1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421
|
/*
*class++
* Name:
* MathMap
* Purpose:
* Transform coordinates using mathematical expressions.
* Constructor Function:
c astMathMap
f AST_MATHMAP
* Description:
c A MathMap is a Mapping which allows you to specify a set of forward
c and/or inverse transformation functions using arithmetic operations
c and mathematical functions similar to those available in C. The
c MathMap interprets these functions at run-time, whenever its forward
c or inverse transformation is required. Because the functions are not
c compiled in the normal sense (unlike an IntraMap), they may be used to
c describe coordinate transformations in a transportable manner. A
c MathMap therefore provides a flexible way of defining new types of
c Mapping whose descriptions may be stored as part of a dataset and
c interpreted by other programs.
f A MathMap is a Mapping which allows you to specify a set of forward
f and/or inverse transformation functions using arithmetic operations
f and mathematical functions similar to those available in Fortran. The
f MathMap interprets these functions at run-time, whenever its forward
f or inverse transformation is required. Because the functions are not
f compiled in the normal sense (unlike an IntraMap), they may be used to
f describe coordinate transformations in a transportable manner. A
f MathMap therefore provides a flexible way of defining new types of
f Mapping whose descriptions may be stored as part of a dataset and
f interpreted by other programs.
* Inheritance:
* The MathMap class inherits from the Mapping class.
* Attributes:
* In addition to those attributes common to all Mappings, every
* MathMap also has the following attributes:
* - Seed: Random number seed
* - SimpFI: Forward-inverse MathMap pairs simplify?
* - SimpIF: Inverse-forward MathMap pairs simplify?
* Functions:
c The MathMap class does not define any new functions beyond those
f The MathMap class does not define any new routines beyond those
* which are applicable to all Mappings.
* Copyright:
* Copyright (C) 1997-2006 Council for the Central Laboratory of the
* Research Councils
* Licence:
* This program is free software: you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either
* version 3 of the License, or (at your option) any later
* version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General
* License along with this program. If not, see
* <http://www.gnu.org/licenses/>.
* Authors:
* RFWS: R.F. Warren-Smith (Starlink)
* History:
* 3-SEP-1999 (RFWS):
* Original version.
* 8-JAN-2003 (DSB):
* Changed private InitVtab method to protected astInitMathMapVtab
* method.
* 14-FEB-2006 (DSB):
* Override astGetObjSize.
* 14-MAR-2006 (DSB):
* - Add QIF function.
* - Override astEqual method.
* 20-NOV-2006 (DSB):
* Re-implement the Equal method to avoid use of astSimplify.
* 30-AUG-2012 (DSB):
* Fix bug in undocumented Gaussian noise function.
*class--
*/
/* Module Macros. */
/* ============== */
/* Set the name of the class we are implementing. This indicates to
the header files that define class interfaces that they should make
"protected" symbols available. */
#define astCLASS MathMap
/* Allocate pointer array. */
/* ----------------------- */
/* This macro allocates an array of pointers. If successful, each element
of the array is initialised to NULL. */
#define MALLOC_POINTER_ARRAY(array_name,array_type,array_size) \
\
/* Allocate the array. */ \
(array_name) = astMalloc( sizeof(array_type) * (size_t) (array_size) ); \
if ( astOK ) { \
\
/* If successful, loop to initialise each element. */ \
int array_index_; \
for ( array_index_ = 0; array_index_ < (array_size); array_index_++ ) { \
(array_name)[ array_index_ ] = NULL; \
} \
}
/* Free pointer array. */
/* ------------------- */
/* This macro frees a dynamically allocated array of pointers, each of
whose elements may point at a further dynamically allocated array
(which is also to be freed). It also allows for the possibility of any
of the pointers being NULL. */
#define FREE_POINTER_ARRAY(array_name,array_size) \
\
/* Check that the main array pointer is not NULL. */ \
if ( (array_name) ) { \
\
/* If OK, loop to free each of the sub-arrays. */ \
int array_index_; \
for ( array_index_ = 0; array_index_ < (array_size); array_index_++ ) { \
\
/* Check that each sub-array pointer is not NULL before freeing it. */ \
if ( (array_name)[ array_index_ ] ) { \
(array_name)[ array_index_ ] = \
astFree( (array_name)[ array_index_ ] ); \
} \
} \
\
/* Free the main pointer array. */ \
(array_name) = astFree( (array_name) ); \
}
/* SizeOf pointer array. */
/* --------------------- */
/* This macro increments "result" by the number of bytes allocated for an
array of pointers, each of whose elements may point at a further
dynamically allocated array (which is also to be included). It also
allows for the possibility of any of the pointers being NULL. */
#define SIZEOF_POINTER_ARRAY(array_name,array_size) \
\
/* Check that the main array pointer is not NULL. */ \
if ( (array_name) ) { \
\
/* If OK, loop to measure each of the sub-arrays. */ \
int array_index_; \
for ( array_index_ = 0; array_index_ < (array_size); array_index_++ ) { \
\
/* Check that each sub-array pointer is not NULL before measuring it. */ \
if ( (array_name)[ array_index_ ] ) { \
result += astTSizeOf( (array_name)[ array_index_ ] ); \
} \
} \
\
/* Include the main pointer array. */ \
result += astTSizeOf( (array_name) ); \
}
/* Header files. */
/* ============= */
/* Interface definitions. */
/* ---------------------- */
#include "channel.h" /* I/O channels */
#include "globals.h" /* Thread-safe global data access */
#include "error.h" /* Error reporting facilities */
#include "mapping.h" /* Coordinate mappings (parent class) */
#include "cmpmap.h" /* Compound Mappings */
#include "mathmap.h" /* Interface definition for this class */
#include "memory.h" /* Memory allocation facilities */
#include "globals.h" /* Thread-safe global data access */
#include "object.h" /* Base Object class */
#include "pointset.h" /* Sets of points */
#include "unitmap.h" /* Unit Mapping */
/* Error code definitions. */
/* ----------------------- */
#include "ast_err.h" /* AST error codes */
/* C header files. */
/* --------------- */
#include <ctype.h>
#include <errno.h>
#include <limits.h>
#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
/* Module Variables. */
/* ================= */
/* This type is made obscure since it is publicly accessible (but not
useful). Provide shorthand for use within this module. */
typedef AstMathMapRandContext_ Rcontext;
/* Address of this static variable is used as a unique identifier for
member of this class. */
static int class_check;
/* Pointers to parent class methods which are extended by this class. */
static int (* parent_getobjsize)( AstObject *, int * );
static AstPointSet *(* parent_transform)( AstMapping *, AstPointSet *, int, AstPointSet *, int * );
static const char *(* parent_getattrib)( AstObject *, const char *, int * );
static int (* parent_testattrib)( AstObject *, const char *, int * );
static void (* parent_clearattrib)( AstObject *, const char *, int * );
static void (* parent_setattrib)( AstObject *, const char *, int * );
/* This declaration enumerates the operation codes recognised by the
EvaluateFunction function which evaluates arithmetic expressions. */
typedef enum {
/* User-supplied constants and variables. */
OP_LDCON, /* Load constant */
OP_LDVAR, /* Load variable */
/* System constants. */
OP_LDBAD, /* Load bad value (AST__BAD) */
OP_LDDIG, /* Load # decimal digits (AST__DBL_DIG) */
OP_LDEPS, /* Load relative precision (DBL_EPSILON) */
OP_LDMAX, /* Load largest value (DBL_MAX) */
OP_LDMAX10E, /* Max. decimal exponent (DBL_MAX_10_EXP) */
OP_LDMAXE, /* Load maximum exponent (DBL_MAX_EXP) */
OP_LDMDIG, /* Load # mantissa digits (DBL_MANT_DIG) */
OP_LDMIN, /* Load smallest value (DBL_MIN) */
OP_LDMIN10E, /* Min. decimal exponent (DBL_MIN_10_EXP) */
OP_LDMINE, /* Load minimum exponent (DBL_MIN_EXP) */
OP_LDRAD, /* Load floating radix (FLT_RADIX) */
OP_LDRND, /* Load rounding mode (FLT_ROUNDS) */
/* Mathematical constants. */
OP_LDE, /* Load e (base of natural logarithms) */
OP_LDPI, /* Load pi */
/* Functions with one argument. */
OP_ABS, /* Absolute value (sign removal) */
OP_ACOS, /* Inverse cosine (radians) */
OP_ACOSD, /* Inverse cosine (degrees) */
OP_ACOSH, /* Inverse hyperbolic cosine */
OP_ACOTH, /* Inverse hyperbolic cotangent */
OP_ACSCH, /* Inverse hyperbolic cosecant */
OP_ASECH, /* Inverse hyperbolic secant */
OP_ASIN, /* Inverse sine (radians) */
OP_ASIND, /* Inverse sine (degrees) */
OP_ASINH, /* Inverse hyperbolic sine */
OP_ATAN, /* Inverse tangent (radians) */
OP_ATAND, /* Inverse tangent (degrees) */
OP_ATANH, /* Inverse hyperbolic tangent */
OP_CEIL, /* C ceil function (round up) */
OP_COS, /* Cosine (radians) */
OP_COSD, /* Cosine (degrees) */
OP_COSH, /* Hyperbolic cosine */
OP_COTH, /* Hyperbolic cotangent */
OP_CSCH, /* Hyperbolic cosecant */
OP_EXP, /* Exponential function */
OP_FLOOR, /* C floor function (round down) */
OP_INT, /* Integer value (round towards zero) */
OP_ISBAD, /* Test for bad value */
OP_LOG, /* Natural logarithm */
OP_LOG10, /* Base 10 logarithm */
OP_NINT, /* Fortran NINT function (round to nearest) */
OP_POISS, /* Poisson random number */
OP_SECH, /* Hyperbolic secant */
OP_SIN, /* Sine (radians) */
OP_SINC, /* Sinc function [= sin(x)/x] */
OP_SIND, /* Sine (degrees) */
OP_SINH, /* Hyperbolic sine */
OP_SQR, /* Square */
OP_SQRT, /* Square root */
OP_TAN, /* Tangent (radians) */
OP_TAND, /* Tangent (degrees) */
OP_TANH, /* Hyperbolic tangent */
/* Functions with two arguments. */
OP_ATAN2, /* Inverse tangent (2 arguments, radians) */
OP_ATAN2D, /* Inverse tangent (2 arguments, degrees) */
OP_DIM, /* Fortran DIM (positive difference) fn. */
OP_GAUSS, /* Gaussian random number */
OP_MOD, /* Modulus function */
OP_POW, /* Raise to power */
OP_RAND, /* Uniformly distributed random number */
OP_SIGN, /* Transfer of sign function */
/* Functions with three arguments. */
OP_QIF, /* C "question mark" operator "a?b:c" */
/* Functions with variable numbers of arguments. */
OP_MAX, /* Maximum of 2 or more values */
OP_MIN, /* Minimum of 2 or more values */
/* Unary arithmetic operators. */
OP_NEG, /* Negate (change sign) */
/* Unary boolean operators. */
OP_NOT, /* Boolean NOT */
/* Binary arithmetic operators. */
OP_ADD, /* Add */
OP_DIV, /* Divide */
OP_MUL, /* Multiply */
OP_SUB, /* Subtract */
/* Bit-shift operators. */
OP_SHFTL, /* Shift bits left */
OP_SHFTR, /* Shift bits right */
/* Relational operators. */
OP_EQ, /* Relational equal */
OP_GE, /* Greater than or equal */
OP_GT, /* Greater than */
OP_LE, /* Less than or equal */
OP_LT, /* Less than */
OP_NE, /* Not equal */
/* Bit-wise operators. */
OP_BITAND, /* Bit-wise AND */
OP_BITOR, /* Bit-wise OR */
OP_BITXOR, /* Bit-wise exclusive OR */
/* Binary boolean operators. */
OP_AND, /* Boolean AND */
OP_EQV, /* Fortran logical .EQV. operation */
OP_OR, /* Boolean OR */
OP_XOR, /* Boolean exclusive OR */
/* Null operation. */
OP_NULL /* Null operation */
} Oper;
/* This structure holds a description of each symbol which may appear
in an expression. */
typedef struct {
const char *text; /* Symbol text as it appears in expressions */
const int size; /* Size of symbol text */
const int operleft; /* An operator when seen from the left? */
const int operright; /* An operator when seen from the right? */
const int unarynext; /* May be followed by a unary +/- ? */
const int unaryoper; /* Is a unary +/- ? */
const int leftpriority; /* Priority when seen from the left */
const int rightpriority; /* Priority when seen from the right */
const int parincrement; /* Change in parenthesis level */
const int stackincrement; /* Change in evaluation stack size */
const int nargs; /* Number of function arguments */
const Oper opcode; /* Resulting operation code */
} Symbol;
/* This initialises an array of Symbol structures to hold data on all
the supported symbols. The order is not important, but symbols are
arranged here in approximate order of descending evaluation
priority. The end of the array is indicated by an element with a NULL
"text" component. */
static const Symbol symbol[] = {
/* User-supplied constants and variables. */
{ "" , 0, 0, 0, 0, 0, 19, 19, 0, 1, 0, OP_LDCON },
{ "" , 0, 0, 0, 0, 0, 19, 19, 0, 1, 0, OP_LDVAR },
/* System constants. */
{ "<bad>" , 5, 0, 0, 0, 0, 19, 19, 0, 1, 0, OP_LDBAD },
{ "<dig>" , 5, 0, 0, 0, 0, 19, 19, 0, 1, 0, OP_LDDIG },
{ "<epsilon>" , 9, 0, 0, 0, 0, 19, 19, 0, 1, 0, OP_LDEPS },
{ "<mant_dig>" , 10, 0, 0, 0, 0, 19, 19, 0, 1, 0, OP_LDMDIG },
{ "<max>" , 5, 0, 0, 0, 0, 19, 19, 0, 1, 0, OP_LDMAX },
{ "<max_10_exp>", 12, 0, 0, 0, 0, 19, 19, 0, 1, 0, OP_LDMAX10E },
{ "<max_exp>" , 9, 0, 0, 0, 0, 19, 19, 0, 1, 0, OP_LDMAXE },
{ "<min>" , 5, 0, 0, 0, 0, 19, 19, 0, 1, 0, OP_LDMIN },
{ "<min_10_exp>", 12, 0, 0, 0, 0, 19, 19, 0, 1, 0, OP_LDMIN10E },
{ "<min_exp>" , 9, 0, 0, 0, 0, 19, 19, 0, 1, 0, OP_LDMINE },
{ "<radix>" , 7, 0, 0, 0, 0, 19, 19, 0, 1, 0, OP_LDRAD },
{ "<rounds>" , 8, 0, 0, 0, 0, 19, 19, 0, 1, 0, OP_LDRND },
/* Mathematical constants. */
{ "<e>" , 3, 0, 0, 0, 0, 19, 19, 0, 1, 0, OP_LDE },
{ "<pi>" , 4, 0, 0, 0, 0, 19, 19, 0, 1, 0, OP_LDPI },
/* Functions with one argument. */
{ "abs(" , 4, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_ABS },
{ "acos(" , 5, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_ACOS },
{ "acosd(" , 6, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_ACOSD },
{ "acosh(" , 6, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_ACOSH },
{ "acoth(" , 6, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_ACOTH },
{ "acsch(" , 6, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_ACSCH },
{ "aint(" , 5, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_INT },
{ "asech(" , 6, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_ASECH },
{ "asin(" , 5, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_ASIN },
{ "asind(" , 6, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_ASIND },
{ "asinh(" , 6, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_ASINH },
{ "atan(" , 5, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_ATAN },
{ "atand(" , 6, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_ATAND },
{ "atanh(" , 6, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_ATANH },
{ "ceil(" , 5, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_CEIL },
{ "cos(" , 4, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_COS },
{ "cosd(" , 5, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_COSD },
{ "cosh(" , 5, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_COSH },
{ "coth(" , 5, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_COTH },
{ "csch(" , 5, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_CSCH },
{ "exp(" , 4, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_EXP },
{ "fabs(" , 5, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_ABS },
{ "floor(" , 6, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_FLOOR },
{ "int(" , 4, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_INT },
{ "isbad(" , 6, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_ISBAD },
{ "log(" , 4, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_LOG },
{ "log10(" , 6, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_LOG10 },
{ "nint(" , 5, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_NINT },
{ "poisson(" , 8, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_POISS },
{ "sech(" , 5, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_SECH },
{ "sin(" , 4, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_SIN },
{ "sinc(" , 5, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_SINC },
{ "sind(" , 5, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_SIND },
{ "sinh(" , 5, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_SINH },
{ "sqr(" , 4, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_SQR },
{ "sqrt(" , 5, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_SQRT },
{ "tan(" , 4, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_TAN },
{ "tand(" , 5, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_TAND },
{ "tanh(" , 5, 0, 1, 1, 0, 19, 1, 1, 0, 1, OP_TANH },
/* Functions with two arguments. */
{ "atan2(" , 6, 0, 1, 1, 0, 19, 1, 1, -1, 2, OP_ATAN2 },
{ "atan2d(" , 7, 0, 1, 1, 0, 19, 1, 1, -1, 2, OP_ATAN2D },
{ "dim(" , 4, 0, 1, 1, 0, 19, 1, 1, -1, 2, OP_DIM },
{ "fmod(" , 5, 0, 1, 1, 0, 19, 1, 1, -1, 2, OP_MOD },
{ "gauss(" , 6, 0, 1, 1, 0, 19, 1, 1, -1, 2, OP_GAUSS },
{ "mod(" , 4, 0, 1, 1, 0, 19, 1, 1, -1, 2, OP_MOD },
{ "pow(" , 4, 0, 1, 1, 0, 19, 1, 1, -1, 2, OP_POW },
{ "rand(" , 5, 0, 1, 1, 0, 19, 1, 1, -1, 2, OP_RAND },
{ "sign(" , 5, 0, 1, 1, 0, 19, 1, 1, -1, 2, OP_SIGN },
/* Functions with two arguments. */
{ "qif(" , 4, 0, 1, 1, 0, 19, 1, 1, -2, 3, OP_QIF },
