File: em-imperative-split.sc

package info (click to toggle)
stalin 0.8-6
  • links: PTS
  • area: main
  • in suites: potato
  • size: 28,288 kB
  • ctags: 60,398
  • sloc: ansic: 804,080; lisp: 41,578; sh: 772; makefile: 97; sed: 59
file content (687 lines) | stat: -rw-r--r-- 23,320 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
;;; The constants are hardwired to be inexact for efficiency.

;;; begin Stalin
(define make-model (primitive-procedure make-structure model 6))
(define model-pi (primitive-procedure structure-ref model 0))
(define set-model-pi! (primitive-procedure structure-set! model 0))
(define model-mu (primitive-procedure structure-ref model 1))
(define model-sigma (primitive-procedure structure-ref model 2))
(define model-log-pi (primitive-procedure structure-ref model 3))
(define set-model-log-pi! (primitive-procedure structure-set! model 3))
(define model-sigma-inverse (primitive-procedure structure-ref model 4))
(define model-log-determinant-sigma
 (primitive-procedure structure-ref model 5))
(define set-model-log-determinant-sigma!
 (primitive-procedure structure-set! model 5))
(define (void) ((lambda ())))
;;; end Stalin
;;; begin Scheme->C
(define make-model vector)
(define (model-pi model) (vector-ref model 0))
(define (set-model-pi! model pi) (vector-set! model 0 pi))
(define (model-mu model) (vector-ref model 1))
(define (model-sigma model) (vector-ref model 2))
(define (model-log-pi model) (vector-ref model 3))
(define (set-model-log-pi! model log-pi) (vector-set! model 3 log-pi))
(define (model-sigma-inverse model) (vector-ref model 4))
(define (model-log-determinant-sigma model) (vector-ref model 5))
(define (set-model-log-determinant-sigma! model log-determinant-sigma)
 (vector-set! model 5 log-determinant-sigma))
(define (panic s) (error 'panic s))
(define (void) #f)
;;; end Scheme->C
;;; begin Gambit-C
(define-structure model
 pi mu sigma log-pi sigma-inverse log-determinant-sigma)
(define set-model-pi! model-pi-set!)
(define set-model-log-pi! model-log-pi-set!)
(define set-model-log-determinant-sigma! model-log-determinant-sigma-set!)
(define (panic s) (error s))
;;; end Gambit-C
;;; begin Bigloo
(define make-model vector)
(define (model-pi model) (vector-ref model 0))
(define (set-model-pi! model pi) (vector-set! model 0 pi))
(define (model-mu model) (vector-ref model 1))
(define (model-sigma model) (vector-ref model 2))
(define (model-log-pi model) (vector-ref model 3))
(define (set-model-log-pi! model log-pi) (vector-set! model 3 log-pi))
(define (model-sigma-inverse model) (vector-ref model 4))
(define (model-log-determinant-sigma model) (vector-ref model 5))
(define (set-model-log-determinant-sigma! model log-determinant-sigma)
 (vector-set! model 5 log-determinant-sigma))
(define (panic s) (error s 'panic 'panic))
(define (void) #f)
;;; end Bigloo
;;; begin Chez
(define make-model vector)
(define (model-pi model) (vector-ref model 0))
(define (set-model-pi! model pi) (vector-set! model 0 pi))
(define (model-mu model) (vector-ref model 1))
(define (model-sigma model) (vector-ref model 2))
(define (model-log-pi model) (vector-ref model 3))
(define (set-model-log-pi! model log-pi) (vector-set! model 3 log-pi))
(define (model-sigma-inverse model) (vector-ref model 4))
(define (model-log-determinant-sigma model) (vector-ref model 5))
(define (set-model-log-determinant-sigma! model log-determinant-sigma)
 (vector-set! model 5 log-determinant-sigma))
(define (panic s) (error 'panic s))
;;; end Chez

(define (hex-string->number s)
 (let loop ((s (string->list s)) (c 0))
  (if (null? s)
      c
      (loop (cdr s) (+ (* 16 c)
		       (if (char-numeric? (car s))
			   (- (char->integer (car s)) (char->integer #\0))
			   (+ (- (char->integer (car s)) (char->integer #\a))
			      10)))))))

;;; The following code is a modified version of code taken from SLIB.
;;; Copyright (C) 1991, 1993 Aubrey Jaffer.
;
;Permission to copy this software, to redistribute it, and to use it
;for any purpose is granted, subject to the following restrictions and
;understandings.
;
;1.  Any copy made of this software must include this copyright notice
;in full.
;
;2.  I have made no warrantee or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3.  In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.

