (quotient size 2))))
(if (even? size)
main-part
(* main-part (do ((i 0 (+ i 1))) ((>= (* i i) size) i)))))))
;;; Fold over all maximal matrices.
(define go
(lambda (number-of-cols inv-size folder state)
(let* ((in-row-space? (make-modular-in-row-space?
(find-prime (det-upper-bound inv-size))))
(make-tester
(lambda (mat)
(let ((tests
(let ((old-mat (cdr mat))
(new-row (car mat)))
(fold-over-subs-of-size old-mat
(- inv-size 2)
(lambda (sub tests)
(cons (in-row-space?
(cons new-row sub))
tests))
'()))))
(lambda (row)
(let -*- ((tests tests))
(and (not (null? tests))
(or ((car tests) row) (-*- (cdr tests)))))))))
(all-rows ; all rows starting with +1 in decreasing order
(fold (fold-over-rows (- number-of-cols 1) cons '())
(lambda (row rows)
(cons (cons 1 row) rows))
'())))
(let -*- ((number-of-rows 1)
(rev-mat (list (car all-rows)))
(possible-future (cdr all-rows))
(state state))
(let ((zulu-future (remove-in-order
(if (< number-of-rows inv-size)
(in-row-space? rev-mat)
(make-tester rev-mat))
possible-future)))
(if (null? zulu-future)
(folder (reverse rev-mat) state)
(let -**- ((zulu-future zulu-future)
(state state))
(if (null? zulu-future)
state
(let ((rest-of-future (cdr zulu-future)))
(-**- rest-of-future
(let* ((first (car zulu-future))
(new-rev-mat (cons first rev-mat)))
(if (maximal? (reverse new-rev-mat))
(-*- (+ number-of-rows 1)
new-rev-mat
rest-of-future
state)
state))))))))))))
(define go-folder
(lambda (mat bsize.blen.blist)
(let ((bsize (car bsize.blen.blist))
(size (length mat)))
(if (< size bsize)
bsize.blen.blist
(let ((blen (cadr bsize.blen.blist))
(blist (cddr bsize.blen.blist)))
(if (= size bsize)
(let ((blen (+ blen 1)))
(cons bsize
(cons blen
(cond ((< blen 3000) (cons mat blist))
((= blen 3000) (cons "..." blist))
(else blist)))))
(list size 1 mat)))))))
(define really-go
(lambda (number-of-cols inv-size)
(cddr (go number-of-cols inv-size go-folder (list -1 -1)))))
(define remove-in-order
(lambda (remove? lst)
(reverse
(fold lst (lambda (e lst) (if (remove? e) lst (cons e lst))) '()))))
;;; The first fold-over-rows is slower than the second one, but folds
;;; over rows in lexical order (large to small).
(define fold-over-rows
(lambda (number-of-cols folder state)
(if (zero? number-of-cols)
(folder '() state)
(fold-over-rows (- number-of-cols 1)
(lambda (tail state)
(folder (cons -1 tail) state))
(fold-over-rows (- number-of-cols 1)
(lambda (tail state)
(folder (cons 1 tail) state))
state)))))
;;; Fold over subsets of a given size.
(define fold-over-subs-of-size
(lambda (universe size folder state)
(let ((usize (length universe)))
(if (< usize size)
state
(let -*- ((size size)
(universe universe)
(folder folder)
(csize (- usize size))
(state state))
(cond ((zero? csize) (folder universe state))
((zero? size) (folder '() state))
(else (let ((first-u (car universe))
(rest-u (cdr universe)))
(-*- size
rest-u
folder
(- csize 1)
(-*- (- size 1)
rest-u
(lambda (tail state)
(folder (cons first-u tail) state))
csize
state))))))))))
(run-benchmark
"matrix"
10000
(lambda () (really-go 5 5))
(lambda (result)
(equal? result
'(((1 1 1 1 1) (1 1 1 1 -1) (1 1 1 -1 1)
(1 1 -1 -1 -1) (1 -1 1 -1 -1) (1 -1 -1 1 1))
((1 1 1 1 1) (1 1 1 1 -1) (1 1 1 -1 1)
(1 1 -1 1 -1) (1 -1 1 -1 -1) (1 -1 -1 1 1))
((1 1 1 1 1) (1 1 1 1 -1) (1 1 1 -1 1)
(1 1 -1 1 -1) (1 -1 1 -1 1) (1 -1 -1 1 1))
((1 1 1 1 1) (1 1 1 1 -1) (1 1 1 -1 1)
(1 1 -1 1 1) (1 -1 1 1 -1) (1 -1 -1 -1 1))
((1 1 1 1 1) (1 1 1 1 -1) (1 1 1 -1 1)
(1 1 -1 1 1) (1 -1 1 1 1) (1 -1 -1 -1 -1))))))
|