/* Functions with variable numbers of arguments. */
{ "max(" , 4, 0, 1, 1, 0, 19, 1, 1, -1, -2, OP_MAX },
{ "min(" , 4, 0, 1, 1, 0, 19, 1, 1, -1, -2, OP_MIN },
/* Parenthesised expressions. */
{ ")" , 1, 1, 0, 0, 0, 2, 19, -1, 0, 0, OP_NULL },
{ "(" , 1, 0, 1, 1, 0, 19, 1, 1, 0, 0, OP_NULL },
/* Unary arithmetic operators. */
{ "+" , 1, 0, 1, 1, 1, 17, 16, 0, 0, 0, OP_NULL },
{ "-" , 1, 0, 1, 1, 1, 17, 16, 0, 0, 0, OP_NEG },
/* Unary boolean operators. */
{ "!" , 1, 0, 1, 1, 0, 17, 16, 0, 0, 0, OP_NOT },
{ ".not." , 5, 0, 1, 1, 0, 17, 16, 0, 0, 0, OP_NOT },
/* Binary arithmetic operators. */
{ "**" , 2, 1, 1, 1, 0, 18, 15, 0, -1, 0, OP_POW },
{ "*" , 1, 1, 1, 1, 0, 14, 14, 0, -1, 0, OP_MUL },
{ "/" , 1, 1, 1, 1, 0, 14, 14, 0, -1, 0, OP_DIV },
{ "+" , 1, 1, 1, 1, 0, 13, 13, 0, -1, 0, OP_ADD },
{ "-" , 1, 1, 1, 1, 0, 13, 13, 0, -1, 0, OP_SUB },
/* Bit-shift operators. */
{ "<<" , 2, 1, 1, 1, 0, 12, 12, 0, -1, 0, OP_SHFTL },
{ ">>" , 2, 1, 1, 1, 0, 12, 12, 0, -1, 0, OP_SHFTR },
/* Relational operators. */
{ "<" , 1, 1, 1, 1, 0, 11, 11, 0, -1, 0, OP_LT },
{ ".lt." , 4, 1, 1, 1, 0, 11, 11, 0, -1, 0, OP_LT },
{ "<=" , 2, 1, 1, 1, 0, 11, 11, 0, -1, 0, OP_LE },
{ ".le." , 4, 1, 1, 1, 0, 11, 11, 0, -1, 0, OP_LE },
{ ">" , 1, 1, 1, 1, 0, 11, 11, 0, -1, 0, OP_GT },
{ ".gt." , 4, 1, 1, 1, 0, 11, 11, 0, -1, 0, OP_GT },
{ ">=" , 2, 1, 1, 1, 0, 11, 11, 0, -1, 0, OP_GE },
{ ".ge." , 4, 1, 1, 1, 0, 11, 11, 0, -1, 0, OP_GE },
{ "==" , 2, 1, 1, 1, 0, 10, 10, 0, -1, 0, OP_EQ },
{ ".eq." , 4, 1, 1, 1, 0, 10, 10, 0, -1, 0, OP_EQ },
{ "!=" , 2, 1, 1, 1, 0, 10, 10, 0, -1, 0, OP_NE },
{ ".ne." , 4, 1, 1, 1, 0, 10, 10, 0, -1, 0, OP_NE },
/* Bit-wise operators. */
{ "&" , 1, 1, 1, 1, 0, 9, 9, 0, -1, 0, OP_BITAND },
{ "^" , 1, 1, 1, 1, 0, 8, 8, 0, -1, 0, OP_BITXOR },
{ "|" , 1, 1, 1, 1, 0, 7, 7, 0, -1, 0, OP_BITOR },
/* Binary boolean operators. */
{ "&&" , 2, 1, 1, 1, 0, 6, 6, 0, -1, 0, OP_AND },
{ ".and." , 5, 1, 1, 1, 0, 6, 6, 0, -1, 0, OP_AND },
{ "^^" , 2, 1, 1, 1, 0, 5, 5, 0, -1, 0, OP_XOR },
{ "||" , 2, 1, 1, 1, 0, 4, 4, 0, -1, 0, OP_OR },
{ ".or." , 4, 1, 1, 1, 0, 4, 4, 0, -1, 0, OP_OR },
{ ".eqv." , 5, 1, 1, 1, 0, 3, 3, 0, -1, 0, OP_EQV },
{ ".neqv." , 6, 1, 1, 1, 0, 3, 3, 0, -1, 0, OP_XOR },
{ ".xor." , 5, 1, 1, 1, 0, 3, 3, 0, -1, 0, OP_XOR },
/* Separators. */
{ "," , 1, 1, 1, 1, 0, 2, 2, 0, 0, 0, OP_NULL },
/* End of symbol data. */
{ NULL , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, OP_NULL }
};
/* These variables identify indices in the above array which hold
special symbols used explicitly in the code. */
static const int symbol_ldcon = 0; /* Load a constant */
static const int symbol_ldvar = 1; /* Load a variable */
/* Define macros for accessing each item of thread specific global data. */
#ifdef THREAD_SAFE
/* Define how to initialise thread-specific globals. */
#define GLOBAL_inits \
globals->Class_Init = 0; \
globals->GetAttrib_Buff[ 0 ] = 0;
/* Create the function that initialises global data for this module. */
astMAKE_INITGLOBALS(MathMap)
/* Define macros for accessing each item of thread specific global data. */
#define class_init astGLOBAL(MathMap,Class_Init)
#define class_vtab astGLOBAL(MathMap,Class_Vtab)
#define getattrib_buff astGLOBAL(MathMap,GetAttrib_Buff)
static pthread_mutex_t mutex2 = PTHREAD_MUTEX_INITIALIZER;
#define LOCK_MUTEX2 pthread_mutex_lock( &mutex2 );
#define UNLOCK_MUTEX2 pthread_mutex_unlock( &mutex2 );
static pthread_mutex_t mutex3 = PTHREAD_MUTEX_INITIALIZER;
#define LOCK_MUTEX3 pthread_mutex_lock( &mutex3 );
#define UNLOCK_MUTEX3 pthread_mutex_unlock( &mutex3 );
static pthread_mutex_t mutex4 = PTHREAD_MUTEX_INITIALIZER;
#define LOCK_MUTEX4 pthread_mutex_lock( &mutex4 );
#define UNLOCK_MUTEX4 pthread_mutex_unlock( &mutex4 );
static pthread_mutex_t mutex5 = PTHREAD_MUTEX_INITIALIZER;
#define LOCK_MUTEX5 pthread_mutex_lock( &mutex5 );
#define UNLOCK_MUTEX5 pthread_mutex_unlock( &mutex5 );
static pthread_mutex_t mutex6 = PTHREAD_MUTEX_INITIALIZER;
#define LOCK_MUTEX6 pthread_mutex_lock( &mutex6 );
#define UNLOCK_MUTEX6 pthread_mutex_unlock( &mutex6 );
static pthread_mutex_t mutex7 = PTHREAD_MUTEX_INITIALIZER;
#define LOCK_MUTEX7 pthread_mutex_lock( &mutex7 );
#define UNLOCK_MUTEX7 pthread_mutex_unlock( &mutex7 );
/* If thread safety is not needed, declare and initialise globals at static
variables. */
#else
static char getattrib_buff[ 51 ];
/* Define the class virtual function table and its initialisation flag
as static variables. */
static AstMathMapVtab class_vtab; /* Virtual function table */
static int class_init = 0; /* Virtual function table initialised? */
#define LOCK_MUTEX2
#define UNLOCK_MUTEX2
#define LOCK_MUTEX3
#define UNLOCK_MUTEX3
#define LOCK_MUTEX4
#define UNLOCK_MUTEX4
#define LOCK_MUTEX5
#define UNLOCK_MUTEX5
#define LOCK_MUTEX6
#define UNLOCK_MUTEX6
#define LOCK_MUTEX7
#define UNLOCK_MUTEX7
#endif
/* External Interface Function Prototypes. */
/* ======================================= */
/* The following functions have public prototypes only (i.e. no
protected prototypes), so we must provide local prototypes for use
within this module. */
AstMathMap *astMathMapId_( int, int, int, const char *[], int, const char *[], const char *, ... );
/* Prototypes for Private Member Functions. */
/* ======================================== */
static AstPointSet *Transform( AstMapping *, AstPointSet *, int, AstPointSet *, int * );
static int GetObjSize( AstObject *, int * );
static const char *GetAttrib( AstObject *, const char *, int * );
static double Gauss( Rcontext *, int * );
static double LogGamma( double, int * );
static double Poisson( Rcontext *, double, int * );
static double Rand( Rcontext *, int * );
static int DefaultSeed( const Rcontext *, int * );
static int Equal( AstObject *, AstObject *, int * );
static int GetSeed( AstMathMap *, int * );
static int GetSimpFI( AstMathMap *, int * );
static int GetSimpIF( AstMathMap *, int * );
static int MapMerge( AstMapping *, int, int, int *, AstMapping ***, int **, int * );
static int TestAttrib( AstObject *, const char *, int * );
static int TestSeed( AstMathMap *, int * );
static int TestSimpFI( AstMathMap *, int * );
static int TestSimpIF( AstMathMap *, int * );
static void CleanFunctions( int, const char *[], char ***, int * );
static void ClearAttrib( AstObject *, const char *, int * );
static void ClearSeed( AstMathMap *, int * );
static void ClearSimpFI( AstMathMap *, int * );
static void ClearSimpIF( AstMathMap *, int * );
static void CompileExpression( const char *, const char *, const char *, int, const char *[], int **, double **, int *, int * );
static void CompileMapping( const char *, const char *, int, int, int, const char *[], int, const char *[], int ***, int ***, double ***, double ***, int *, int *, int * );
static void Copy( const AstObject *, AstObject *, int * );
static void Delete( AstObject *, int * );
static void Dump( AstObject *, AstChannel *, int * );
static void EvaluateFunction( Rcontext *, int, const double **, const int *, const double *, int, double *, int * );
static void EvaluationSort( const double [], int, int [], int **, int *, int * );
static void ExtractExpressions( const char *, const char *, int, const char *[], int, char ***, int * );
static void ExtractVariables( const char *, const char *, int, const char *[], int, int, int, int, int, char ***, int * );
static void ParseConstant( const char *, const char *, const char *, int, int *, double *, int * );
static void ParseName( const char *, int, int *, int * );
static void ParseVariable( const char *, const char *, const char *, int, int, const char *[], int *, int *, int * );
static void SetAttrib( AstObject *, const char *, int * );
static void SetSeed( AstMathMap *, int, int * );
static void SetSimpFI( AstMathMap *, int, int * );
static void SetSimpIF( AstMathMap *, int, int * );
static void ValidateSymbol( const char *, const char *, const char *, int, int, int *, int **, int **, int *, double **, int * );
/* Member functions. */
/* ================= */
static void CleanFunctions( int nfun, const char *fun[], char ***clean, int *status ) {
/*
* Name:
* CleanFunctions
* Purpose:
* Make a clean copy of a set of functions.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* void CleanFunctions( int nfun, const char *fun[], char ***clean, int *status )
* Class Membership:
* MathMap member function.
* Description:
* This function copies an array of strings, eliminating any white space
* characters and converting to lower case. It is intended for cleaning
* up arrays of function definitions prior to compilation. The returned
* copy is stored in dynamically allocated memory.
* Parameters:
* nfun
* The number of functions to be cleaned.
* fun
* Pointer to an array, with "nfun" elements, of pointers to null
* terminated strings which contain each of the functions.
* clean
* Address in which to return a pointer to an array (with "nfun"
* elements) of pointers to null terminated strings containing the
* cleaned functions (i.e. this returns an array of strings).
*
* Both the returned array of pointers, and the strings to which they
* point, will be dynamically allocated and should be freed by the
* caller (using astFree) when no longer required.
* status
* Pointer to the inherited status variable.
* Notes:
* - A NULL value will be returned for "*clean" if this function is
* invoked with the global error status set, or if it should fail for
* any reason.
*/
/* Local Variables: */
char c; /* Character from function string */
int i; /* Loop counter for characters */
int ifun; /* Loop counter for functions */
int nc; /* Count of non-blank characters */
/* Initialise. */
*clean = NULL;
/* Check the global error status. */
if ( !astOK ) return;
/* Allocate and initialise an array to hold the returned pointers. */
MALLOC_POINTER_ARRAY( *clean, char *, nfun )
/* Loop through all the input functions. */
if ( astOK ) {
for ( ifun = 0; ifun < nfun; ifun++ ) {
/* Count the number of non-blank characters in each function string. */
nc = 0;
for ( i = 0; ( c = fun[ ifun ][ i ] ); i++ ) nc += !isspace( c );
/* Allocate a string long enough to hold the function with all the
white space removed, storing its pointer in the array allocated
earlier. Check for errors. */
( *clean )[ ifun ] = astMalloc( sizeof( char ) *
(size_t) ( nc + 1 ) );
if ( !astOK ) break;
/* Loop to copy the non-blank function characters into the new
string. */
nc = 0;
for ( i = 0; ( c = fun[ ifun ][ i ] ); i++ ) {
if ( !isspace( c ) ) ( *clean )[ ifun ][ nc++ ] = tolower( c );
}
/* Null-terminate the result. */
( *clean )[ ifun ][ nc ] = '\0';
}
/* If an error occurred, then free the main pointer array together
with any strings that have been allocated, resetting the output
value. */
if ( !astOK ) {
FREE_POINTER_ARRAY( *clean, nfun )
}
}
}
static void ClearAttrib( AstObject *this_object, const char *attrib, int *status ) {
/*
* Name:
* ClearAttrib
* Purpose:
* Clear an attribute value for a MathMap.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* void ClearAttrib( AstObject *this, const char *attrib, int *status )
* Class Membership:
* MathMap member function (over-rides the astClearAttrib protected
* method inherited from the Mapping class).
* Description:
* This function clears the value of a specified attribute for a
* MathMap, so that the default value will subsequently be used.
* Parameters:
* this
* Pointer to the MathMap.
* attrib
* Pointer to a null terminated string specifying the attribute
* name. This should be in lower case with no surrounding white
* space.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
AstMathMap *this; /* Pointer to the MathMap structure */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the MathMap structure. */
this = (AstMathMap *) this_object;
/* Check the attribute name and clear the appropriate attribute. */
/* Seed. */
/* ----- */
if ( !strcmp( attrib, "seed" ) ) {
astClearSeed( this );
/* SimpFI. */
/* ------- */
} else if ( !strcmp( attrib, "simpfi" ) ) {
astClearSimpFI( this );
/* SimpIF. */
/* ------- */
} else if ( !strcmp( attrib, "simpif" ) ) {
astClearSimpIF( this );
/* If the attribute is not recognised, pass it on to the parent method
for further interpretation. */
} else {
(*parent_clearattrib)( this_object, attrib, status );
}
}
static void CompileExpression( const char *method, const char *class,
const char *exprs, int nvar, const char *var[],
int **code, double **con, int *stacksize, int *status ) {
/*
* Name:
* CompileExpression
* Purpose:
* Compile a mathematical expression.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* void CompileExpression( const char *method, const char *class,
* const char *exprs, int nvar, const char *var[],
* int **code, double **con, int *stacksize )
* Class Membership:
* MathMap member function.
* Description:
* This function checks and compiles a mathematical expression. It
* produces a sequence of operation codes (opcodes) and a set of
* numerical constants which may subsequently be used to evaluate the
* expression on a push-down stack.
* Parameters:
* method
* Pointer to a constant null-terminated character string
* containing the name of the method that invoked this function.
* This method name is used solely for constructing error messages.
* class
* Pointer to a constant null-terminated character string containing the
* class name of the Object being processed. This name is used solely
* for constructing error messages.
* exprs
* Pointer to a null-terminated string containing the expression
* to be compiled. This is case sensitive and should contain no white
* space.
* nvar
* The number of variable names defined for use in the expression.
* var
* An array of pointers (with "nvar" elements) to null-terminated
* strings. Each of these should contain a variable name which may
* appear in the expression. These strings are case sensitive and
* should contain no white space.
* code
* Address of a pointer which will be set to point at a dynamically
* allocated array of int containing the set of opcodes (cast to int)
* produced by this function. The first element of this array will
* contain a count of the number of opcodes which follow.
*
* The allocated space must be freed by the caller (using astFree) when
* no longer required.
* con
* Address of a pointer which will be set to point at a dynamically
* allocated array of double containing the set of constants
* produced by this function (this may be NULL if no constants are
* produced).
*
* The allocated space must be freed by the caller (using astFree) when
* no longer required.
* stacksize
* Pointer to an int in which to return the size of the push-down stack
* required to evaluate the expression using the returned opcodes and
* constants.
* Algorithm:
* The function passes through the input expression searching for
* symbols. It looks for standard symbols (arithmetic operators,
* parentheses, function calls and delimiters) in the next part of the
* expression to be parsed, using identification information stored in
* the static "symbol" array. It ignores certain symbols, according to
* whether they appear to be operators or operands. The choice depends on
* what the previous symbol was; for instance, two operators may not
* occur in succession. Unary +/- operators are also ignored in
* situations where they are not permitted.
*
* If a standard symbol is found, it is passed to the ValidateSymbol
* function, which keeps track of the current level of parenthesis in the
* expression and of the number of arguments supplied to any (possibly
* nested) function calls. This function then accepts or rejects the
* symbol according to whether it is valid within the current context. An
* error is reported if it is rejected.
*
* If the part of the expression currently being parsed did not contain a
* standard symbol, an attempt is made to parse it first as a constant,
* then as a variable name. If either of these succeeds, an appropriate
* symbol number is added to the list of symbols identified so far, and a
* value is added to the list of constants - this is either the value of
* the constant itself, or the identification number of the variable. If
* the expression cannot be parsed, an error is reported.
*
* When the entire expression has been analysed as a sequence of symbols
* (and associated constants), the EvaluationSort function is
* invoked. This sorts the symbols into evaluation order, which is the
* order in which the associated operations must be performed on a
* push-down arithmetic stack to evaluate the expression. This routine
* also substitutes operation codes (defined in the "Oper" enum) for the
* symbol numbers and calculates the size of evaluation stack which will
* be required.
* Notes:
* - A value of NULL will be returned for the "*code" and "*con" pointers
* and a value of zero will be returned for the "*stacksize" value if this
* function is invoked with the global error status set, or if it should
* fail for any reason.