(define *most-positive-fixnum* 65535)

(define (logical:logxor n1 n2)
 (cond ((= n1 n2) 0)
       ((zero? n1) n2)
       ((zero? n2) n1)
       (else (+ (* (logical:logxor (logical:ash-4 n1) (logical:ash-4 n2)) 16)
		(vector-ref (vector-ref logical:boole-xor (modulo n1 16))
			    (modulo n2 16))))))

(define (logical:ash-4 x)
 (if (negative? x) (+ -1 (quotient (+ 1 x) 16)) (quotient x 16)))

(define logical:boole-xor
 '#(#(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)
    #(1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14)
    #(2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13)
    #(3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12)
    #(4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11)
    #(5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10)
    #(6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9)
    #(7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8)
    #(8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7)
    #(9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6)
    #(10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5)
    #(11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4)
    #(12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3)
    #(13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2)
    #(14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1)
    #(15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0)))

(define random:tap 24)

(define random:size 55)

(define (random:size-int l)
 (let ((trial (hex-string->number (make-string l #\f))))
  (if (and (exact? trial) (positive? trial) (>= *most-positive-fixnum* trial))
      l
      (random:size-int (- l 1)))))

(define random:chunk-size (* 4 (random:size-int 8)))

(define random:MASK
 (hex-string->number (make-string (quotient random:chunk-size 4) #\f)))

(define *random-state* '#())

(let ((random-strings
       '#("d909ef3e" "fd330ab3" "e33f7843" "76783fbd" "f3675fb3"
		     "b54ef879" "0be45590" "a6794679" "0bcd56d3" "fabcdef8"
		     "9cbd3efd" "3fd3efcd" "e064ef27" "dddecc08" "34444292"
		     "85444454" "4c519210" "c0366273" "54734567" "70abcddc"
		     "1bbdac53" "616c5a86" "a982efa9" "105996a0" "5f0cccba"
		     "1ea055e1" "fe2acd8d" "1891c1d4" "e6690270" "6912bccc"
		     "2678e141" "61222224" "907abcbb" "4ad6829b" "9cdd1404"
		     "57798841" "5b892496" "871c9cd1" "d1e67bda" "8b0a3233"
		     "578ef23f" "28274ef6" "823ef5ef" "845678c5" "e67890a5"
		     "5890abcb" "851fa9ab" "13efa13a" "b12278d6" "daf805ab"
		     "a0befc36" "0068a7b5" "e024fd90" "a7b690e2" "27f3571a"
		     0)))
 (set! *random-state* (make-vector (+ random:size 1) 0))
 (let ((nibbles (quotient random:chunk-size 4)))
  (do ((i 0 (+ i 1))) ((= i random:size))
   (vector-set!
    *random-state* i
    (hex-string->number
     (substring (vector-ref random-strings i) 0 nibbles))))))

;;; random:chunk returns an integer in the range of
;;; 0 to (- (expt 2 random:chunk-size) 1)
(define (random:chunk v)
 (let* ((p (vector-ref v random:size))
	(ans (logical:logxor
	      (vector-ref v (modulo (- p random:tap) random:size))
	      (vector-ref v p))))
  (vector-set! v p ans)
  (vector-set! v random:size (modulo (- p 1) random:size))
  ans))

(define (rand)
 (do ((ilen 0 (+ 1 ilen))
      (s random:MASK (+ random:MASK (* (+ 1 random:MASK) s))))
   ((>= s (- *most-positive-fixnum* 1))
    (let ((slop (modulo (+ s (- 1 *most-positive-fixnum*))
			*most-positive-fixnum*)))
     (let loop ((n ilen) (r (random:chunk *random-state*)))
      (cond ((not (zero? n))
	     (loop (+ -1 n)
		   (+ (* r (+ 1 random:MASK)) (random:chunk *random-state*))))
	    ((>= r slop) (modulo r *most-positive-fixnum*))
	    (else (loop ilen (random:chunk *random-state*)))))))))

;;; End of code taken from SLIB

(define log-math-precision 35.0)