*/
/* Local Variables: */
double c; /* Value of parsed constant */
int *argcount; /* Array of argument count information */
int *opensym; /* Array of opening parenthesis information */
int *symlist; /* Array of symbol indices */
int found; /* Standard symbol identified? */
int iend; /* Ending index in the expression string */
int istart; /* Staring index in the expression string */
int isym; /* Loop counter for symbols */
int ivar; /* Index of variable name */
int lpar; /* Parenthesis level */
int ncon; /* Number of constants generated */
int nsym; /* Number of symbols identified */
int opernext; /* Next symbol an operator (from left)? */
int size; /* Size of symbol matched */
int sym; /* Index of symbol in static "symbol" array */
int unarynext; /* Next symbol may be unary +/- ? */
/* Initialise. */
*code = NULL;
*con = NULL;
*stacksize = 0;
/* Check the global error status. */
if ( !astOK ) return;
/* Further initialisation. */
argcount = NULL;
lpar = 0;
ncon = 0;
nsym = 0;
opensym = NULL;
symlist = NULL;
sym = 0;
ivar = 0;
/* The first symbol to be encountered must not look like an operator
from the left. It may be a unary + or - operator. */
opernext = 0;
unarynext = 1;
/* Search through the expression to classify each symbol which appears
in it. Stop when there are no more input characters or an error is
detected. */
istart = 0;
for ( istart = 0; astOK && exprs[ istart ]; istart = iend + 1 ) {
/* Compare each of the symbols in the symbol data with the next
section of the expression, looking for the longest symbol text which
will match. Stop if a NULL "text" value is found, which acts as the
end flag. */
found = 0;
size = 0;
for ( isym = 0; symbol[ isym ].text; isym++ ) {
/* Only consider symbols which have text associated with them and
which look like operators or operands from the left, according to the
setting of the "opernext" flag. Thus, if an operator or operand is
missing from the input expression, the next symbol will not be
identified, because it will be of the wrong type. Also exclude unary
+/- operators if they are out of context. */
if ( symbol[ isym ].size &&
( symbol[ isym ].operleft == opernext ) &&
( !symbol[ isym ].unaryoper || unarynext ) ) {
/* Test if the text of the symbol matches the expression at the
current position. If so, note that a match has been found. */
if ( !strncmp( exprs + istart, symbol[ isym ].text,
(size_t) symbol[ isym ].size ) ) {
found = 1;
/* If this symbol matches more characters than any previous symbol,
then store the symbol's index and note its size. */
if ( symbol[ isym ].size > size ) {
sym = isym;
size = symbol[ isym ].size;
/* Calculate the index of the last symbol character in the expression
string. */
iend = istart + size - 1;
}
}
}
}
/* If the symbol was identified as one of the standard symbols, then
validate it, updating the parenthesis level and argument count
information at the same time. */
if ( found ) {
ValidateSymbol( method, class, exprs, iend, sym, &lpar, &argcount,
&opensym, &ncon, con, status );
/* If it was not one of the standard symbols, then check if the next
symbol was expected to be an operator. If so, then there is a missing
operator, so report an error. */
} else {
if ( opernext ) {
astError( AST__MIOPR,
"%s(%s): Missing or invalid operator in the expression "
"\"%.*s\".", status,
method, class, istart + 1, exprs );
/* If the next symbol was expected to be an operand, then it may be a
constant, so try to parse it as one. */
} else {
ParseConstant( method, class, exprs, istart, &iend, &c, status );
if ( astOK ) {
/* If successful, set the symbol number to "symbol_ldcon" (load
constant) and extend the "*con" array to accommodate a new
constant. Check for errors. */
if ( iend >= istart ) {
sym = symbol_ldcon;
*con = astGrow( *con, ncon + 1, sizeof( double ) );
if ( astOK ) {
/* Append the constant to the "*con" array. */
( *con )[ ncon++ ] = c;
}
/* If the symbol did not parse as a constant, then it may be a
variable name, so try to parse it as one. */
} else {
ParseVariable( method, class, exprs, istart, nvar, var,
&ivar, &iend, status );
if ( astOK ) {
/* If successful, set the symbol to "symbol_ldvar" (load variable) and
extend the "*con" array to accommodate a new constant. Check for
errors. */
if ( ivar != -1 ) {
sym = symbol_ldvar;
*con = astGrow( *con, ncon + 1, sizeof( double ) );
if ( astOK ) {
/* Append the variable identification number as a constant to the
"*con" array. */
( *con )[ ncon++ ] = (double) ivar;
}
/* If the expression did not parse as a variable name, then there is a
missing operand in the expression, so report an error. */
} else {
astError( AST__MIOPA,
"%s(%s): Missing or invalid operand in the "
"expression \"%.*s\".", status,
method, class, istart + 1, exprs );
}
}
}
}
}
}
/* If there has been no error, then the next symbol in the input
expression has been identified and is valid. */
if ( astOK ) {
/* Decide whether the next symbol should look like an operator or an
operand from the left. This is determined by the nature of the symbol
just identified (seen from the right) - two operands or two operators
cannot be adjacent. */
opernext = !symbol[ sym ].operright;
/* Also decide whether the next symbol may be a unary +/- operator,
according to the "unarynext" symbol data entry for the symbol just
identified. */
unarynext = symbol[ sym ].unarynext;
/* Extend the "symlist" array to accommodate the symbol just
identified. Check for errors. */
symlist = astGrow( symlist, nsym + 1, sizeof( int ) );
if ( astOK ) {
/* Append the symbol's index to the end of this list. */
symlist[ nsym++ ] = sym;
}
}
}
/* If there has been no error, check the final context after
identifying all the symbols... */
if ( astOK ) {
/* If an operand is still expected, then there is an unsatisfied
operator on the end of the expression, so report an error. */
if ( !opernext ) {
astError( AST__MIOPA,
"%s(%s): Missing or invalid operand in the expression "
"\"%s\".", status,
method, class, exprs );
/* If the final parenthesis level is positive, then there is a missing
right parenthesis, so report an error. */
} else if ( lpar > 0 ) {
astError( AST__MRPAR,
"%s(%s): Missing right parenthesis in the expression "
"\"%s\".", status,
method, class, exprs );
}
}
/* Sort the symbols into evaluation order to produce output opcodes. */
EvaluationSort( *con, nsym, symlist, code, stacksize, status );
/* Free any memory used as workspace. */
if ( argcount ) argcount = astFree( argcount );
if ( opensym ) opensym = astFree( opensym );
if ( symlist ) symlist = astFree( symlist );
/* If OK, re-allocate the "*con" array to have the correct size (since
astGrow may have over-allocated space). */
if ( astOK && *con ) {
*con = astRealloc( *con, sizeof( double ) * (size_t) ncon );
}
/* If an error occurred, free any allocated memory and reset the
output values. */
if ( !astOK ) {
*code = astFree( *code );
*con = astFree( *con );
*stacksize = 0;
}
}
static void CompileMapping( const char *method, const char *class,
int nin, int nout,
int nfwd, const char *fwdfun[],
int ninv, const char *invfun[],
int ***fwdcode, int ***invcode,
double ***fwdcon, double ***invcon,
int *fwdstack, int *invstack, int *status ) {
/*
* Name:
* CompileMapping
* Purpose:
* Compile the transformation functions for a MathMap.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* void CompileMapping( const char *method, const char *class,
* int nin, int nout,
* int nfwd, const char *fwdfun[],
* int ninv, const char *invfun[],
* int ***fwdcode, int ***invcode,
* double ***fwdcon, double ***invcon,
* int *fwdstack, int *invstack, int *status )
* Class Membership:
* MathMap member function.
* Description:
* This function checks and compiles the transformation functions required
* to create a MathMap. It produces sequences of operation codes (opcodes)
* and numerical constants which may subsequently be used to evaluate the
* functions on a push-down stack.
* Parameters:
* method
* Pointer to a constant null-terminated character string
* containing the name of the method that invoked this function.
* This method name is used solely for constructing error messages.
* class
* Pointer to a constant null-terminated character string containing the
* class name of the Object being processed. This name is used solely
* for constructing error messages.
* nin
* Number of input variables for the MathMap.
* nout
* Number of output variables for the MathMap.
* nfwd
* The number of forward transformation functions being supplied.
* This must be at least equal to "nout".
* fwdfun
* Pointer to an array, with "nfwd" elements, of pointers to null
* terminated strings which contain each of the forward transformation
* functions. These must be in lower case and should contain no white
* space.
* ninv
* The number of inverse transformation functions being supplied.
* This must be at least equal to "nin".
* invfun
* Pointer to an array, with "ninv" elements, of pointers to null
* terminated strings which contain each of the inverse transformation
* functions. These must be in lower case and should contain no white
* space.
* fwdcode
* Address in which to return a pointer to an array (with "nfwd"
* elements) of pointers to arrays of int containing the set of opcodes
* (cast to int) for each forward transformation function. The number
* of opcodes produced for each function is given by the first element
* of the opcode array.
*
* Both the returned array of pointers, and the arrays of int to which
* they point, will be stored in dynamically allocated memory and should
* be freed by the caller (using astFree) when no longer required.
*
* If the right hand sides (including the "=" sign) of all the supplied
* functions are absent, then this indicates an undefined transformation
* and the returned pointer value will be NULL. An error results if
* an "=" sign is present but no expression follows it.
* invcode
* Address in which to return a pointer to an array (with "ninv"
* elements) of pointers to arrays of int containing the set of opcodes
* (cast to int) for each inverse transformation function. The number
* of opcodes produced for each function is given by the first element
* of the opcode array.
*
* Both the returned array of pointers, and the arrays of int to which
* they point, will be stored in dynamically allocated memory and should
* be freed by the caller (using astFree) when no longer required.
*
* If the right hand sides (including the "=" sign) of all the supplied
* functions are absent, then this indicates an undefined transformation
* and the returned pointer value will be NULL. An error results if
* an "=" sign is present but no expression follows it.
* fwdcon
* Address in which to return a pointer to an array (with "nfwd"
* elements) of pointers to arrays of double containing the set of
* constants for each forward transformation function.
*
* Both the returned array of pointers, and the arrays of double to which
* they point, will be stored in dynamically allocated memory and should
* be freed by the caller (using astFree) when no longer required. Note
* that any of the pointers to the arrays of double may be NULL if no
* constants are associated with a particular function.
*
* If the forward transformation is undefined, then the returned pointer
* value will be NULL.
* invcon
* Address in which to return a pointer to an array (with "ninv"
* elements) of pointers to arrays of double containing the set of
* constants for each inverse transformation function.
*
* Both the returned array of pointers, and the arrays of double to which
* they point, will be stored in dynamically allocated memory and should
* be freed by the caller (using astFree) when no longer required. Note
* that any of the pointers to the arrays of double may be NULL if no
* constants are associated with a particular function.
*
* If the inverse transformation is undefined, then the returned pointer
* value will be NULL.
* fwdstack
* Pointer to an int in which to return the size of the push-down stack
* required to evaluate the forward transformation functions.
* invstack
* Pointer to an int in which to return the size of the push-down stack
* required to evaluate the inverse transformation functions.
* status
* Pointer to the inherited status variable.
* Notes:
* - A value of NULL will be returned for the "*fwdcode", "*invcode",
* "*fwdcon" and "*invcon" pointers and a value of zero will be returned
* for the "*fwdstack" and "*invstack" values if this function is invoked
* with the global error status set, or if it should fail for any reason.
*/
/* Local Variables: */
char **exprs; /* Pointer to array of expressions */
char **var; /* Pointer to array of variable names */
const char **strings; /* Pointer to temporary array of strings */
int ifun; /* Loop counter for functions */
int nvar; /* Number of variables to extract */
int stacksize; /* Required stack size */
/* Initialise. */
*fwdcode = NULL;
*invcode = NULL;
*fwdcon = NULL;
*invcon = NULL;
*fwdstack = 0;
*invstack = 0;
nvar = 0;
/* Check the global error status. */
if ( !astOK ) return;
/* Further initialisation. */
exprs = NULL;
var = NULL;
/* Compile the forward transformation. */
/* ----------------------------------- */
/* Allocate space for an array of pointers to the functions from which
we will extract variable names. */
strings = astMalloc( sizeof( char * ) * (size_t) ( nin + nfwd ) );
/* Fill the first elements of this array with pointers to the inverse
transformation functions ("nin" in number) which yield the final input
values. These will have the names of the input variables on their left
hand sides. */
if ( astOK ) {
nvar = 0;
for ( ifun = ninv - nin; ifun < ninv; ifun++ ) {
strings[ nvar++ ] = invfun[ ifun ];
}
/* Fill the remaining elements of the array with pointers to the
forward transformation functions. These will have the names of any
intermediate variables plus the final output variables on their left
hand sides. */
for ( ifun = 0; ifun < nfwd; ifun++ ) strings[ nvar++ ] = fwdfun[ ifun ];
/* Extract the variable names from the left hand sides of these
functions and check them for validity and absence of duplication. */
ExtractVariables( method, class, nvar, strings, nin, nout, nfwd, ninv, 1,
&var, status );
}
/* Free the temporary array of string pointers. */
strings = astFree( strings );
/* Extract the expressions from the right hand sides of the forward
transformation functions. */
ExtractExpressions( method, class, nfwd, fwdfun, 1, &exprs, status );
/* If OK, and the forward transformation is defined, then allocate and
initialise space for an array of pointers to the opcodes for each
expression and, similarly, for the constants for each expression. */
if ( astOK && exprs ) {
MALLOC_POINTER_ARRAY( *fwdcode, int *, nfwd )
MALLOC_POINTER_ARRAY( *fwdcon, double *, nfwd )
/* If OK, loop to compile each of the expressions, storing pointers to
the resulting opcodes and constants in the arrays allocated above. On
each loop, we make progressively more of the variable names in "var"
visible to the compilation function. This ensures that each expression
can only use variables which have been defined earlier. */
if ( astOK ) {
for ( ifun = 0; ifun < nfwd; ifun++ ) {
CompileExpression( method, class, exprs[ ifun ],
nin + ifun, (const char **) var,
&( *fwdcode )[ ifun ], &( *fwdcon )[ ifun ],
&stacksize, status );
/* If an error occurs, then report contextual information and quit. */
if ( !astOK ) {
astError( astStatus,
"Error in forward transformation function %d.", status,
ifun + 1 );
break;
}
/* If OK, calculate the maximum evaluation stack size required by any
of the expressions. */
*fwdstack = ( *fwdstack > stacksize ) ? *fwdstack : stacksize;
}
}
}
/* Free the memory containing the extracted expressions and variables. */
FREE_POINTER_ARRAY( exprs, nfwd )
FREE_POINTER_ARRAY( var, nvar )
/* Compile the inverse transformation. */
/* ----------------------------------- */
/* Allocate space for an array of pointers to the functions from which
we will extract variable names. */
strings = astMalloc( sizeof( char * ) * (size_t) ( nout + ninv ) );
/* Fill the first elements of this array with pointers to the forward
transformation functions ("nout" in number) which yield the final
output values. These will have the names of the output variables on
their left hand sides. */
if ( astOK ) {
nvar = 0;
for ( ifun = nfwd - nout; ifun < nfwd; ifun++ ) {
strings[ nvar++ ] = fwdfun[ ifun ];
}
/* Fill the remaining elements of the array with pointers to the
inverse transformation functions. These will have the names of any
intermediate variables plus the final input variables on their left
hand sides. */
for ( ifun = 0; ifun < ninv; ifun++ ) strings[ nvar++ ] = invfun[ ifun ];
/* Extract the variable names from the left hand sides of these
functions and check them for validity and absence of duplication. */
ExtractVariables( method, class, nvar, strings, nin, nout, nfwd, ninv, 0,
&var, status );
}
/* Free the temporary array of string pointers. */
strings = astFree( strings );
/* Extract the expressions from the right hand sides of the inverse
transformation functions. */
ExtractExpressions( method, class, ninv, invfun, 0, &exprs, status );
/* If OK, and the forward transformation is defined, then allocate and
initialise space for an array of pointers to the opcodes for each
expression and, similarly, for the constants for each expression. */
if ( astOK && exprs ) {
MALLOC_POINTER_ARRAY( *invcode, int *, ninv )
MALLOC_POINTER_ARRAY( *invcon, double *, ninv )
/* If OK, loop to compile each of the expressions, storing pointers to
the resulting opcodes and constants in the arrays allocated above. On
each loop, we make progressively more of the variable names in "var"
visible to the compilation function. This ensures that each expression
can only use variables which have been defined earlier. */
if ( astOK ) {
for ( ifun = 0; ifun < ninv; ifun++ ) {
CompileExpression( method, class, exprs[ ifun ],
nout + ifun, (const char **) var,
&( *invcode )[ ifun ], &( *invcon )[ ifun ],
&stacksize, status );
/* If an error occurs, then report contextual information and quit. */
if ( !astOK ) {
astError( astStatus,
"Error in inverse transformation function %d.", status,
ifun + 1 );
break;
}
/* If OK, calculate the maximum evaluation stack size required by any
of the expressions. */
*invstack = ( *invstack > stacksize ) ? *invstack : stacksize;
}
}
}
/* Free the memory containing the extracted expressions and variables. */
FREE_POINTER_ARRAY( exprs, ninv )
FREE_POINTER_ARRAY( var, nvar )
/* If an error occurred, then free all remaining allocated memory and
reset the output values. */
if ( !astOK ) {
FREE_POINTER_ARRAY( *fwdcode, nfwd )
FREE_POINTER_ARRAY( *invcode, ninv )
FREE_POINTER_ARRAY( *fwdcon, nfwd )
FREE_POINTER_ARRAY( *invcon, ninv )
*fwdstack = 0;
*invstack = 0;
}
}
static int DefaultSeed( const Rcontext *context, int *status ) {
/*
* Name:
* DefaultSeed
* Purpose:
* Generate an unpredictable seed for a random number generator.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* int DefaultSeed( Rcontext *context, int *status )
* Class Membership:
* MathMap member function.
* Description:
* On each invocation this function returns an integer value which is
* highly unpredictable. This value may be used as a default seed for the
* random number generator associated with a MathMap, so that it
* generates a different sequence on each occasion.
* Parameters:
* context
* Pointer to the random number generator context associated with
* the MathMap.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The unpredictable integer.
* Notes:
* - This function does not perform error checking and will execute even
* if the global error status is set.
*/
/* Local Constants: */
const int nwarm = 5; /* Number of warm-up iterations */
const long int a = 8121L; /* Constants for random number generator... */
const long int c = 28411L;
const long int m = 134456L;
/* Local Variables; */
int iwarm; /* Loop counter for warm-up iterations */
static long init = 0; /* Local initialisation performed? */
static long int rand; /* Local random integer */
unsigned long int bits; /* Bit pattern for producing result */
/* On the first invocation, initialise a local random number generator
to a value derived by combining bit patterns obtained from the system
clock and the processor time used. The result needs to be positive and
lie in the range 0 to "m-1". */
LOCK_MUTEX5
if ( !init ) {
rand = (long int) ( ( (unsigned long int) time( NULL ) ^
(unsigned long int) clock() ) %
(unsigned long int) m );
/* These values will typically only change in their least significant
bits between programs run successively, but by using the bit pattern
as a seed, we ensure that these differences are rapidly propagated to
other bits. To hasten this process, we "warm up" the local generator
with a few iterations. This is a quick and dirty generator using
constants from Press et al. (Numerical recipes). */
for ( iwarm = 0; iwarm < nwarm; iwarm++ ) {
rand = ( rand * a + c ) % m;
}
/* Note that this initialisation has been performed. */
init = 1;
}
UNLOCK_MUTEX5
/* Generate a new bit pattern from the system time. Apart from the
first invocation, this will be a different time to that used above. */
bits = (unsigned long int) time( NULL );
/* Mask in a pattern derived from the CPU time used. */
bits ^= (unsigned long int) clock();
/* The system time may change quite slowly (e.g. every second), so
also mask in the address of the random number generator context
supplied. This makes the seed depend on which MathMap is in use. */
bits ^= (unsigned long int) context;
/* Now mask in the last random integer produced by the random number
generator whose context has been supplied. This makes the seed depend
on the MathMap's past use of random numbers. */
bits ^= (unsigned long int) context->random_int;
/* Finally, in order to produce different seeds when this function is
invoked twice in rapid succession on the same object (with no
intermediate processing), we also mask in a pseudo-random value
generated here. Generate the next local random integer. */
rand = ( rand * a + c ) % m;
/* We then scale this value to give an integer in the range 0 to
ULONG_MAX and mask the corresponding bit pattern into our seed. */
bits ^= (unsigned long int) ( ( (double) rand / (double) ( m - 1UL ) ) *
( ( (double) ULONG_MAX + 1.0 ) *
( 1.0 - DBL_EPSILON ) ) );
/* Return the integer value of the seed (which may involve discarding
some unwanted bits). */
return (int) bits;
}
static int Equal( AstObject *this_object, AstObject *that_object, int *status ) {
/*
* Name:
* Equal
* Purpose:
* Test if two MathMaps are equivalent.
* Type:
* Private function.
* Synopsis:
* #include "mapping.h"
* int Equal( AstObject *this, AstObject *that, int *status )
* Class Membership:
* MathMap member function (over-rides the astEqual protected
* method inherited from the Object class).
* Description:
* This function returns a boolean result (0 or 1) to indicate whether
* two MathMaps are equivalent.
* Parameters:
* this
* Pointer to the first Object (a MathMap).
* that
* Pointer to the second Object.
* status
* Pointer to the inherited status variable.
* Returned Value:
* One if the MathMaps are equivalent, zero otherwise.
* Notes:
* - The two MathMaps are considered equivalent if the combination of
* the first in series with the inverse of the second simplifies to a
* UnitMap.
* - A value of zero will be returned if this function is invoked
* with the global status set, or if it should fail for any reason.
*/
/* Local Variables: */
AstMathMap *that; /* Pointer to the second MathMap structure */
AstMathMap *this; /* Pointer to the first MathMap structure */
double **that_con; /* Lists of constants from "that" */
double **this_con; /* Lists of constants from "this" */
int **that_code; /* Lists of opcodes from "that" */
int **this_code; /* Lists of opcodes from "this" */
int code; /* Opcode value */
int icode; /* Opcode index */
int icon; /* Constant index */
int ifun; /* Function index */
int ncode; /* No. of opcodes for current "this" function */
int ncode_that; /* No. of opcodes for current "that" function */
int nin; /* Number of inputs */
int nout; /* Number of outputs */
int pass; /* Check fwd or inv */
int result; /* Result value to return */
int that_nfun; /* Number of functions from "that" */
int this_nfun; /* Number of functions from "this" */
/* Initialise. */
result = 0;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain pointers to the two MathMap structures. */
this = (AstMathMap *) this_object;
that = (AstMathMap *) that_object;
/* Check the second object is a MathMap. We know the first is a
MathMap since we have arrived at this implementation of the virtual
function. */
if( astIsAMathMap( that ) ) {
/* Check they have the same number of inputs and outputs */
nin = astGetNin( this );
nout = astGetNout( this );
if( astGetNout( that ) == nout && astGetNin( that ) == nin ) {
/* Assume equality. */
result = 1;
/* The first pass through this next loop compares forward functions, and
the second pass compares inverse functions. */
for( pass = 0; pass < 2 && result; pass++ ) {
/* On the first pass, get pointers to the lists of opcodes and constants for
the effective forward transformations (taking into account the value
of the Invert attribute), together with the number of such functions. */
if( pass == 0 ) {
if( !astGetInvert( this ) ) {
this_code = this->fwdcode;
this_con = this->fwdcon;
this_nfun = this->nfwd;
} else {
this_code = this->invcode;
this_con = this->invcon;
this_nfun = this->ninv;
}
if( !astGetInvert( that ) ) {
that_code = that->fwdcode;
that_con = that->fwdcon;
that_nfun = that->nfwd;
} else {
that_code = that->invcode;
that_con = that->invcon;
that_nfun = that->ninv;
}
/* On the second pass, get pointers to the lists of opcodes and constants for
the effective inverse transformations, together with the number of such
functions. */
} else {
if( astGetInvert( this ) ) {
this_code = this->fwdcode;
this_con = this->fwdcon;
this_nfun = this->nfwd;
} else {
this_code = this->invcode;
this_con = this->invcon;
this_nfun = this->ninv;
}
if( astGetInvert( that ) ) {
that_code = that->fwdcode;
that_con = that->fwdcon;
that_nfun = that->nfwd;
} else {
that_code = that->invcode;
that_con = that->invcon;
that_nfun = that->ninv;
}
}
/* Check that "this" and "that" have the same number of functions */
if( that_nfun != this_nfun ) result = 0;
/* Loop round each function. */
for( ifun = 0; ifun < this_nfun && result; ifun++ ) {
/* The first element in the opcode array is the number of subsequent
opcodes. Obtain and compare these counts. */
ncode = this_code ? this_code[ ifun ][ 0 ] : 0;
ncode_that = that_code ? that_code[ ifun ][ 0 ] : 0;
if( ncode != ncode_that ) result = 0;
/* Compare the following opcodes. Some opcodes consume constants from the
list of constants associated with the MathMap. Compare the constants
for such opcodes. */
icon = 0;
for( icode = 0; icode < ncode && result; icode++ ){
code = this_code[ ifun ][ icode ];
if( that_code[ ifun ][ icode ] != code ) {
result = 0;
} else if( code == OP_LDCON ||
code == OP_LDVAR ||
code == OP_MAX ||
code == OP_MIN ) {
if( this_con[ ifun ][ icon ] !=
that_con[ ifun ][ icon ] ) {
result = 0;
} else {
icon++;
}
}
}
}
}
}
}
/* If an error occurred, clear the result value. */
if ( !astOK ) result = 0;
/* Return the result, */
return result;
}
static void EvaluateFunction( Rcontext *rcontext, int npoint,
const double **ptr_in, const int *code,
const double *con, int stacksize, double *out, int *status ) {
/*
* Name:
* EvaluateFunction
* Purpose:
* Evaluate a compiled function.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* void EvaluateFunction( Rcontext *rcontext, int npoint,
* const double **ptr_in, const int *code,
* const double *con, int stacksize, double *out, int *status )
* Class Membership:
* MathMap member function.
* Description:
* This function implements a "virtual machine" which executes operations
* on an arithmetic stack in order to evaluate transformation functions.
* Each operation is specified by an input operation code (opcode) and
* results in the execution of a vector operation on a stack. The final
* result, after executing all the supplied opcodes, is returned as a
* vector.
*
* This function detects arithmetic errors (such as overflow and division
* by zero) and propagates any "bad" coordinate values, including those
* present in the input, to the output.
* Parameters:
* npoint
* The number of points to be transformd (i.e. the size of the vector
* of values on which operations are to be performed).
* ptr_in
* Pointer to an array of pointers to arrays of double (with "npoint"
* elements). These arrays should contain the input coordinate values,
* such that coordinate number "coord" for point number "point" can be
* found in "ptr_in[coord][point]".
* code
* Pointer to an array of int containing the set of opcodes (cast to int)
* for the operations to be performed. The first element of this array
* should contain a count of the number of opcodes which follow.
* con
* Pointer to an array of double containing the set of constants required
* to evaluate the function (this may be NULL if no constants are
* required).
* stacksize
* The size of the stack required to evaluate the expression using the
* opcodes and constants supplied. This value should be calculated during
* expression compilation.
* out
* Pointer to an array of double (with "npoint" elements) in which to
* return the vector of result values.
* status
* Pointer to the inherited status variable.
*/
/* Local Constants: */
const int bits = /* Number of bits in an unsigned long */
sizeof( unsigned long ) * CHAR_BIT;
const double eps = /* Smallest number subtractable from 2.0 */
2.0 * DBL_EPSILON;
const double scale = /* 2.0 raised to the power "bits" */
ldexp( 1.0, bits );
const double scale1 = /* 2.0 raised to the power "bits-1" */
scale * 0.5;
const double rscale = /* Reciprocal scale factor */
1.0 / scale;
const double rscale1 = /* Reciprocal initial scale factor */
1.0 / scale1;
const int nblock = /* Number of blocks of bits to process */
( sizeof( double ) + sizeof( unsigned long ) - 1 ) /
sizeof( unsigned long );
const unsigned long signbit = /* Mask for extracting sign bit */
1UL << ( bits - 1 );
/* Local Variables: */
double **stack; /* Array of pointers to stack elements */
double *work; /* Pointer to stack workspace */
double *xv1; /* Pointer to first argument vector */
double *xv2; /* Pointer to second argument vector */
double *xv3; /* Pointer to third argument vector */
double *xv; /* Pointer to sole argument vector */
double *y; /* Pointer to result */
double *yv; /* Pointer to result vector */
double abs1; /* Absolute value (temporary variable) */
double abs2; /* Absolute value (temporary variable) */
double frac1; /* First (maybe normalised) fraction */
double frac2; /* Second (maybe normalised) fraction */
double frac; /* Sole normalised fraction */
double newexp; /* New power of 2 exponent value */
double ran; /* Random number */
double result; /* Function result value */
double unscale; /* Factor for removing scaling */
double value; /* Value to be assigned to stack vector */
double x1; /* First argument value */
double x2; /* Second argument value */
double x3; /* Third argument value */
double x; /* Sole argument value */
int expon1; /* First power of 2 exponent */
int expon2; /* Second power of 2 exponent */
int expon; /* Sole power of 2 exponent */
int iarg; /* Loop counter for arguments */
int iblock; /* Loop counter for blocks of bits */
int icode; /* Opcode value */
int icon; /* Counter for number of constants used */
int istk; /* Loop counter for stack elements */
int ivar; /* Input variable number */
int narg; /* Number of function arguments */
int ncode; /* Number of opcodes to process */
int point; /* Loop counter for stack vector elements */
int sign; /* Argument is non-negative? */
int tos; /* Top of stack index */
static double d2r; /* Degrees to radians conversion factor */
static double log2; /* Natural logarithm of 2.0 */
static double pi; /* Value of PI */
static double r2d; /* Radians to degrees conversion factor */
static double rsafe_sq; /* Reciprocal of "safe_sq" */
static double safe_sq; /* Huge value that can safely be squared */
static int init = 0; /* Initialisation performed? */
unsigned long b1; /* Block of bits from first argument */
unsigned long b2; /* Block of bits from second argument */
unsigned long b; /* Block of bits for result */
unsigned long neg; /* Result is negative? (sign bit) */
/* Check the global error status. */
if ( !astOK ) return;
/* If this is the first invocation of this function, then initialise
constant values. */
LOCK_MUTEX2
if ( !init ) {
/* Trigonometrical conversion factors. */
pi = acos( -1.0 );
r2d = 180.0 / pi;
d2r = pi / 180.0;
/* Natural logarithm of 2.0. */
log2 = log( 2.0 );
/* This value must be safe to square without producing overflow, yet
large enough that adding or subtracting 1.0 from the square makes no
difference. We also need its reciprocal. */
safe_sq = 0.9 * sqrt( DBL_MAX );
rsafe_sq = 1.0 / safe_sq;
/* Note that initialisation has been performed. */
init = 1;
}
UNLOCK_MUTEX2
/* Allocate space for an array of pointers to elements of the
workspace stack (each stack element being an array of double). */
stack = astMalloc( sizeof( double * ) * (size_t) stacksize );
/* Allocate space for the stack itself. */
work = astMalloc( sizeof( double ) *
(size_t) ( npoint * ( stacksize - 1 ) ) );
/* If OK, then initialise the stack pointer array to identify the
start of each vector on the stack. The first element points at the
output array (in which the result will be accumulated), while other
elements point at successive vectors within the workspace allocated
above. */
if ( astOK ) {
stack[ 0 ] = out;
for ( istk = 1; istk < stacksize; istk++ ) {
stack[ istk ] = work + ( istk - 1 ) * npoint;
}
/* Define stack operations. */
/* ======================== */
/* We now define a set of macros for performing vector operations on
elements of the stack. Each is in the form of a "case" block for
execution in response to the appropriate operation code (opcode). */
/* Zero-argument operation. */
/* ------------------------ */
/* This macro performs a zero-argument operation, which results in the
insertion of a new vector on to the stack. */
#define ARG_0(oper,setup,function) \
\
/* Test for the required opcode value. */ \
case oper: \
\
/* Perform any required initialisation. */ \
{setup;} \
\
/* Increment the top of stack index and obtain a pointer to the new stack \
element (vector). */ \
yv = stack[ ++tos ]; \
\
/* Loop to access each vector element, obtaining a pointer to it. */ \
for ( point = 0; point < npoint; point++ ) { \
y = yv + point; \
\
/* Perform the processing, which results in assignment to this element. */ \
{function;} \
} \
\
/* Break out of the "case" block. */ \
break;
/* One-argument operation. */
/* ----------------------- */
/* This macro performs a one-argument operation, which processes the
top stack element without changing the stack size. */
#define ARG_1(oper,function) \
\
/* Test for the required opcode value. */ \
case oper: \
\
/* Obtain a pointer to the top stack element (vector). */ \
xv = stack[ tos ]; \
\
/* Loop to access each vector element, obtaining its value and \
checking that it is not bad. */ \
for ( point = 0; point < npoint; point++ ) { \
if ( ( x = xv[ point ] ) != AST__BAD ) { \
\
/* Also obtain a pointer to the element. */ \
y = xv + point; \
\
/* Perform the processing, which uses the element's value and then \
assigns the result to this element. */ \
{function;} \
} \
} \
\
/* Break out of the "case" block. */ \
break;
/* One-argument boolean operation. */
/* ------------------------------- */
/* This macro is similar in function to ARG_1 above, except that no
checks are made for bad argument values. It is intended for use with
boolean functions where bad values are handled explicitly. */
#define ARG_1B(oper,function) \
\
/* Test for the required opcode value. */ \
case oper: \
\
/* Obtain a pointer to the top stack element (vector). */ \
xv = stack[ tos ]; \
\
/* Loop to access each vector element, obtaining the argument value \
and a pointer to the element. */ \
for ( point = 0; point < npoint; point++ ) { \
x = xv[ point ]; \
y = xv + point; \
\
/* Perform the processing, which uses the element's value and then \
assigns the result to this element. */ \
{function;} \
} \
\
/* Break out of the "case" block. */ \
break;
/* Two-argument operation. */
/* ----------------------- */
/* This macro performs a two-argument operation, which processes the
top two stack elements and produces a single result, resulting in the
stack size decreasing by one. In this case, we first define a macro
without the "case" block statements present. */
#define DO_ARG_2(function) \
\
/* Obtain pointers to the top two stack elements (vectors), decreasing \
the top of stack index by one. */ \
xv2 = stack[ tos-- ]; \
xv1 = stack[ tos ]; \
\
/* Loop to access each vector element, obtaining the value of the \
first argument and checking that it is not bad. */ \
for ( point = 0; point < npoint; point++ ) { \
if ( ( x1 = xv1[ point ] ) != AST__BAD ) { \
\
/* Also obtain a pointer to the element which is to receive the \
result. */ \
y = xv1 + point; \
\
/* Obtain the value of the second argument, again checking that it is \
not bad. */ \
if ( ( x2 = xv2[ point ] ) != AST__BAD ) { \
\
/* Perform the processing, which uses the two argument values and then \
assigns the result to the appropriate top of stack element. */ \
{function;} \
\
/* If the second argument was bad, so is the result. */ \
} else { \
*y = AST__BAD; \
} \
} \
}
/* This macro simply wraps the one above up in a "case" block. */
#define ARG_2(oper,function) \
case oper: \
DO_ARG_2(function) \
break;
/* Two-argument boolean operation. */
/* ------------------------------- */
/* This macro is similar in function to ARG_2 above, except that no
checks are made for bad argument values. It is intended for use with
boolean functions where bad values are handled explicitly. */
#define ARG_2B(oper,function) \
\
/* Test for the required opcode value. */ \
case oper: \
\
/* Obtain pointers to the top two stack elements (vectors), decreasing \
the top of stack index by one. */ \
xv2 = stack[ tos-- ]; \
xv1 = stack[ tos ]; \
\
/* Loop to access each vector element, obtaining the value of both \
arguments and a pointer to the element which is to receive the \
result. */ \
for ( point = 0; point < npoint; point++ ) { \
x1 = xv1[ point ]; \
x2 = xv2[ point ]; \
y = xv1 + point; \
\
/* Perform the processing, which uses the two argument values and then \
assigns the result to the appropriate top of stack element. */ \
{function;} \
} \
\
/* Break out of the "case" block. */ \
break;
/* Three-argument boolean operation. */
/* --------------------------------- */
/* This macro is similar in function to ARG_2B above, except that it
takes three values of the stack and puts one back. It performs no
checks for bad values. */
#define ARG_3B(oper,function) \
\
/* Test for the required opcode value. */ \
case oper: \
\
/* Obtain pointers to the top three stack elements (vectors), decreasing \
the top of stack index by two. */ \
xv3 = stack[ tos-- ]; \
xv2 = stack[ tos-- ]; \
xv1 = stack[ tos ]; \
\
/* Loop to access each vector element, obtaining the value of all 3 \
arguments and a pointer to the element which is to receive the \
result. */ \
for ( point = 0; point < npoint; point++ ) { \
x1 = xv1[ point ]; \
x2 = xv2[ point ]; \
x3 = xv3[ point ]; \
y = xv1 + point; \
\
/* Perform the processing, which uses the three argument values and then \
assigns the result to the appropriate top of stack element. */ \
{function;} \
} \
\
/* Break out of the "case" block. */ \
break;
/* Define arithmetic operations. */
/* ============================= */
/* We now define macros for performing some of the arithmetic
operations we will require in a "safe" way - i.e. trapping numerical
problems such as overflow and invalid arguments and translating them
into the AST__BAD value. */
/* Absolute value. */