(define minus-infinity (log 0.0))

(define first car)

(define (second1 x) (car (cdr x)))

(define (second2 x) (car (cdr x)))

(define (second3 x) (car (cdr x)))

(define rest cdr)

(define (list-two1 x y) (cons x (cons y '())))

(define (list-two2 x y) (cons x (cons y '())))

(define (list-two3 x y) (cons x (cons y '())))

(define (reduce f l i)
 (cond ((null? l) i)
       ((null? (rest l)) (first l))
       (else (let loop ((l (rest l)) (c (first l)))
	      (if (null? l) c (loop (rest l) (f c (first l))))))))

(define (every-n1 p n)
 (let loop ((i 0)) (or (>= i n) (and (p i) (loop (+ i 1))))))

(define (every-n2 p n)
 (let loop ((i 0)) (or (>= i n) (and (p i) (loop (+ i 1))))))

(define (sum1 f n)
 (let loop ((n (- n 1)) (c 0.0))
  (if (negative? n) c (loop (- n 1) (+ c (f n))))))

(define (sum2 f n)
 (let loop ((n (- n 1)) (c 0.0))
  (if (negative? n) c (loop (- n 1) (+ c (f n))))))

(define (add-exp e1 e2)
 (let* ((e-max (max e1 e2))
	(e-min (min e1 e2))
	(factor (floor e-min)))
  (if (= e-max minus-infinity)
      minus-infinity
      (if (> (- e-max factor) log-math-precision)
	  e-max
	  (+ (log (+ (exp (- e-max factor)) (exp (- e-min factor))))
	     factor)))))

(define (map-n1 f n)
 ;; needs work: To eliminate REVERSE.
 (let loop ((i 0) (c '()))
  (if (< i n) (loop (+ i 1) (cons (f i) c)) (reverse c))))

(define (map-n2 f n)
 ;; needs work: To eliminate REVERSE.
 (let loop ((i 0) (c '()))
  (if (< i n) (loop (+ i 1) (cons (f i) c)) (reverse c))))

(define (map-n-vector1 f n)
 (let ((v (make-vector n)))
  (let loop ((i 0))
   (if (< i n)
       (begin (vector-set! v i (f i))
	      (loop (+ i 1)))))
  v))

(define (map-n-vector2 f n)
 (let ((v (make-vector n)))
  (let loop ((i 0))
   (if (< i n)
       (begin (vector-set! v i (f i))
	      (loop (+ i 1)))))
  v))

(define (map-n-vector3 f n)
 (let ((v (make-vector n)))
  (let loop ((i 0))
   (if (< i n)
       (begin (vector-set! v i (f i))
	      (loop (+ i 1)))))
  v))

(define (map-n-vector4 f n)
 (let ((v (make-vector n)))
  (let loop ((i 0))
   (if (< i n)
       (begin (vector-set! v i (f i))
	      (loop (+ i 1)))))
  v))

(define (map-n-vector5 f n)
 (let ((v (make-vector n)))
  (let loop ((i 0))
   (if (< i n)
       (begin (vector-set! v i (f i))
	      (loop (+ i 1)))))
  v))

(define (map-n-vector6 f n)
 (let ((v (make-vector n)))
  (let loop ((i 0))
   (if (< i n)
       (begin (vector-set! v i (f i))
	      (loop (+ i 1)))))
  v))

(define (map-n-vector7 f n)
 (let ((v (make-vector n)))
  (let loop ((i 0))
   (if (< i n)
       (begin (vector-set! v i (f i))
	      (loop (+ i 1)))))
  v))

(define (map-n-vector8 f n)
 (let ((v (make-vector n)))
  (let loop ((i 0))
   (if (< i n)
       (begin (vector-set! v i (f i))
	      (loop (+ i 1)))))
  v))

(define (remove-if-not p l)
 ;; needs work: To eliminate REVERSE.
 (let loop ((l l) (c '()))
  (cond ((null? l) (reverse c))
	((p (first l)) (loop (rest l) (cons (first l) c)))
	(else (loop (rest l) c)))))

(define (positionv x l)
 (let loop ((l l) (i 0))
  (cond ((null? l) #f)
	((eqv? x (first l)) i)
	(else (loop (rest l) (+ i 1))))))

(define (make-matrix1 m n) (map-n-vector1 (lambda (i) (make-vector n)) m))