/* --------------- */
/* This is just shorthand. */
#define ABS(x) ( ( (x) >= 0.0 ) ? (x) : -(x) )
/* Integer part. */
/* ------------- */
/* This implements rounding towards zero without involving conversion
to an integer (which could overflow). */
#define INT(x) ( ( (x) >= 0.0 ) ? floor( (x) ) : ceil( (x) ) )
/* Trap maths overflow. */
/* -------------------- */
/* This macro calls a C maths library function and checks for overflow
in the result. */
#define CATCH_MATHS_OVERFLOW(function) \
( \
\
/* Clear the "errno" value. */ \
errno = 0, \
\
/* Evaluate the function. */ \
result = (function), \
\
/* Check if "errno" and the returned result indicate overflow and \
return the appropriate result. */ \
( ( errno == ERANGE ) && ( ABS( result ) == HUGE_VAL ) ) ? AST__BAD : \
result \
)
/* Trap maths errors. */
/* ------------------ */
/* This macro is similar to the one above, except that it also checks
for domain errors (i.e. invalid argument values). */
#define CATCH_MATHS_ERROR(function) \
( \
\
/* Clear the "errno" value. */ \
errno = 0, \
\
/* Evaluate the function. */ \
result = (function), \
\
/* Check if "errno" and the returned result indicate a domain error or \
overflow and return the appropriate result. */ \
( ( errno == EDOM ) || \
( ( errno == ERANGE ) && ( ABS( result ) == HUGE_VAL ) ) ) ? \
AST__BAD : result \
)
/* Tri-state boolean OR. */
/* --------------------- */
/* This evaluates a boolean OR using tri-state logic. For example,
"a||b" may evaluate to 1 if "a" is bad but "b" is non-zero, so that
the normal rules of bad value propagation do not apply. */
#define TRISTATE_OR(x1,x2) \
\
/* Test if the first argument is bad. */ \
( (x1) == AST__BAD ) ? ( \
\
/* If so, test the second argument. */ \
( ( (x2) == 0.0 ) || ( (x2) == AST__BAD ) ) ? AST__BAD : 1.0 \
) : ( \
\
/* Test if the second argument is bad. */ \
( (x2) == AST__BAD ) ? ( \
\
/* If so, test the first argument. */ \
( (x1) == 0.0 ) ? AST__BAD : 1.0 \
\
/* If neither argument is bad, use the normal OR operator. */ \
) : ( \
( (x1) != 0.0 ) || ( (x2) != 0.0 ) \
) \
)
/* Tri-state boolean AND. */
/* ---------------------- */
/* This evaluates a boolean AND using tri-state logic. */
#define TRISTATE_AND(x1,x2) \
\
/* Test if the first argument is bad. */ \
( (x1) == AST__BAD ) ? ( \
\
/* If so, test the second argument. */ \
( (x2) != 0.0 ) ? AST__BAD : 0.0 \
) : ( \
\
/* Test if the second argument is bad. */ \
( (x2) == AST__BAD ) ? ( \
\
/* If so, test the first argument. */ \
( (x1) != 0.0 ) ? AST__BAD : 0.0 \
\
/* If neither argument is bad, use the normal AND operator. */ \
) : ( \
( (x1) != 0.0 ) && ( (x2) != 0.0 ) \
) \
)
/* Safe addition. */
/* -------------- */
/* This macro performs addition while avoiding possible overflow. */
#define SAFE_ADD(x1,x2) ( \
\
/* Test if the first argument is non-negative. */ \
( (x1) >= 0.0 ) ? ( \
\
/* If so, then we can perform addition if the second argument is \
non-positive. Otherwise, we must calculate the most positive safe \
second argument value that can be added and test for this (the test \
itself is safe against overflow). */ \
( ( (x2) <= 0.0 ) || ( ( (DBL_MAX) - (x1) ) >= (x2) ) ) ? ( \
\
/* Perform addition if it is safe, otherwise return AST__BAD. */ \
(x1) + (x2) \
) : ( \
AST__BAD \
) \
\
/* If the first argument is negative, then we can perform addition if \
the second argument is non-negative. Otherwise, we must calculate the \
most negative second argument value that can be added and test for \
this (the test itself is safe against overflow). */ \
) : ( \
( ( (x2) >= 0.0 ) || ( ( (DBL_MAX) + (x1) ) >= -(x2) ) ) ? ( \
\
/* Perform addition if it is safe, otherwise return AST__BAD. */ \
(x1) + (x2) \
) : ( \
AST__BAD \
) \
) \
)
/* Safe subtraction. */
/* ----------------- */
/* This macro performs subtraction while avoiding possible overflow. */
#define SAFE_SUB(x1,x2) ( \
\
/* Test if the first argument is non-negative. */ \
( (x1) >= 0.0 ) ? ( \
\
/* If so, then we can perform subtraction if the second argument is \
also non-negative. Otherwise, we must calculate the most negative safe \
second argument value that can be subtracted and test for this (the \
test itself is safe against overflow). */ \
( ( (x2) >= 0.0 ) || ( ( (DBL_MAX) - (x1) ) >= -(x2) ) ) ? ( \
\
/* Perform subtraction if it is safe, otherwise return AST__BAD. */ \
(x1) - (x2) \
) : ( \
AST__BAD \
) \
\
/* If the first argument is negative, then we can perform subtraction \
if the second argument is non-positive. Otherwise, we must calculate \
the most positive second argument value that can be subtracted and \
test for this (the test itself is safe against overflow). */ \
) : ( \
( ( (x2) <= 0.0 ) || ( ( (DBL_MAX) + (x1) ) >= (x2) ) ) ? ( \
\
/* Perform subtraction if it is safe, otherwise return AST__BAD. */ \
(x1) - (x2) \
) : ( \
AST__BAD \
) \
) \
)
/* Safe multiplication. */
/* -------------------- */
/* This macro performs multiplication while avoiding possible overflow. */
#define SAFE_MUL(x1,x2) ( \
\
/* Multiplication is safe if the absolute value of either argument is \
unity or less. Otherwise, we must use the first argument to calculate \
the maximum absolute value that the second argument may have and test \
for this (the test itself is safe against overflow). */ \
( ( ( abs1 = ABS( (x1) ) ) <= 1.0 ) || \
( ( abs2 = ABS( (x2) ) ) <= 1.0 ) || \
( ( (DBL_MAX) / abs1 ) >= abs2 ) ) ? ( \
\
/* Perform multiplication if it is safe, otherwise return AST__BAD. */ \
(x1) * (x2) \
) : ( \
AST__BAD \
) \
)
/* Safe division. */
/* -------------- */
/* This macro performs division while avoiding possible overflow. */
#define SAFE_DIV(x1,x2) ( \
\
/* Division is unsafe if the second argument is zero. Otherwise, it is \
safe if the abolute value of the second argument is unity or \
more. Otherwise, we must use the second argument to calculate the \
maximum absolute value that the first argument may have and test for \
this (the test itself is safe against overflow). */ \
( ( (x2) != 0.0 ) && \
( ( ( abs2 = ABS( (x2) ) ) >= 1.0 ) || \
( ( (DBL_MAX) * abs2 ) >= ABS( (x1) ) ) ) ) ? ( \
\
/* Perform division if it is safe, otherwise return AST__BAD. */ \
(x1) / (x2) \
) : ( \
AST__BAD \
) \
)
/* Bit-shift operation. */
/* -------------------- */
/* This macro shifts the bits in a double value a specified number of
places to the left, which simply corresponds to multiplying by the
appropriate power of two. */
#define SHIFT_BITS(x1,x2) ( \
\
/* Decompose the value into a normalised fraction and a power of 2. */ \
frac = frexp( (x1), &expon ), \
\
/* Calculate the new power of 2 which should apply after the shift, \
rounding towards zero to give an integer value. */ \
newexp = INT( (x2) ) + (double) expon, \
\
/* If the new exponent is too negative to convert to an integer, then \
the result must underflow to zero. */ \
( newexp < (double) -INT_MAX ) ? ( \
0.0 \
\
/* Otherwise, if it is too positive to convert to an integer, then the \
result must overflow, unless the normalised fraction is zero. */ \
) : ( ( newexp > (double) INT_MAX ) ? ( \
( frac == 0.0 ) ? 0.0 : AST__BAD \
\
/* Otherwise, convert the new exponent to an integer and apply \
it. Trap any overflow which may still occur. */ \
) : ( \
CATCH_MATHS_OVERFLOW( ldexp( frac, (int) newexp ) ) \
) ) \
)
/* Two-argument bit-wise boolean operation. */
/* ---------------------------------------- */
/* This macro expands to code which performs a bit-wise boolean
operation on a pair of arguments and assigns the result to the
variable "result". It operates on floating point (double) values,
which are regarded as if they are fixed-point binary numbers with
negative values expressed in twos-complement notation. This means that
it delivers the same results for integer values as the normal
(integer) C bit-wise operations. However, it will also operate on the
fraction bits of floating point numbers. It also offers greater
precision (the first 53 or so significant bits of the result being
preserved for typical IEEE floating point implementations). */
#define BIT_OPER(oper,x1,x2) \
\
/* Convert each argument to a normalised fraction in the range \
[0.5,1.0) and a power of two exponent, removing any sign \
information. */ \
frac1 = frexp( ABS( (x1) ), &expon1 ); \
frac2 = frexp( ABS( (x2) ), &expon2 ); \
\
/* Set "expon" to be the larger of the two exponents. If the two \
exponents are not equal, divide the fraction with the smaller exponent \
by 2 to the power of the exponent difference. This gives both \
fractions the same effective exponent (although one of them may no \
longer be normalised). Note that overflow is avoided because all \
numbers remain less than 1.0, but underflow may occur. */ \
expon = expon1; \
if ( expon2 > expon1 ) { \
expon = expon2; \
frac1 = ldexp( frac1, expon1 - expon ); \
} else if ( expon1 > expon2 ) { \
frac2 = ldexp( frac2, expon2 - expon ); \
} \
\
/* If either of the original arguments is negative, we now subtract \
the corresponding fraction from 2.0. If we think of the fraction as \
represented in fixed-point binary notation, this corresponds to \
converting negative numbers into the twos-complement form normally used \
for integers (the sign bit being the bit with value 1) instead \
of having a separate sign bit as for floating point numbers. \
\
Note that one of the fractions may have underflowed during the \
scaling above. In that case (if the original argument was negative), \
we must subtract the value "eps" (= 2.0 * DBL_EPSILON) from 2.0 \
instead, so that we produce the largest number less than 2.0. In \
twos-complement notation this represents the smallest possible \
negative number and corresponds to extending the sign bit of the \
original number up into more significant bits. This causes all bits to \
be set as we require (rather than all being clear if the underflow \
is simply ignored). */ \
if ( (x1) < 0.0 ) frac1 = 2.0 - ( ( frac1 > eps ) ? frac1 : eps ); \
if ( (x2) < 0.0 ) frac2 = 2.0 - ( ( frac2 > eps ) ? frac2 : eps ); \
\
/* We now extract the bits from the fraction values into integer \
variables so that we may perform bit-wise operations on them. However, \
since a double may be longer than any available integer, we may \
have to handle several successive blocks of bits individually. */ \
\
/* Extract the first block of bits by scaling by the required power of \
2 to shift the required bits to the left of the binary point. Then \
extract the integer part. Note that this initial shift is one bit less \
than the number of bits in an unsigned long, because we have \
introduced an extra sign bit. */ \
frac1 *= scale1; \
frac2 *= scale1; \
b1 = (unsigned long) frac1; \
b2 = (unsigned long) frac2; \
\
/* Perform the required bit-wise operation on the extracted blocks of \
bits. */ \
b = b1 oper b2; \
\
/* Extract the sign bit from this initial result. This determines \
whether the final result bit pattern should represent a negative \
floating point number. */ \
neg = b & signbit; \
\
/* Initialise the floating point result by setting it to the integer \
result multipled by the reciprocal of the scale factor used to shift \
the bits above. This returns the result bits to their correct \
significance. */ \
unscale = rscale1; \
result = (double) b * unscale; \
\
/* We now loop to extract and process further blocks of bits (if \
present). The number of blocks is determined by the relative lengths \
of a double and an unsigned long. In practice, some bits of the double \
will be used by its exponent, so the last block may be incomplete and \
will simply be padded with zeros. */ \
for ( iblock = 1; iblock < nblock; iblock++ ) { \
\
/* Subtract the integer part (which has already been processed) from \
each fraction, to leave the bits which remain to be processed. Then \
multiply by a scale factor to shift the next set of bits to the left \
of the binary point. This time, we use as many bits as will fit into \
an unsigned long. */ \
frac1 = ( frac1 - (double) b1 ) * scale; \
frac2 = ( frac2 - (double) b2 ) * scale; \
\
/* Extract the integer part, which contains the required bits. */ \
b1 = (unsigned long) frac1; \
b2 = (unsigned long) frac2; \
\
/* Perform the required bit-wise operation on the extracted blocks of \
bits. */ \
b = b1 oper b2; \
\
/* Update the result floating point value by adding the new integer \
result multiplied by a scale factor to return the bits to their \
original significance. */ \
unscale *= rscale; \
result += (double) b * unscale; \
} \
\
/* If the (normalised fraction) result represents a negative number, \
then subtract 2.0 from it (equivalent to subtracting it from 2 and \
negating the result). This converts back to using a separate sign bit \
instead of twos-complement notation. */ \
if ( neg ) result -= 2.0; \
\
/* Scale by the required power of 2 to remove the initial \
normalisation applied and assign the result to the "result" \
variable. */ \
result = ldexp( result, expon )
/* Gaussian random number. */
/* ----------------------- */
/* This macro expands to code which assigns a pseudo-random value to
the "result" variable. The value is drawn from a Gaussian distribution
with mean "x1" and standard deviation "ABS(x2)". */
#define GAUSS(x1,x2) \
\
/* Loop until a satisfactory result is obtained. */ \
do { \
\
/* Obtain a value drawn from a standard Gaussian distribution. */ \
ran = Gauss( rcontext, status ); \
\
/* Multiply by "ABS(x2)", trapping possible overflow. */ \
result = ABS( (x2) ); \
result = SAFE_MUL( ran, result ); \
\
/* If OK, add "x1", again trapping possible overflow. */ \
if ( result != AST__BAD ) result = SAFE_ADD( result, (x1) ); \
\
/* Continue generating values until one is found which does not cause \
overflow. */ \
} while ( result == AST__BAD );
/* Implement the stack-based arithmetic. */
/* ===================================== */
/* Initialise the top of stack index and constant counter. */
tos = -1;
icon = 0;
/* Determine the number of opcodes to be processed and loop to process
them, executing the appropriate "case" block for each one. */
ncode = code[ 0 ];
for ( icode = 1; icode <= ncode; icode++ ) {
switch ( (Oper) code[ icode ] ) {
/* Ignore any null opcodes (which shouldn't occur). */
case OP_NULL: break;
/* Otherwise, perform the required vector operation on the stack... */
/* User-supplied constants and variables. */
/* -------------------------------------- */
/* Loading a constant involves incrementing the constant count and
assigning the next constant's value to the top of stack element. */
ARG_0( OP_LDCON, value = con[ icon++ ], *y = value )
/* Loading a variable involves obtaining the variable's index by
consuming a constant (as above), and then copying the variable's
values into the top of stack element. */
ARG_0( OP_LDVAR, ivar = (int) ( con[ icon++ ] + 0.5 ),
*y = ptr_in[ ivar ][ point ] )
/* System constants. */
/* ----------------- */
/* Loading a "bad" value simply means assigning AST__BAD to the top of
stack element. */
ARG_0( OP_LDBAD, ;, *y = AST__BAD )
/* The following load constants associated with the (double) floating
point representation into the top of stack element. */
ARG_0( OP_LDDIG, ;, *y = (double) AST__DBL_DIG )
ARG_0( OP_LDEPS, ;, *y = DBL_EPSILON )
ARG_0( OP_LDMAX, ;, *y = DBL_MAX )
ARG_0( OP_LDMAX10E, ;, *y = (double) DBL_MAX_10_EXP )
ARG_0( OP_LDMAXE, ;, *y = (double) DBL_MAX_EXP )
ARG_0( OP_LDMDIG, ;, *y = (double) DBL_MANT_DIG )
ARG_0( OP_LDMIN, ;, *y = DBL_MIN )
ARG_0( OP_LDMIN10E, ;, *y = (double) DBL_MIN_10_EXP )
ARG_0( OP_LDMINE, ;, *y = (double) DBL_MIN_EXP )
ARG_0( OP_LDRAD, ;, *y = (double) FLT_RADIX )
ARG_0( OP_LDRND, ;, *y = (double) FLT_ROUNDS )
/* Mathematical constants. */
/* ----------------------- */
/* The following load mathematical constants into the top of stack
element. */
ARG_0( OP_LDE, value = exp( 1.0 ), *y = value )
ARG_0( OP_LDPI, ;, *y = pi )
/* Functions with one argument. */
/* ---------------------------- */
/* The following simply evaluate a function of the top of stack
element and assign the result to the same element. */
ARG_1( OP_ABS, *y = ABS( x ) )
ARG_1( OP_ACOS, *y = ( ABS( x ) <= 1.0 ) ?
acos( x ) : AST__BAD )
ARG_1( OP_ACOSD, *y = ( ABS( x ) <= 1.0 ) ?
acos( x ) * r2d : AST__BAD )
ARG_1( OP_ACOSH, *y = ( x < 1.0 ) ? AST__BAD :
( ( x > safe_sq ) ? log( x ) + log2 :
log( x + sqrt( x * x - 1.0 ) ) ) )
ARG_1( OP_ACOTH, *y = ( ABS( x ) <= 1.0 ) ? AST__BAD :
0.5 * ( log( ( x + 1.0 ) /
( x - 1.0 ) ) ) )
ARG_1( OP_ACSCH, *y = ( ( x == 0.0 ) ? AST__BAD :
( sign = ( x >= 0.0 ), x = ABS( x ),
( sign ? 1.0 : -1.0 ) *
( ( x < rsafe_sq ) ? log2 - log( x ) :
( x = 1.0 / x,
log( x + sqrt( x * x + 1.0 ) ) ) ) ) ) )
ARG_1( OP_ASECH, *y = ( ( x <= 0 ) || ( x > 1.0 ) ) ? AST__BAD :
( ( x < rsafe_sq ) ? log2 - log( x ) :
( x = 1.0 / x,
log( x + sqrt( x * x - 1.0 ) ) ) ) )
ARG_1( OP_ASIN, *y = ( ABS( x ) <= 1.0 ) ?
asin( x ) : AST__BAD )
ARG_1( OP_ASIND, *y = ( ABS( x ) <= 1.0 ) ?
asin( x ) * r2d : AST__BAD )
ARG_1( OP_ASINH, *y = ( sign = ( x >= 0.0 ), x = ABS( x ),
( sign ? 1.0 : -1.0 ) *
( ( x > safe_sq ) ? log( x ) + log2 :
log( x + sqrt( x * x + 1.0 ) ) ) ) )
ARG_1( OP_ATAN, *y = atan( x ) )
ARG_1( OP_ATAND, *y = atan( x ) * r2d )
ARG_1( OP_ATANH, *y = ( ABS( x ) >= 1.0 ) ? AST__BAD :
0.5 * ( log( ( 1.0 + x ) /
( 1.0 - x ) ) ) )
ARG_1( OP_CEIL, *y = ceil( x ) )
ARG_1( OP_COS, *y = cos( x ) )
ARG_1( OP_COSD, *y = cos( x * d2r ) )
ARG_1( OP_COSH, *y = CATCH_MATHS_OVERFLOW( cosh( x ) ) )
ARG_1( OP_COTH, *y = ( x = tanh( x ), SAFE_DIV( 1.0, x ) ) )
ARG_1( OP_CSCH, *y = ( x = CATCH_MATHS_OVERFLOW( sinh( x ) ),
( x == AST__BAD ) ?
0.0 : SAFE_DIV( 1.0, x ) ) )
ARG_1( OP_EXP, *y = CATCH_MATHS_OVERFLOW( exp( x ) ) )
ARG_1( OP_FLOOR, *y = floor( x ) )
ARG_1( OP_INT, *y = INT( x ) )
ARG_1B( OP_ISBAD, *y = ( x == AST__BAD ) )
ARG_1( OP_LOG, *y = ( x > 0.0 ) ? log( x ) : AST__BAD )
ARG_1( OP_LOG10, *y = ( x > 0.0 ) ? log10( x ) : AST__BAD )
ARG_1( OP_NINT, *y = ( x >= 0 ) ?
floor( x + 0.5 ) : ceil( x - 0.5 ) )
ARG_1( OP_POISS, *y = Poisson( rcontext, x, status ) )
ARG_1( OP_SECH, *y = ( x = CATCH_MATHS_OVERFLOW( cosh( x ) ),
( x == AST__BAD ) ? 0.0 : 1.0 / x ) )
ARG_1( OP_SIN, *y = sin( x ) )
ARG_1( OP_SINC, *y = ( x == 0.0 ) ? 1.0 : sin( x ) / x )
ARG_1( OP_SIND, *y = sin( x * d2r ) )
ARG_1( OP_SINH, *y = CATCH_MATHS_OVERFLOW( sinh( x ) ) )
ARG_1( OP_SQR, *y = SAFE_MUL( x, x ) )
ARG_1( OP_SQRT, *y = ( x >= 0.0 ) ? sqrt( x ) : AST__BAD )
ARG_1( OP_TAN, *y = CATCH_MATHS_OVERFLOW( tan( x ) ) )
ARG_1( OP_TAND, *y = tan( x * d2r ) )
ARG_1( OP_TANH, *y = tanh( x ) )
/* Functions with two arguments. */
/* ----------------------------- */
/* These evaluate a function of the top two entries on the stack. */
ARG_2( OP_ATAN2, *y = atan2( x1, x2 ) )
ARG_2( OP_ATAN2D, *y = atan2( x1, x2 ) * r2d )
ARG_2( OP_DIM, *y = ( x1 > x2 ) ? x1 - x2 : 0.0 )
ARG_2( OP_GAUSS, GAUSS( x1, x2 ); *y = result )
ARG_2( OP_MOD, *y = ( x2 != 0.0 ) ?
fmod( x1, x2 ) : AST__BAD )
ARG_2( OP_POW, *y = CATCH_MATHS_ERROR( pow( x1, x2 ) ) )
ARG_2( OP_RAND, ran = Rand( rcontext, status );
*y = x1 * ran + x2 * ( 1.0 - ran ); )
ARG_2( OP_SIGN, *y = ( ( x1 >= 0.0 ) == ( x2 >= 0.0 ) ) ?
x1 : -x1 )
/* Functions with three arguments. */
/* ------------------------------- */
/* These evaluate a function of the top three entries on the stack. */
ARG_3B( OP_QIF, *y = ( ( x1 ) ? ( x2 ) : ( x3 ) ) )
/* Functions with variable numbers of arguments. */
/* --------------------------------------------- */
/* These operations take a variable number of arguments, the actual
number being determined by consuming a constant. We then loop to
perform a 2-argument operation on the stack (as above) the required
number of times. */
case OP_MAX:
narg = (int) ( con[ icon++ ] + 0.5 );
for ( iarg = 0; iarg < ( narg - 1 ); iarg++ ) {
DO_ARG_2( *y = ( x1 >= x2 ) ? x1 : x2 )
}
break;
case OP_MIN:
narg = (int) ( con[ icon++ ] + 0.5 );
for ( iarg = 0; iarg < ( narg - 1 ); iarg++ ) {
DO_ARG_2( *y = ( x1 <= x2 ) ? x1 : x2 )
}
break;
/* Unary arithmetic operators. */
/* --------------------------- */
ARG_1( OP_NEG, *y = -x )
/* Unary boolean operators. */
/* ------------------------ */
ARG_1( OP_NOT, *y = ( x == 0.0 ) )
/* Binary arithmetic operators. */
/* ---------------------------- */
ARG_2( OP_ADD, *y = SAFE_ADD( x1, x2 ) )
ARG_2( OP_SUB, *y = SAFE_SUB( x1, x2 ) )
ARG_2( OP_MUL, *y = SAFE_MUL( x1, x2 ) )
ARG_2( OP_DIV , *y = SAFE_DIV( x1, x2 ) )
/* Bit-shift operators. */
/* -------------------- */
ARG_2( OP_SHFTL, *y = SHIFT_BITS( x1, x2 ) )
ARG_2( OP_SHFTR, *y = SHIFT_BITS( x1, -x2 ) )
/* Relational operators. */
/* --------------------- */
ARG_2( OP_EQ, *y = ( x1 == x2 ) )
ARG_2( OP_GE, *y = ( x1 >= x2 ) )
ARG_2( OP_GT, *y = ( x1 > x2 ) )
ARG_2( OP_LE, *y = ( x1 <= x2 ) )
ARG_2( OP_LT, *y = ( x1 < x2 ) )
ARG_2( OP_NE, *y = ( x1 != x2 ) )
/* Bit-wise operators. */
/* ------------------- */
ARG_2( OP_BITOR, BIT_OPER( |, x1, x2 ); *y = result )
ARG_2( OP_BITXOR, BIT_OPER( ^, x1, x2 ); *y = result )
ARG_2( OP_BITAND, BIT_OPER( &, x1, x2 ); *y = result )
/* Binary boolean operators. */
/* ------------------------- */
ARG_2B( OP_AND, *y = TRISTATE_AND( x1, x2 ) )
ARG_2( OP_EQV, *y = ( ( x1 != 0.0 ) == ( x2 != 0.0 ) ) )
ARG_2B( OP_OR, *y = TRISTATE_OR( x1, x2 ) )
ARG_2( OP_XOR, *y = ( ( x1 != 0.0 ) != ( x2 != 0.0 ) ) )
}
}
}
/* When all opcodes have been processed, the result of the function
evaluation will reside in the lowest stack entry - i.e. the output
array. */
/* Free the workspace arrays. */
work = astFree( work );
stack = astFree( stack );
/* Undefine macros local to this function. */
#undef ARG_0
#undef ARG_1
#undef ARG_1B
#undef DO_ARG_2
#undef ARG_2
#undef ARG_2B
#undef ABS
#undef INT
#undef CATCH_MATHS_OVERFLOW
#undef CATCH_MATHS_ERROR
#undef TRISTATE_OR
#undef TRISTATE_AND
#undef SAFE_ADD
#undef SAFE_SUB
#undef SAFE_MUL
#undef SAFE_DIV
#undef SHIFT_BITS
#undef BIT_OPER
#undef GAUSS
}
static void EvaluationSort( const double con[], int nsym, int symlist[],
int **code, int *stacksize, int *status ) {
/*
* Name:
* EvaluationSort
* Purpose:
* Perform an evaluation-order sort on parsed expression symbols.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* void EvaluationSort( const double con[], int nsym, int symlist[],
* int **code, int *stacksize, int *status )
* Class Membership:
* MathMap member function.
* Description:
* This function sorts a sequence of numbers representing symbols
* identified in an expression. The symbols (i.e. the expression syntax)
* must have been fully validated beforehand, as no validation is
* performed here.
*
* The symbols are sorted into the order in which corresponding
* operations must be performed on a push-down arithmetic stack in order
* to evaluate the expression. Operation codes (opcodes), as defined in
* the "Oper" enum, are then substituted for the symbol numbers.
* Parameters:
* con
* Pointer to an array of double containing the set of constants
* generated while parsing the expression (these are required in order
* to determine the number of arguments associated with functions which
* take a variable number of arguments).
* nsym
* The number of symbols identified while parsing the expression.
* symlist
* Pointer to an array of int, with "nsym" elements. On entry, this
* should contain the indices in the static "symbol" array of the
* symbols identified while parsing the expression. On exit, the
* contents are undefined.
* code
* Address of a pointer which will be set to point at a dynamically
* allocated array of int containing the set of opcodes (cast to int)
* produced by this function. The first element of this array will
* contain a count of the number of opcodes which follow.
*
* The allocated space must be freed by the caller (using astFree) when
* no longer required.
* stacksize
* Pointer to an int in which to return the size of the push-down stack
* required to evaluate the expression using the returned opcodes.
* status
* Pointer to the inherited status variable.
* Notes:
* - A value of NULL will be returned for the "*code" pointer and a value
* of zero will be returned for the "*stacksize" value if this function is
* invoked with the global error status set, or if it should fail for any
* reason.
*/
/* Local Variables: */
int flush; /* Flush parenthesised symbol sequence? */
int icon; /* Input constant counter */
int isym; /* Input symbol counter */
int ncode; /* Number of opcodes generated */
int nstack; /* Evaluation stack size */
int push; /* Push a new symbol on to stack? */
int sym; /* Variable for symbol number */
int tos; /* Top of sort stack index */
/* Initialise */
*code = NULL;
*stacksize = 0;
/* Check the global error status. */
if ( !astOK ) return;
/* Further initialisation. */
flush = 0;
icon = 0;
isym = 0;
ncode = 0;
nstack = 0;
tos = -1;
/* Loop to generate output opcodes until the sort stack is empty and
there are no further symbols to process, or an error is detected. */
while ( astOK && ( ( tos > -1 ) || ( isym < nsym ) ) ) {
/* Decide whether to push a symbol on to the sort stack (which
"diverts" it so that higher-priority symbols can be output), or to pop
the top symbol off the sort stack and send it to the output
stream... */
/* We must push a symbol on to the sort stack if the stack is
currently empty. */
if ( tos == -1 ) {
push = 1;
/* We must pop the top symbol off the sort stack if there are no more
input symbols to process. */
} else if ( isym >= nsym ) {
push = 0;
/* If the sort stack is being flushed to complete the evaluation of a
parenthesised expression, then the top symbol (which will be the
opening parenthesis or function call) must be popped. This is only
done once, so reset the "flush" flag before the next loop. */
} else if ( flush ) {
push = 0;
flush = 0;
/* In all other circumstances, we must push a symbol on to the sort
stack if its evaluation priority (seen from the left) is higher than
that of the current top of stack symbol (seen from the right). This
means it will eventually be sent to the output stream ahead of the
current top of stack symbol. */
} else {
push = ( symbol[ symlist[ isym ] ].leftpriority >
symbol[ symlist[ tos ] ].rightpriority );
}
/* If a symbol is being pushed on to the sort stack, then get the next
input symbol which is to be used. */
if ( push ) {
sym = symlist[ isym++ ];
/* If the symbol decreases the parenthesis level (a closing
parenthesis), then all the sort stack entries down to the symbol which
opened the current level of parenthesis (the matching opening
parenthesis or function call) will already have been sent to the
output stream as a consequence of the evaluation priority defined for
a closing parenthesis in the symbol data. The opening parenthesis (or
function call) must next be flushed from the sort stack, so set the
"flush" flag which is interpreted on the next loop. Ignore the current
symbol, which cancels with the opening parenthesis on the stack. */
if ( symbol[ sym ].parincrement < 0 ) {
flush = 1;
/* All other symbols are pushed on to the sort stack. The stack
occupies that region of the "symlist" array from which the input
symbol numbers have already been extracted. */
} else {
symlist[ ++tos ] = sym;
}
/* If a symbol is being popped from the top of the sort stack, then
the top of stack entry is transferred to the output stream. Obtain the
symbol number from the stack. Increment the local constant counter if
the associated operation will use a constant. */
} else {
sym = symlist[ tos-- ];
icon += ( ( sym == symbol_ldvar ) || ( sym == symbol_ldcon ) );
/* If the output symbol does not represent a "null" operation,
increase the size of the output opcode array to accommodate it,
checking for errors. Note that we allocate one extra array element
(the first) which will eventually hold a count of all the opcodes
generated. */
if ( symbol[ sym ].opcode != OP_NULL ) {
*code = astGrow( *code, ncode + 2, sizeof( int ) );
if ( astOK ) {
/* Append the new opcode to the end of this array. */
( *code )[ ++ncode ] = (int) symbol[ sym ].opcode;
/* Increment/decrement the counter representing the stack size
required for evaluation of the expression. If the symbol is a
function with a variable number of arguments (indicated by a negative
"nargs" entry in the symbol data table), then the change in stack size
must be determined from the argument number stored in the constant
table. */
if ( symbol[ sym ].nargs >= 0 ) {
nstack += symbol[ sym ].stackincrement;
} else {
nstack -= (int) ( con[ icon++ ] + 0.5 ) - 1;
}
/* Note the maximum size of the stack. */
*stacksize = ( nstack > *stacksize ) ? nstack : *stacksize;
}
}
}
}
/* If no "*code" array has been allocated, then allocate one simply to
store the number of opcodes generated, i.e. zero (this shouldn't
normally happen as this represents an invalid expression). */
if ( !*code ) *code = astMalloc( sizeof( int ) );
/* If no error has occurred, store the count of opcodes generated in
the first element of the "*code" array and re-allocate the array to
its final size (since astGrow may have over-allocated space). */
if ( astOK ) {
( *code )[ 0 ] = ncode;
*code = astRealloc( *code, sizeof( int ) * (size_t) ( ncode + 1 ) );
}
/* If an error occurred, free any memory that was allocated and reset
the output values. */
if ( !astOK ) {
*code = astFree( *code );
*stacksize = 0;
}
}
static void ExtractExpressions( const char *method, const char *class,
int nfun, const char *fun[], int forward,
char ***exprs, int *status ) {
/*
* Name:
* ExtractExpressions
* Purpose:
* Extract and validate expressions.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* void ExtractExpressions( const char *method, const char *class,
* int nfun, const char *fun[], int forward,
* char ***exprs, int *status )
* Class Membership:
* MathMap member function.
* Description:
* This function extracts expressions from the right hand sides of a set
* of functions. These expressions are then validated to check that they
* are either all present, or all absent (absence indicating an undefined
* transformation). An error is reported if anything is found to be
* wrong.
*
* Note that the syntax of the expressions is not checked by this function
* (i.e. they are not compiled).
* Parameters:
* method
* Pointer to a constant null-terminated character string
* containing the name of the method that invoked this function.
* This method name is used solely for constructing error messages.
* class
* Pointer to a constant null-terminated character string containing the
* class name of the Object being processed. This name is used solely
* for constructing error messages.
* nfun
* The number of functions to be analysed.
* fun
* Pointer to an array, with "nfun" elements, of pointers to null
* terminated strings which contain each of the functions. These
* strings should contain no white space.
* forward
* A non-zero value indicates the the MathMap's forward transformation
* functions are being processed, while a zero value indicates processing
* of the inverse transformation functions. This value is used solely for
* constructing error messages.
* exprs
* Address in which to return a pointer to an array (with "nfun"
* elements) of pointers to null terminated strings containing the
* extracted expressions (i.e. this returns an array of strings).
*
* Both the returned array of pointers, and the strings to which they
* point, will be stored in dynamically allocated memory and should
* be freed by the caller (using astFree) when no longer required.
*
* If the right hand sides (including the "=" sign) of all the supplied
* functions are absent, then this indicates an undefined transformation
* and the returned pointer value will be NULL. An error results if
* an "=" sign is present but no expression follows it.
* status
* Pointer to the inherited status variable.
* Notes:
* - A NULL value will be returned for "*exprs" if this function is
* invoked with the global error status set, or if it should fail for
* any reason.
*/
/* Local Variables: */
char *ex; /* Pointer to start of expression string */
int ifun; /* Loop counter for functions */
int iud; /* Index of first undefined function */
int nud; /* Number of undefined expressions */
/* Initialise. */
*exprs = NULL;
/* Check the global error status. */
if ( !astOK ) return;
/* Further initialisation. */
nud = 0;
iud = 0;
/* Allocate and initialise memory for the returned array of pointers. */
MALLOC_POINTER_ARRAY( *exprs, char *, nfun )
/* Loop to inspect each function in turn. */
if ( astOK ) {
for ( ifun = 0; ifun < nfun; ifun++ ) {
/* Search for the first "=" sign. */
if ( ( ex = strchr( fun[ ifun ], '=' ) ) ) {
/* If found, and there are more characters after the "=" sign, then
find the length of the expression which follows. Allocate a string to
hold this expression, storing its pointer in the array allocated
above. Check for errors. */
if ( *++ex ) {
( *exprs )[ ifun ] = astMalloc( strlen( ex ) + (size_t) 1 );
if ( !astOK ) break;
/* If OK, extract the expression string. */
(void) strcpy( ( *exprs )[ ifun ], ex );
/* If an "=" sign was found but there are no characters following it,
then there is a missing right hand side to a function, so report an
error and quit. */
} else {
astError( AST__NORHS,
"%s(%s): Missing right hand side in expression: "
"\"%s\".", status,
method, class, fun[ ifun ] );
astError( astStatus,
"Error in %s transformation function %d.", status,
forward ? "forward" : "inverse", ifun + 1 );
break;
}
/* If no "=" sign was found, then the transformation may be undefined,
in which case each function should only contain a variable name. Count
the number of times this happens and record the index of the first
instance. */
} else {
nud++;
if ( nud == 1 ) iud = ifun;
}
}
}
/* Either all functions should have an "=" sign (in which case the
transformation is defined), or none of them should have (in which case
it is undefined). If some do and some don't, then report an error,
citing the first instance of a missing "=" sign. */
if ( astOK && ( nud != 0 ) && ( nud != nfun ) ) {
astError( AST__NORHS,
"%s(%s): Missing right hand side in function: \"%s\".", status,
method, class, fun[ iud ] );
astError( astStatus,
"Error in %s transformation function %d.", status,
forward ? "forward" : "inverse", iud + 1 );
}
/* If an error occurred, or all the expressions were absent, then free any
allocated memory and reset the output value. */
if ( !astOK || nud ) {
FREE_POINTER_ARRAY( *exprs, nfun )
}
}
static void ExtractVariables( const char *method, const char *class,
int nfun, const char *fun[],
int nin, int nout, int nfwd, int ninv,
int forward, char ***var, int *status ) {
/*
* Name:
* ExtractVariables
* Purpose:
* Extract and validate variable names.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* void ExtractVariables( const char *method, const char *class,
* int nfun, const char *fun[],
* int nin, int nout, int nfwd, int ninv,
* int forward, char ***var, int *status )
* Class Membership:
* MathMap member function.
* Description:
* This function extracts variable names from the left hand sides of a
* set of transformation functions belonging to a MathMap. These variable
* names are then validated to check for correct syntax and no
* duplication. An error is reported if anything is wrong with the
* variable names obtained.
* Parameters:
* method
* Pointer to a constant null-terminated character string
* containing the name of the method that invoked this function.
* This method name is used solely for constructing error messages.