(define (make-matrix2 m n) (map-n-vector2 (lambda (i) (make-vector n)) m))

(define (make-matrix3 m n) (map-n-vector3 (lambda (i) (make-vector n)) m))

(define (make-matrix4 m n) (map-n-vector4 (lambda (i) (make-vector n)) m))

(define (make-matrix-initial m n initial)
 (map-n-vector5 (lambda (i) (make-vector n initial)) m))

(define (matrix-rows a) (vector-length a))

(define (matrix-columns a) (vector-length (vector-ref a 0)))

(define (matrix-ref a i j) (vector-ref (vector-ref a i) j))

(define (matrix-set! a i j x) (vector-set! (vector-ref a i) j x))

(define (matrix-row-ref a i) (vector-ref a i))

(define (matrix-row-set! a i v) (vector-set! a i v))

(define (determinant a)
 (if (not (= (matrix-rows a) (matrix-columns a)))
     (panic "Can only find determinant of a square matrix"))
 (call-with-current-continuation
  (lambda (return)
   (let* ((n (matrix-rows a))
	  (b (make-matrix1 n n))
	  (d 1.0))
    (do ((i 0 (+ i 1))) ((= i n))
     (do ((j 0 (+ j 1))) ((= j n)) (matrix-set! b i j (matrix-ref a i j))))
    (do ((i 0 (+ i 1))) ((= i n))
     ;; partial pivoting reduces rounding errors
     (let ((greatest (abs (matrix-ref b i i)))
	   (index i))
      (do ((j (+ i 1) (+ j 1))) ((= j n))
       (let ((x (abs (matrix-ref b j i))))
	(if (> x greatest) (begin (set! index j) (set! greatest x)))))
      (if (= greatest 0.0) (return 0.0))
      (if (not (= index i))
	  (let ((v (matrix-row-ref b i)))
	   (matrix-row-set! b i (matrix-row-ref b index))
	   (matrix-row-set! b index v)
	   (set! d (- d))))
      (let ((c (matrix-ref b i i)))
       (set! d (* d c))
       (do ((j i (+ j 1))) ((= j n))
	(matrix-set! b i j (/ (matrix-ref b i j) c)))
       (do ((j (+ i 1) (+ j 1))) ((= j n))
	(let ((e (matrix-ref b j i)))
	 (do ((k (+ i 1) (+ k 1))) ((= k n))
	  (matrix-set!
	   b j k (- (matrix-ref b j k) (* e (matrix-ref b i k))))))))))
    d))))

(define (invert-matrix! a b)
 (if (not (= (matrix-rows a) (matrix-columns a)))
     (panic "Can only invert a square matrix"))
 (let* ((n (matrix-rows a))
	(c (make-matrix2 n n)))
  (do ((i 0 (+ i 1))) ((= i n))
   (do ((j 0 (+ j 1))) ((= j n))
    (matrix-set! b i j 0.0)
    (matrix-set! c i j (matrix-ref a i j))))
  (do ((i 0 (+ i 1))) ((= i n)) (matrix-set! b i i 1.0))
  (do ((i 0 (+ i 1))) ((= i n))
   (if (zero? (matrix-ref c i i))
       (call-with-current-continuation
	(lambda (return)
	 (do ((j 0 (+ j 1))) ((= j n))
	  (if (and (> j i) (not (zero? (matrix-ref c j i))))
	      (begin (let ((e (vector-ref c i)))
		      (vector-set! c i (vector-ref c j))
		      (vector-set! c j e))
		     (let ((e (vector-ref b i)))
		      (vector-set! b i (vector-ref b j))
		      (vector-set! b j e))
		     (return (void)))))
	 (panic "Matrix is singular"))))
   (let ((d (/ (matrix-ref c i i))))
    (do ((j 0 (+ j 1))) ((= j n))
     (matrix-set! c i j (* d (matrix-ref c i j)))
     (matrix-set! b i j (* d (matrix-ref b i j))))
    (do ((k 0 (+ k 1))) ((= k n))
     (let ((d (- (matrix-ref c k i))))
      (if (not (= k i))
	  (do ((j 0 (+ j 1))) ((= j n))
	   (matrix-set!
	    c k j (+ (matrix-ref c k j) (* d (matrix-ref c i j))))
	   (matrix-set!
	    b k j (+ (matrix-ref b k j) (* d (matrix-ref b i j))))))))))))

(define (jacobi! a)
 (if (not (and (= (matrix-rows a) (matrix-columns a))
	       (every-n1 (lambda (i)
			  (every-n2 (lambda (j)
				     (= (matrix-ref a i j) (matrix-ref a j i)))
				    (matrix-rows a)))
			 (matrix-rows a))))
     (panic "Can only compute eigenvalues/eigenvectors of a symmetric matrix"))
 (let* ((n (matrix-rows a))
	(d (make-vector n))
	(v (make-matrix-initial n n 0.0))
	(b (make-vector n))
	(z (make-vector n 0.0)))
  (do ((ip 0 (+ ip 1))) ((= ip n))
   (matrix-set! v ip ip 1.0)
   (vector-set! b ip (matrix-ref a ip ip))
   (vector-set! d ip (matrix-ref a ip ip)))
  (let loop ((i 0))
   (if (> i 50) (panic "Too many iterations in JACOBI!"))
   (let ((sm (sum1 (lambda (ip)
		    (sum2 (lambda (ir)
			   (let ((iq (+ ip ir 1)))
			    (abs (matrix-ref a ip iq))))
			  (- n ip 1)))
		   (- n 1))))
    (if (not (zero? sm))
	(begin
	 (let ((tresh (if (< i 3) (/ (* 0.2 sm) (* n n)) 0.0)))
	  (do ((ip 0 (+ ip 1))) ((= ip (- n 1)))
	   (do ((ir 0 (+ ir 1))) ((= ir (- n ip 1)))
	    (let* ((iq (+ ip ir 1))
		   (g (* 100.0 (abs (matrix-ref a ip iq)))))
	     (cond
	      ((and (> i 3)
		    (= (+ (abs (vector-ref d ip)) g) (abs (vector-ref d ip)))
		    (= (+ (abs (vector-ref d iq)) g) (abs (vector-ref d iq))))
	       (matrix-set! a ip iq 0.0))
	      ((> (abs (matrix-ref a ip iq)) tresh)
	       (let* ((h (- (vector-ref d iq) (vector-ref d ip)))
		      (t (if (= (+ (abs h) g) (abs h))
			     (/ (matrix-ref a ip iq) h)
			     (let ((theta (/ (* 0.5 h) (matrix-ref a ip iq))))
			      (if (negative? theta)
				  (- (/ (+ (abs theta)
					   (sqrt (+ (* theta theta) 1.0)))))
				  (/ (+ (abs theta)
					(sqrt (+ (* theta theta) 1.0))))))))
		      (c (/ (sqrt (+ (* t t) 1.0))))
		      (s (* t c))
		      (tau (/ s (+ c 1.0)))
		      (h (* t (matrix-ref a ip iq))))
		(define (rotate a i j k l)
		 (let ((g (matrix-ref a i j))
		       (h (matrix-ref a k l)))
		  (matrix-set! a i j (- g (* s (+ h (* g tau)))))
		  (matrix-set! a k l (+ h (* s (- g (* h tau)))))))
		(vector-set! z ip (- (vector-ref z ip) h))
		(vector-set! z iq (+ (vector-ref z iq) h))
		(vector-set! d ip (- (vector-ref d ip) h))
		(vector-set! d iq (+ (vector-ref d iq) h))
		(matrix-set! a ip iq 0.0)
		(do ((j 0 (+ j 1))) ((= j n))
		 (cond ((< j ip) (rotate a j ip j iq))
		       ((< ip j iq) (rotate a ip j j iq))
		       ((< iq j) (rotate a ip j iq j)))
		 (rotate v j ip j iq)))))))))
	 (do ((ip 0 (+ ip 1))) ((= ip n))
	  (vector-set! b ip (+ (vector-ref b ip) (vector-ref z ip)))
	  (vector-set! d ip (vector-ref b ip))
	  (vector-set! z ip 0.0))
	 (loop (+ i 1))))))
  (do ((i 0 (+ i 1))) ((= i (- n 1)))
   (let ((k i)
	 (p (vector-ref d i)))
    (do ((l 0 (+ l 1))) ((= l (- n i 1)))
     (let* ((j (+ i l 1)))
      (if (>= (vector-ref d j) p)
	  (begin (set! k j) (set! p (vector-ref d j))))))
    (if (not (= k i))
	(begin (vector-set! d k (vector-ref d i))
	       (vector-set! d i p)
	       (do ((j 0 (+ j 1))) ((= j n))
		(let ((p (matrix-ref v j i)))
		 (matrix-set! v j i (matrix-ref v j k))
		 (matrix-set! v j k p)))))))
  (list-two1 d v)))