* class
* Pointer to a constant null-terminated character string containing the
* class name of the Object being processed. This name is used solely
* for constructing error messages.
* nfun
* The number of functions to be analysed.
* fun
* Pointer to an array, with "nfun" elements, of pointers to null
* terminated strings which contain each of the functions. These strings
* are case sensitive and should contain no white space.
*
* The first elements of this array should point to the functions that
* define the primary input/output variables (depending on direction).
* These should be followed by any functions which define intermediate
* variables (taken from the set of functions which transform in the
* opposite direction to the first ones).
* nin
* Number of input variables for the MathMap.
* nout
* Number of output variables for the MathMap.
* nfwd
* Number of forward transformation functions for the MathMap.
* ninv
* Number of inverse transformation functions for the MathMap.
* forward
* A non-zero value indicates the the MathMap's forward transformation
* functions are being processed, while a zero value indicates processing
* of the inverse transformation functions. This value, together with
* "nin", "nout", "nfwd" and "ninv" are used solely for constructing
* error messages.
* var
* Address in which to return a pointer to an array (with "nfun"
* elements) of pointers to null terminated strings containing the
* extracted variable names (i.e. this returns an array of strings).
*
* Both the returned array of pointers, and the strings to which they
* point, will be stored in dynamically allocated memory and should
* be freed by the caller (using astFree) when no longer required.
* status
* Pointer to the inherited status variable.
* Notes:
* - A NULL value will be returned for "*var" if this function is
* invoked with the global error status set, or if it should fail for
* any reason.
*/
/* Local Variables: */
char *duser1; /* Transformation direction for function */
char *duser2; /* Transformation direction for function */
char c; /* Extracted character */
int i1; /* Loop counter for detecting duplicates */
int i2; /* Loop counter for detecting duplicates */
int i; /* Loop counter for characters */
int iend; /* Last character index in parsed name */
int ifun; /* Loop counter for functions */
int iuser1; /* Function number as known to the user */
int iuser2; /* Function number as known to the user */
int nc; /* Character count */
int nextra; /* Number of intermediate functions */
int nprimary; /* Number of primary input/output variables */
/* Initialise. */
*var = NULL;
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain the number of primary input/output variables, depending on
the direction of the coordinate transformation. */
nprimary = ( forward ? nin : nout );
/* Deterine the number of extra (intermediate) functions that come
before these primary ones. These affect the numbering of
transformation functions as known to the user, and must be accounted
for when reporting error messages. */
nextra = ( forward ? ninv - nin : nfwd - nout );
/* Allocate and initialise memory for the returned array of pointers. */
MALLOC_POINTER_ARRAY( *var, char *, nfun )
/* Loop to process each function in turn. */
if ( astOK ) {
for ( ifun = 0; ifun < nfun; ifun++ ) {
/* Count the number of characters appearing before the "=" sign (or in
the entire string if the "=" is absent). */
for ( nc = 0; ( c = fun[ ifun ][ nc ] ); nc++ ) if ( c == '=' ) break;
/* If no characters were counted, then report an appropriate error
message, depending on whether the function string was entirely
blank. */
if ( !nc ) {
if ( c ) {
astError( AST__MISVN,
"%s(%s): No left hand side in expression: \"%s\".", status,
method, class, fun[ ifun ] );
} else {
astError( AST__MISVN,
"%s: Transformation function contains no variable "
"name.", status,
method );
}
break;
}
/* If OK, allocate memory to hold the output string and check for
errors. */
( *var )[ ifun ] = astMalloc( sizeof( char ) * (size_t) ( nc + 1 ) ) ;
if ( !astOK ) break;
/* If OK, copy the characters before the "=" sign to the new
string. */
nc = 0;
for ( i = 0; ( c = fun[ ifun ][ i ] ); i++ ) {
if ( c == '=' ) break;
( *var )[ ifun ][ nc++] = c;
}
/* Null terminate the result. */
( *var )[ ifun ][ nc ] = '\0';
/* Try to parse the contents of the extracted string as a name. */
ParseName( ( *var )[ ifun ], 0, &iend, status );
/* If unsuccessful, or if all the characters were not parsed, then we
have an invalid variable name, so report an error and quit. */
if ( ( iend < 0 ) || ( *var )[ ifun ][ iend + 1 ] ) {
astError( AST__VARIN,
"%s(%s): Variable name is invalid: \"%s\".", status,
method, class, ( *var )[ ifun ] );
break;
}
}
/* If an error occurred above, then determine the function number, and
the direction of the transformation of which it forms part, as known
to the user. */
if ( !astOK ) {
if ( ifun < nprimary ) {
iuser1 = ifun + 1 + nextra;
duser1 = ( forward ? "inverse" : "forward" );
} else {
iuser1 = ifun + 1 - nprimary;
duser1 = ( forward ? "forward" : "inverse" );
}
/* Report a contextual error message. */
astError( astStatus,
"Error in %s transformation function %d.", status,
duser1, iuser1 );
}
}
/* If there has been no error, loop to compare all the variable names
with each other to detect duplication. */
if ( astOK ) {
for ( i1 = 1; i1 < nfun; i1++ ) {
for ( i2 = 0; i2 < i1; i2++ ) {
/* If a duplicate variable name is found, report an error. */
if ( !strcmp( ( *var )[ i1 ], ( *var )[ i2 ] ) ) {
astError( AST__DUVAR,
"%s(%s): Duplicate definition of variable name: "
"\"%s\".", status,
method, class, ( *var )[ i1 ] );
/* For each transformation function involved, determine the function
number and the direction of the transformation of which it forms part,
as known to the user. */
if ( i1 < nprimary ) {
iuser1 = i1 + 1 + nextra;
duser1 = ( forward ? "inverse" : "forward" );
} else {
iuser1 = i1 + 1 - nprimary;
duser1 = ( forward ? "forward" : "inverse" );
}
if ( i2 < nprimary ) {
iuser2 = i2 + 1 + nextra;
duser2 = ( forward ? "inverse" : "forward" );
} else {
iuser2 = i2 + 1 - nprimary;
duser2 = ( forward ? "forward" : "inverse" );
}
/* Report a contextual error message. */
astError( astStatus,
"Conflict between %s function %d and %s function %d.", status,
duser1, iuser1, duser2, iuser2 );
break;
}
}
if ( !astOK ) break;
}
}
/* If an error occurred, free any allocated memory and reset the
output value. */
if ( !astOK ) {
FREE_POINTER_ARRAY( *var, nfun )
}
}
static double Gauss( Rcontext *context, int *status ) {
/*
* Name:
* Gauss
* Purpose:
* Produce a pseudo-random sample from a standard Gaussian distribution.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* double Gauss( Rcontext *context, int *status )
* Class Membership:
* MathMap member function.
* Description:
* On each invocation, this function returns a pseudo-random sample drawn
* from a standard Gaussian distribution with mean zero and standard
* deviation unity. The Box-Muller transformation method is used.
* Parameters:
* context
* Pointer to an Rcontext structure which holds the random number
* generator's context between invocations.
* status
* Pointer to the inherited status variable.
* Returned Value:
* A sample from a standard Gaussian distribution.
* Notes:
* - The sequence of numbers returned is determined by the "seed"
* value in the Rcontext structure supplied.
* - If the seed value is changed, the "active" flag must also be cleared
* so that this function can re-initiallise the Rcontext structure before
* generating the next pseudo-random number. The "active" flag should
* also be clear to force initialisation the first time an Rcontext
* structure is used.
* - This function does not perform error checking and does not generate
* errors. It will execute even if the global error status is set.
*/
/* Local Variables: */
double rsq; /* Squared radius */
double s; /* Scale factor */
double x; /* First result value */
static double y; /* Second result value */
static int ysaved = 0; /* Previously-saved value available? */
LOCK_MUTEX7
/* If the random number generator context is not active, then it will
be (re)initialised on the first invocation of Rand (below). Ensure
that any previously-saved value within this function is first
discarded. */
if ( !context->active ) ysaved = 0;
/* If there is a previously-saved value available, then use it and
mark it as no longer available. */
if ( ysaved ) {
x = y;
ysaved = 0;
/* Otherwise, loop until a suitable new pair of values has been
obtained. */
} else {
while ( 1 ) {
/* Loop to obtain two random values uniformly distributed inside the
unit circle, while avoiding the origin (which maps to an infinite
result). */
do {
x = 2.0 * Rand( context, status ) - 1.0;
y = 2.0 * Rand( context, status ) - 1.0;
rsq = x * x + y * y;
} while ( ( rsq >= 1.0 ) || ( rsq == 0.0 ) );
/* Perform the Box-Muller transformation, checking that this will not
produce overflow (which is extremely unlikely). If overflow would
occur, we simply repeat the above steps with a new pair of random
numbers. */
s = -2.0 * log( rsq );
if ( ( DBL_MAX * rsq ) >= s ) {
s = sqrt( s / rsq );
/* Scale the original random values to give a pair of results. One will be
returned and the second kept until next time. */
x *= s;
y *= s;
break;
}
}
/* Note that a saved value is available. */
ysaved = 1;
}
UNLOCK_MUTEX7
/* Return the current result. */
return x;
}
static int GetObjSize( AstObject *this_object, int *status ) {
/*
* Name:
* GetObjSize
* Purpose:
* Return the in-memory size of an Object.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* int GetObjSize( AstObject *this, int *status )
* Class Membership:
* MathMap member function (over-rides the astGetObjSize protected
* method inherited from the parent class).
* Description:
* This function returns the in-memory size of the supplied MathMap,
* in bytes.
* Parameters:
* this
* Pointer to the MathMap.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The Object size, in bytes.
* Notes:
* - A value of zero will be returned if this function is invoked
* with the global status set, or if it should fail for any reason.
*/
/* Local Variables: */
AstMathMap *this; /* Pointer to MathMap structure */
int result; /* Result value to return */
/* Initialise. */
result = 0;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointers to the MathMap structure. */
this = (AstMathMap *) this_object;
/* Invoke the GetObjSize method inherited from the parent class, and then
add on any components of the class structure defined by thsi class
which are stored in dynamically allocated memory. */
result = (*parent_getobjsize)( this_object, status );
SIZEOF_POINTER_ARRAY( this->fwdfun, this->nfwd )
SIZEOF_POINTER_ARRAY( this->invfun, this->ninv )
SIZEOF_POINTER_ARRAY( this->fwdcode, this->nfwd )
SIZEOF_POINTER_ARRAY( this->invcode, this->ninv )
SIZEOF_POINTER_ARRAY( this->fwdcon, this->nfwd )
SIZEOF_POINTER_ARRAY( this->invcon, this->ninv )
/* If an error occurred, clear the result value. */
if ( !astOK ) result = 0;
/* Return the result, */
return result;
}
static const char *GetAttrib( AstObject *this_object, const char *attrib, int *status ) {
/*
* Name:
* GetAttrib
* Purpose:
* Get the value of a specified attribute for a MathMap.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* const char *GetAttrib( AstObject *this, const char *attrib, int *status )
* Class Membership:
* MathMap member function (over-rides the protected astGetAttrib
* method inherited from the Mapping class).
* Description:
* This function returns a pointer to the value of a specified
* attribute for a MathMap, formatted as a character string.
* Parameters:
* this
* Pointer to the MathMap.
* attrib
* Pointer to a null-terminated string containing the name of
* the attribute whose value is required. This name should be in
* lower case, with all white space removed.
* status
* Pointer to the inherited status variable.
* Returned Value:
* - Pointer to a null-terminated string containing the attribute
* value.
* Notes:
* - The returned string pointer may point at memory allocated
* within the MathMap, or at static memory. The contents of the
* string may be over-written or the pointer may become invalid
* following a further invocation of the same function or any
* modification of the MathMap. A copy of the string should
* therefore be made if necessary.
* - A NULL pointer will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*/
/* Local Variables: */
astDECLARE_GLOBALS /* Pointer to thread-specific global data */
AstMathMap *this; /* Pointer to the MathMap structure */
const char *result; /* Pointer value to return */
int ival; /* Integer attribute value */
/* Initialise. */
result = NULL;
/* Check the global error status. */
if ( !astOK ) return result;
/* Get a pointer to the thread specific global data structure. */
astGET_GLOBALS(this_object);
/* Obtain a pointer to the MathMap structure. */
this = (AstMathMap *) this_object;
/* Compare "attrib" with each recognised attribute name in turn,
obtaining the value of the required attribute. If necessary, write
the value into "getattrib_buff" as a null-terminated string in an appropriate
format. Set "result" to point at the result string. */
/* Seed. */
/* ----- */
if ( !strcmp( attrib, "seed" ) ) {
ival = astGetSeed( this );
if ( astOK ) {
(void) sprintf( getattrib_buff, "%d", ival );
result = getattrib_buff;
}
/* SimpFI. */
/* ------- */
} else if ( !strcmp( attrib, "simpfi" ) ) {
ival = astGetSimpFI( this );
if ( astOK ) {
(void) sprintf( getattrib_buff, "%d", ival );
result = getattrib_buff;
}
/* SimpIF. */
/* ------- */
} else if ( !strcmp( attrib, "simpif" ) ) {
ival = astGetSimpIF( this );
if ( astOK ) {
(void) sprintf( getattrib_buff, "%d", ival );
result = getattrib_buff;
}
/* If the attribute name was not recognised, pass it on to the parent
method for further interpretation. */
} else {
result = (*parent_getattrib)( this_object, attrib, status );
}
/* Return the result. */
return result;
}
void astInitMathMapVtab_( AstMathMapVtab *vtab, const char *name, int *status ) {
/*
*+
* Name:
* astInitMathMapVtab
* Purpose:
* Initialise a virtual function table for a MathMap.
* Type:
* Protected function.
* Synopsis:
* #include "mathmap.h"
* void astInitMathMapVtab( AstMathMapVtab *vtab, const char *name )
* Class Membership:
* MathMap vtab initialiser.
* Description:
* This function initialises the component of a virtual function
* table which is used by the MathMap class.
* Parameters:
* vtab
* Pointer to the virtual function table. The components used by
* all ancestral classes will be initialised if they have not already
* been initialised.
* name
* Pointer to a constant null-terminated character string which contains
* the name of the class to which the virtual function table belongs (it
* is this pointer value that will subsequently be returned by the Object
* astClass function).
*-
*/
/* Local Variables: */
astDECLARE_GLOBALS /* Pointer to thread-specific global data */
AstMappingVtab *mapping; /* Pointer to Mapping component of Vtab */
AstObjectVtab *object; /* Pointer to Object component of Vtab */
/* Check the local error status. */
if ( !astOK ) return;
/* Get a pointer to the thread specific global data structure. */
astGET_GLOBALS(NULL);
/* Initialize the component of the virtual function table used by the
parent class. */
astInitMappingVtab( (AstMappingVtab *) vtab, name );
/* Store a unique "magic" value in the virtual function table. This
will be used (by astIsAMathMap) to determine if an object belongs
to this class. We can conveniently use the address of the (static)
class_check variable to generate this unique value. */
vtab->id.check = &class_check;
vtab->id.parent = &(((AstMappingVtab *) vtab)->id);
/* Initialise member function pointers. */
/* ------------------------------------ */
/* Store pointers to the member functions (implemented here) that
provide virtual methods for this class. */
vtab->ClearSeed = ClearSeed;
vtab->ClearSimpFI = ClearSimpFI;
vtab->ClearSimpIF = ClearSimpIF;
vtab->GetSeed = GetSeed;
vtab->GetSimpFI = GetSimpFI;
vtab->GetSimpIF = GetSimpIF;
vtab->SetSeed = SetSeed;
vtab->SetSimpFI = SetSimpFI;
vtab->SetSimpIF = SetSimpIF;
vtab->TestSeed = TestSeed;
vtab->TestSimpFI = TestSimpFI;
vtab->TestSimpIF = TestSimpIF;
/* Save the inherited pointers to methods that will be extended, and
replace them with pointers to the new member functions. */
object = (AstObjectVtab *) vtab;
mapping = (AstMappingVtab *) vtab;
parent_getobjsize = object->GetObjSize;
object->GetObjSize = GetObjSize;
parent_clearattrib = object->ClearAttrib;
object->ClearAttrib = ClearAttrib;
parent_getattrib = object->GetAttrib;
object->GetAttrib = GetAttrib;
parent_setattrib = object->SetAttrib;
object->SetAttrib = SetAttrib;
parent_testattrib = object->TestAttrib;
object->TestAttrib = TestAttrib;
parent_transform = mapping->Transform;
mapping->Transform = Transform;
/* Store replacement pointers for methods which will be over-ridden by
new member functions implemented here. */
object->Equal = Equal;
mapping->MapMerge = MapMerge;
/* Declare the copy constructor, destructor and class dump function. */
astSetCopy( vtab, Copy );
astSetDelete( vtab, Delete );
astSetDump( vtab, Dump, "MathMap",
"Transformation using mathematical functions" );
/* If we have just initialised the vtab for the current class, indicate
that the vtab is now initialised, and store a pointer to the class
identifier in the base "object" level of the vtab. */
if( vtab == &class_vtab ) {
class_init = 1;
astSetVtabClassIdentifier( vtab, &(vtab->id) );
}
}
static double LogGamma( double x, int *status ) {
/*
* Name:
* LogGamma
* Purpose:
* Calculate the logarithm of the gamma function.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* double LogGamma( double x, int *status )
* Class Membership:
* MathMap member function.
* Description:
* This function returns the natural logarithm of the gamma function
* for real arguments x>0. It uses the approximation of Lanczos, with
* constants from Press et al. (Numerical Recipes), giving a maximum
* fractional error (on the gamma function) of less than 2e-10.
* Parameters:
* x
* The function argument, which must be greater than zero.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The natural logarithm of the gamma function with "x" as argument,
* or AST__BAD if "x" is not greater than zero.
* Notes:
* - This function does not generate errors and does not perform error
* reporting. It will execute even if the global error status is set.
*/
/* Local Constants: */
const double c0 = 1.000000000190015; /* Coefficients for series sum... */
const double c1 = 76.18009172947146;
const double c2 = -86.50532032941677;
const double c3 = 24.01409824083091;
const double c4 = -1.231739572450155;
const double c5 = 0.1208650973866179e-2;
const double c6 = -0.5395239384953e-5;
const double g = 5.0;
/* Local Variables: */
double result; /* Result value to return */
double sum; /* Series sum */
double xx; /* Denominator for summing series */
static double root_twopi; /* sqrt( 2.0 * pi ) */
static int init = 0; /* Initialisation performed? */
/* If initialisation has not yet been performed, calculate the
constant required below. */
LOCK_MUTEX3
if ( !init ) {
root_twopi = sqrt( 2.0 * acos( -1.0 ) );
/* Note that initialisation has been performed. */
init = 1;
}
UNLOCK_MUTEX3
/* Return a bad value if "x" is not greater than zero. */
if ( x <= 0.0 ) {
result = AST__BAD;
/* Otherwise, form the series sum. Since we only use 6 terms, the loop
that would normally be used has been completely unrolled here. */
} else {
xx = x;
sum = c0;
sum += c1 / ++xx;
sum += c2 / ++xx;
sum += c3 / ++xx;
sum += c4 / ++xx;
sum += c5 / ++xx;
sum += c6 / ++xx;
/* Calculate the result. */
result = x + g + 0.5;
result -= ( x + 0.5 ) * log( result );
result = log( root_twopi * sum / x ) - result;
}
/* Return the result. */
return result;
}
static int MapMerge( AstMapping *this, int where, int series, int *nmap,
AstMapping ***map_list, int **invert_list, int *status ) {
/*
* Name:
* MapMerge
* Purpose:
* Simplify a sequence of Mappings containing a MathMap.