(define (clip-eigenvalues! a v)
 (let* ((j (jacobi! a))
	(l (first j))
	(e (second1 j)))
  (do ((k1 0 (+ k1 1))) ((= k1 (vector-length a)))
   (let ((a-k1 (vector-ref a k1))
	 (e-k1 (vector-ref e k1)))
    (do ((k2 0 (+ k2 1))) ((= k2 (vector-length a-k1)))
     (let ((e-k2 (vector-ref e k2))
	   (s 0.0))
      (do ((k 0 (+ k 1))) ((= k (vector-length a)))
       (set! s (+ s (* (vector-ref e-k1 k)
		       (max (vector-ref v k) (vector-ref l k))
		       (vector-ref e-k2 k)))))
      (vector-set! a-k1 k2 s)))))))

;;; EM

(define (e-step! x z models)
 (do ((i 0 (+ i 1))) ((= i (vector-length x)))
  (let ((xi (vector-ref x i))
	(zi (vector-ref z i)))
   (do ((j 0 (+ j 1))) ((= j (vector-length models)))
    ;; Compute for each model.
    (let* ((model (vector-ref models j))
	   (log-pi (model-log-pi model))
	   (mu (model-mu model))
	   (sigma-inverse (model-sigma-inverse model))
	   (log-determinant-sigma (model-log-determinant-sigma model))
	   (t 0.0))
     ;; Compute likelihoods (note: up to constant for all models).
     (set! t 0.0)
     (do ((k1 0 (+ k1 1))) ((= k1 (vector-length xi)))
      (let ((sigma-inverse-k1 (vector-ref sigma-inverse k1)))
       (do ((k2 0 (+ k2 1))) ((= k2 (vector-length xi)))
	(set! t (+ t (* (- (vector-ref xi k1) (vector-ref mu k1))
			(vector-ref sigma-inverse-k1 k2)
			(- (vector-ref xi k2) (vector-ref mu k2))))))))
     (vector-set! zi j (- log-pi (* 0.5 (+ log-determinant-sigma t))))))))
 (let ((l 0.0))
  (do ((i 0 (+ i 1))) ((= i (vector-length x)))
   (let ((s minus-infinity)
	 (zi (vector-ref z i)))
    ;; Normalize ownerships to sum to one.
    (do ((j 0 (+ j 1))) ((= j (vector-length models)))
     (set! s (add-exp s (vector-ref zi j))))
    (do ((j 0 (+ j 1))) ((= j (vector-length models)))
     (vector-set! zi j (exp (- (vector-ref zi j) s))))
    (set! l (+ l s))))
  ;; Return log likelihood.
  l))

(define (m-step! x models z clip)
 (let ((kk (vector-length (vector-ref x 0))))
  ;; For each model, optimize parameters.
  (do ((j 0 (+ j 1))) ((= j (vector-length models)))
   (let* ((model (vector-ref models j))
	  (mu (model-mu model))
	  (sigma (model-sigma model))
	  (s 0.0))
    ;; Optimize values.
    (do ((i 0 (+ i 1))) ((= i (vector-length x)))
     (set! s (+ s (vector-ref (vector-ref z i) j))))
    (let ((si (/ s)))
     (do ((k 0 (+ k 1))) ((= k kk))
      (let ((m 0.0))
       (do ((i 0 (+ i 1))) ((= i (vector-length x)))
	(set! m (+ m (* (vector-ref (vector-ref z i) j)
			(vector-ref (vector-ref x i) k)))))
       (vector-set! mu k (* si m)))))
    (let ((si (/ s)))
     (do ((k1 0 (+ k1 1))) ((= k1 kk))
      (let ((sigma-k1 (vector-ref sigma k1))
	    (mu-k1 (vector-ref mu k1)))
       (do ((k2 0 (+ k2 1))) ((= k2 kk))
	(let ((mu-k2 (vector-ref mu k2))
	      (m 0.0))
	 (do ((i 0 (+ i 1))) ((= i (vector-length x)))
	  (set! m (+ m (* (vector-ref (vector-ref z i) j)
			  (* (- (vector-ref (vector-ref x i) k1) mu-k1)
			     (- (vector-ref (vector-ref x i) k2) mu-k2))))))
	 (vector-set! sigma-k1 k2 (* si m)))))))
    (clip-eigenvalues! sigma clip)
    (set-model-pi! model (/ s (vector-length x)))
    (set-model-log-pi! model (log (/ s (vector-length x))))
    (invert-matrix! sigma (model-sigma-inverse model))
    (set-model-log-determinant-sigma! model (log (determinant sigma)))))))

(define (em! x z models clip em-kick-off-tolerance em-convergence-tolerance)
 (let loop ((old-log-likelihood minus-infinity) (starting? #t))
  (let ((log-likelihood (e-step! x z models)))
   (cond
    ((or (and starting? (> log-likelihood old-log-likelihood))
	 (> log-likelihood (+ old-log-likelihood em-convergence-tolerance)))
     (m-step! x models z clip)
     (loop log-likelihood
	   (and starting?
		(not (= (vector-length models) 1))
		(or (= old-log-likelihood minus-infinity)
		    (< log-likelihood
		       (+ old-log-likelihood em-kick-off-tolerance))))))
    (else old-log-likelihood)))))

(define (noise epsilon)
 (- (* 2.0 epsilon (/ (exact->inexact (rand)) *most-positive-fixnum*))
    epsilon))

(define (initial-z ii jj)
 (map-n-vector6
  (lambda (i)
   (let ((zi (map-n-vector7 (lambda (j)
			     (+ (/ (exact->inexact jj))
				(noise (/ (exact->inexact jj)))))
			    jj))
	 (s 0.0))
    (do ((j 0 (+ j 1))) ((= j jj)) (set! s (+ s (vector-ref zi j))))
    (let ((si (/ s)))
     (do ((j 0 (+ j 1))) ((= j jj))
      (vector-set! zi j (* si (vector-ref zi j)))))
    zi))
  ii))

(define (ems x clip em-kick-off-tolerance em-convergence-tolerance
	     ems-convergence-tolerance)
 (let loop ((jj 1)
	    (old-z (void))
	    (old-models (void))
	    (old-log-likelihood minus-infinity))
  (let* ((kk (vector-length (vector-ref x 0)))
	 (z (initial-z (vector-length x) jj))
	 (models (map-n-vector8
		  (lambda (j)
		   ;; needs work: Should replace 0.0 with ((LAMBDA ())).
		   (make-model 0.0
			       (make-vector kk)
			       (make-matrix3 kk kk)
			       0.0
			       (make-matrix4 kk kk)
			       0.0))
		  jj)))
   (m-step! x models z clip)
   (let ((new-log-likelihood
	  (em!
	   x z models clip em-kick-off-tolerance em-convergence-tolerance)))
    (if (> (- (/ old-log-likelihood new-log-likelihood) 1.0)
	   ems-convergence-tolerance)
	(loop (+ jj 1) z models new-log-likelihood)
	(list-two2 old-z old-models))))))

(define (em-clusterer x clip em-kick-off-tolerance em-convergence-tolerance
		      ems-convergence-tolerance)
 (let* ((z-models (ems x clip em-kick-off-tolerance
		       em-convergence-tolerance
		       ems-convergence-tolerance))
	(z (first z-models))
	(models (second2 z-models)))
  (e-step! x z models)
  (let ((clusters
	 (map-n1 (lambda (i)
		  (let ((zi (vector->list (vector-ref z i))))
		   (list-two3
		    i (positionv (reduce max zi minus-infinity) zi))))
		 (vector-length z))))
   (map-n2 (lambda (j)
	    (map (lambda (cluster) (vector-ref x (first cluster)))
		 (remove-if-not (lambda (cluster) (= (second3 cluster) j))
				clusters)))
	   (vector-length (vector-ref z 0))))))

(do ((i 0 (+ i 1))) ((= i 100))
 (write
  (em-clusterer
   '#(#(1.0) #(2.0) #(3.0) #(11.0) #(12.0) #(13.0)) '#(1.0) 10.0 1.0 0.01))
 (newline))