* Type:
* Private function.
* Synopsis:
* #include "mapping.h"
* int MapMerge( AstMapping *this, int where, int series, int *nmap,
* AstMapping ***map_list, int **invert_list, int *status )
* Class Membership:
* MathMap method (over-rides the protected astMapMerge method
* inherited from the Mapping class).
* Description:
* This function attempts to simplify a sequence of Mappings by
* merging a nominated MathMap in the sequence with its neighbours,
* so as to shorten the sequence if possible.
*
* In many cases, simplification will not be possible and the
* function will return -1 to indicate this, without further
* action.
*
* In most cases of interest, however, this function will either
* attempt to replace the nominated MathMap with one which it
* considers simpler, or to merge it with the Mappings which
* immediately precede it or follow it in the sequence (both will
* normally be considered). This is sufficient to ensure the
* eventual simplification of most Mapping sequences by repeated
* application of this function.
*
* In some cases, the function may attempt more elaborate
* simplification, involving any number of other Mappings in the
* sequence. It is not restricted in the type or scope of
* simplification it may perform, but will normally only attempt
* elaborate simplification in cases where a more straightforward
* approach is not adequate.
* Parameters:
* this
* Pointer to the nominated MathMap which is to be merged with
* its neighbours. This should be a cloned copy of the MathMap
* pointer contained in the array element "(*map_list)[where]"
* (see below). This pointer will not be annulled, and the
* MathMap it identifies will not be modified by this function.
* where
* Index in the "*map_list" array (below) at which the pointer
* to the nominated MathMap resides.
* series
* A non-zero value indicates that the sequence of Mappings to
* be simplified will be applied in series (i.e. one after the
* other), whereas a zero value indicates that they will be
* applied in parallel (i.e. on successive sub-sets of the
* input/output coordinates).
* nmap
* Address of an int which counts the number of Mappings in the
* sequence. On entry this should be set to the initial number
* of Mappings. On exit it will be updated to record the number
* of Mappings remaining after simplification.
* map_list
* Address of a pointer to a dynamically allocated array of
* Mapping pointers (produced, for example, by the astMapList
* method) which identifies the sequence of Mappings. On entry,
* the initial sequence of Mappings to be simplified should be
* supplied.
*
* On exit, the contents of this array will be modified to
* reflect any simplification carried out. Any form of
* simplification may be performed. This may involve any of: (a)
* removing Mappings by annulling any of the pointers supplied,
* (b) replacing them with pointers to new Mappings, (c)
* inserting additional Mappings and (d) changing their order.
*
* The intention is to reduce the number of Mappings in the
* sequence, if possible, and any reduction will be reflected in
* the value of "*nmap" returned. However, simplifications which
* do not reduce the length of the sequence (but improve its
* execution time, for example) may also be performed, and the
* sequence might conceivably increase in length (but normally
* only in order to split up a Mapping into pieces that can be
* more easily merged with their neighbours on subsequent
* invocations of this function).
*
* If Mappings are removed from the sequence, any gaps that
* remain will be closed up, by moving subsequent Mapping
* pointers along in the array, so that vacated elements occur
* at the end. If the sequence increases in length, the array
* will be extended (and its pointer updated) if necessary to
* accommodate any new elements.
*
* Note that any (or all) of the Mapping pointers supplied in
* this array may be annulled by this function, but the Mappings
* to which they refer are not modified in any way (although
* they may, of course, be deleted if the annulled pointer is
* the final one).
* invert_list
* Address of a pointer to a dynamically allocated array which,
* on entry, should contain values to be assigned to the Invert
* attributes of the Mappings identified in the "*map_list"
* array before they are applied (this array might have been
* produced, for example, by the astMapList method). These
* values will be used by this function instead of the actual
* Invert attributes of the Mappings supplied, which are
* ignored.
*
* On exit, the contents of this array will be updated to
* correspond with the possibly modified contents of the
* "*map_list" array. If the Mapping sequence increases in
* length, the "*invert_list" array will be extended (and its
* pointer updated) if necessary to accommodate any new
* elements.
* status
* Pointer to the inherited status variable.
* Returned Value:
* If simplification was possible, the function returns the index
* in the "map_list" array of the first element which was
* modified. Otherwise, it returns -1 (and makes no changes to the
* arrays supplied).
* Notes:
* - A value of -1 will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*/
/* Local Variables: */
AstMapping *new; /* Pointer to replacement Mapping */
AstMathMap *mathmap1; /* Pointer to first MathMap */
AstMathMap *mathmap2; /* Pointer to second MathMap */
char **fwd1; /* Pointer to first forward function array */
char **fwd2; /* Pointer to second forward function array */
char **inv1; /* Pointer to first inverse function array */
char **inv2; /* Pointer to second inverse function array */
int ifun; /* Loop counter for functions */
int imap1; /* Index of first Mapping */
int imap2; /* Index of second Mapping */
int imap; /* Loop counter for Mappings */
int invert1; /* Invert flag for first MathMap */
int invert2; /* Invert flag for second MathMap */
int nfwd1; /* No. forward functions for first MathMap */
int nfwd2; /* No. forward functions for second MathMap */
int nin1; /* Number input coords for first MathMap */
int ninv1; /* No. inverse functions for first MathMap */
int ninv2; /* No. inverse functions for second MathMap */
int nout2; /* Number output coords for second MathMap */
int result; /* Result value to return */
int simplify; /* Mappings may simplify? */
/* Initialise the returned result. */
result = -1;
/* Check the global error status. */
if ( !astOK ) return result;
/* Initialise variables to avoid "used of uninitialised variable"
messages from dumb compilers. */
mathmap1 = NULL;
mathmap2 = NULL;
imap1 = 0;
imap2 = 0;
invert1 = 0;
invert2 = 0;
nfwd1 = 0;
nin1 = 0;
ninv1 = 0;
/* MathMaps are only worth simplifying if they occur in series. */
simplify = series;
/* If simplification appears possible, then obtain the indices of the
nominated mapping and of the one which follows it. Check that a
mapping exists for the second index. */
if ( simplify ) {
imap1 = where;
imap2 = imap1 + 1;
simplify = ( imap2 < *nmap );
}
/* If OK, check whether the class of both Mappings is "MathMap" (a
MathMap can only combine with another MathMap). */
if ( simplify ) {
simplify = !strcmp( astGetClass( ( *map_list )[ imap1 ] ), "MathMap" );
}
if ( astOK && simplify ) {
simplify = !strcmp( astGetClass( ( *map_list )[ imap2 ] ), "MathMap" );
}
/* If still OK, obtain pointers to the two MathMaps and the associated
invert flag values. */
if ( astOK && simplify ) {
mathmap1 = (AstMathMap *) ( *map_list )[ imap1 ];
mathmap2 = (AstMathMap *) ( *map_list )[ imap2 ];
invert1 = ( *invert_list )[ imap1 ];
invert2 = ( *invert_list )[ imap2 ];
/* Depending on the invert flag values, obtain the SimpFI or SimpIF
attribute value from each MathMap and check whether they are set so as
to permit simplification. */
simplify = ( ( invert1 ? astGetSimpIF( mathmap1 ) :
astGetSimpFI( mathmap1 ) ) &&
( invert2 ? astGetSimpFI( mathmap2 ) :
astGetSimpIF( mathmap2 ) ) );
}
/* If still OK, obtain the effective numbers of input coordinates for
the first MathMap and output coordinates for the second. Take account
of the associated invert flags and the way the Invert attribute of
each MathMap is currently set. */
if ( astOK && simplify ) {
nin1 = ( invert1 == astGetInvert( mathmap1 ) ) ?
astGetNin( mathmap1 ) : astGetNout( mathmap1 );
nout2 = ( invert2 == astGetInvert( mathmap2 ) ) ?
astGetNout( mathmap2 ) : astGetNin( mathmap2 );
/* Simplification is only possible if these two numbers are equal
(otherwise the the two MathMaps cannot be identical). */
simplify = ( nin1 == nout2 );
}
/* If still OK, obtain the effective number of forward transformation
functions for the first MathMap (allowing for the associated invert
flag). Similarly, obtain the effective number of inverse
transformation functions for the second MathMap. */
if ( astOK && simplify ) {
nfwd1 = !invert1 ? mathmap1->nfwd : mathmap1->ninv;
ninv2 = !invert2 ? mathmap2->ninv : mathmap2->nfwd;
/* Check whether these values are equal. The MathMaps cannot be
identical if they are not. */
simplify = ( nfwd1 == ninv2 );
}
/* As above, obtain pointers to the array of effective forward
transformation functions for the first MathMap, and the effective
inverse transformation functions for the second MathMap. */
if ( astOK && simplify ) {
fwd1 = !invert1 ? mathmap1->fwdfun : mathmap1->invfun;
inv2 = !invert2 ? mathmap2->invfun : mathmap2->fwdfun;
/* Loop to check whether these two sets of functions are
identical. The MathMaps cannot be merged unless they are. */
for ( ifun = 0; ifun < nfwd1; ifun++ ) {
simplify = !strcmp( fwd1[ ifun ], inv2[ ifun ] );
if ( !simplify ) break;
}
}
/* If OK, repeat the above process to compare the effective inverse
transformation functions of the first MathMap with the forward
functions of the second one. */
if ( astOK && simplify ) {
ninv1 = !invert1 ? mathmap1->ninv : mathmap1->nfwd;
nfwd2 = !invert2 ? mathmap2->nfwd : mathmap2->ninv;
simplify = ( ninv1 == nfwd2 );
}
if ( astOK && simplify ) {
inv1 = !invert1 ? mathmap1->invfun : mathmap1->fwdfun;
fwd2 = !invert2 ? mathmap2->fwdfun : mathmap2->invfun;
for ( ifun = 0; ifun < ninv1; ifun++ ) {
simplify = !strcmp( inv1[ ifun ], fwd2[ ifun ] );
if ( !simplify ) break;
}
}
/* If the two MathMaps can be merged, create a UnitMap as a
replacement. */
if ( astOK && simplify ) {
new = (AstMapping *) astUnitMap( nin1, "", status );
/* If OK, annul the pointers to the original MathMaps. */
if ( astOK ) {
( *map_list )[ imap1 ] = astAnnul( ( *map_list )[ imap1 ] );
( *map_list )[ imap2 ] = astAnnul( ( *map_list )[ imap2 ] );
/* Insert the pointer to the replacement UnitMap and store the
associated invert flag. */
( *map_list )[ imap1 ] = new;
( *invert_list )[ imap1 ] = 0;
/* Loop to move the following Mapping pointers and invert flags down
in their arrays to close the gap. */
for ( imap = imap2 + 1; imap < *nmap; imap++ ) {
( *map_list )[ imap - 1 ] = ( *map_list )[ imap ];
( *invert_list )[ imap - 1 ] = ( *invert_list )[ imap ];
}
/* Clear the final entry in each array. */
( *map_list )[ *nmap - 1 ] = NULL;
( *invert_list )[ *nmap - 1 ] = 0;
/* Decrement the Mapping count and return the index of the first
modified element. */
( *nmap )--;
result = imap1;
}
}
/* If an error occurred, clear the returned value. */
if ( !astOK ) result = -1;
/* Return the result. */
return result;
}
static void ParseConstant( const char *method, const char *class,
const char *exprs, int istart, int *iend,
double *con, int *status ) {
/*
* Name:
* ParseConstant
* Purpose:
* Parse a constant.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* void ParseConstant( const char *method, const char *class,
* const char *exprs, int istart, int *iend,
* double *con, int *status )
* Class Membership:
* MathMap member function.
* Description:
* This routine parses an expression, looking for a constant starting at
* the character with index "istart" in the string "exprs". If it
* identifies the constant successfully, "*con" it will return its value
* and "*iend" will be set to the index of the final constant character
* in "exprs".
*
* If the characters encountered are clearly not part of a constant (it
* does not begin with a numeral or decimal point) the function returns
* with "*con" set to zero and "*iend" set to -1, but without reporting
* an error. However, if the first character appears to be a constant but
* its syntax proves to be invalid, then an error is reported.
*
* The expression must be in lower case with no embedded white space.
* The constant must not have a sign (+ or -) in front of it.
* Parameters:
* method
* Pointer to a constant null-terminated character string
* containing the name of the method that invoked this function.
* This method name is used solely for constructing error messages.
* class
* Pointer to a constant null-terminated character string containing the
* class name of the Object being processed. This name is used solely
* for constructing error messages.
* exprs
* Pointer to a null-terminated string containing the expression
* to be parsed.
* istart
* Index of the first character in "exprs" to be considered by this
* function.
* iend
* Pointer to an int in which to return the index in "exprs" of the
* final character which forms part of the constant. If no constant is
* found, a value of -1 is returned.
* con
* Pointer to a double, in which the value of the constant, if found,
* will be returned.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
char *str; /* Pointer to temporary string */
char c; /* Single character from the expression */
int dpoint; /* Decimal point encountered? */
int expon; /* Exponent character encountered? */
int i; /* Loop counter for characters */
int iscon; /* Character is part of the constant? */
int n; /* Number of values read by astSscanf */
int nc; /* Number of characters read by astSscanf */
int numer; /* Numeral encountered in current field? */
int sign; /* Sign encountered? */
int valid; /* Constant syntax valid? */
/* Check the global error status. */
if ( !astOK ) return;
/* Initialise. */
*con = 0.0;
*iend = -1;
/* Check if the expression starts with a numeral or a decimal point. */
c = exprs[ istart ];
numer = isdigit( c );
dpoint = ( c == '.' );
/* If it begins with any of these, the expression is clearly intended
to be a constant, so any failure beyond this point will result in an
error. Otherwise, failure to find a constant is not an error. */
if ( numer || dpoint ) {
/* Initialise remaining variables specifying the parser context. */
expon = 0;
sign = 0;
valid = 1;
/* Loop to increment the last constant character position until the
following character in the expression does not look like part of the
constant. */
*iend = istart;
iscon = 1;
while ( ( c = exprs[ *iend + 1 ] ) && iscon ) {
iscon = 0;
/* It may be part of a numerical constant if it is a numeral, wherever
it occurs. */
if ( isdigit( c ) ) {
numer = 1;
iscon = 1;
/* Or a decimal point, so long as it is the first one and is not in
the exponent field. Otherwise it is invalid. */
} else if ( c == '.' ) {
if ( !( dpoint || expon ) ) {
dpoint = 1;
iscon = 1;
} else {
valid = 0;
}
/* Or if it is a 'd' or 'e' exponent character, so long as it is the
first one and at least one numeral has been encountered first.
Otherwise it is invalid. */
} else if ( ( c == 'd' ) || ( c == 'e' ) ) {
if ( !expon && numer ) {
expon = 1;
numer = 0;
iscon = 1;
} else {
valid = 0;
}
/* Or if it is a sign, so long as it is in the exponent field and is
the first sign with no previous numerals in the same field. Otherwise
it is invalid (unless numerals have been encountered, in which case it
marks the end of the constant). */
} else if ( ( c == '+' ) || ( c == '-' ) ) {
if ( expon && !sign && !numer ) {
sign = 1;
iscon = 1;
} else if ( !numer ) {
valid = 0;
}
}
/* Increment the character count if the next character may be part of
the constant, or if it was invalid (it will then form part of the
error message). */
if ( iscon || !valid ) ( *iend )++;
}
/* Finally, check that the last field contained a numeral. */
valid = ( valid && numer );
/* If the constant appears valid, allocate a temporary string to hold
it. */
if ( valid ) {
str = astMalloc( (size_t) ( *iend - istart + 2 ) );
if ( astOK ) {
/* Copy the constant's characters, changing 'd' to 'e' so that
"astSscanf" will recognise it as an exponent character. */
for ( i = istart; i <= *iend; i++ ) {
str[ i - istart ] = ( exprs[ i ] == 'd' ) ? 'e' : exprs[ i ];
}
str[ *iend - istart + 1 ] = '\0';
/* Attempt to read the constant as a double, noting how many values
are read and how many characters consumed. */
n = astSscanf( str, "%lf%n", con, &nc );
/* Check that one value was read and all the characters consumed. If
not, then the constant's syntax is invalid. */
if ( ( n != 1 ) || ( nc < ( *iend - istart + 1 ) ) ) valid = 0;
}
/* Free the temporary string. */
str = astFree( str );
}
/* If the constant syntax is invalid, and no other error has occurred,
then report an error. */
if ( astOK && !valid ) {
astError( AST__CONIN,
"%s(%s): Invalid constant syntax in the expression "
"\"%.*s\".", status,
method, class, *iend + 1, exprs );
}
/* If an error occurred, reset the output values. */
if ( !astOK ) {
*iend = -1;
*con = 0.0;
}
}
}
static void ParseName( const char *exprs, int istart, int *iend, int *status ) {
/*
* Name:
* ParseName
* Purpose:
* Parse a name.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* void ParseName( const char *exprs, int istart, int *iend, int *status )
* Class Membership:
* MathMap member function.
* Description:
* This routine parses an expression, looking for a name starting at the
* character with index "istart" in the string "exprs". If it identifies
* a name successfully, "*iend" will return the index of the final name
* character in "exprs". A name must begin with an alphabetic character
* and subsequently contain only alphanumeric characters or underscores.
*
* If the expression does not contain a name at the specified location,
* "*iend" is set to -1. No error results.
*
* The expression should not contain embedded white space.
* Parameters:
* exprs
* Pointer to a null-terminated string containing the expression
* to be parsed.
* istart
* Index of the first character in "exprs" to be considered by this
* function.
* iend
* Pointer to an int in which to return the index in "exprs" of the
* final character which forms part of the name. If no name is
* found, a value of -1 is returned.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
char c; /* Single character from expression */
/* Check the global error status. */
if ( !astOK ) return;
/* Initialise. */
*iend = -1;
/* Check the first character is valid for a name (alphabetic). */
if ( isalpha( exprs[ istart ] ) ) {
/* If so, loop to inspect each subsequent character until one is found
which is not part of a name (not alphanumeric or underscore). */
for ( *iend = istart; ( c = exprs[ *iend + 1 ] ); ( *iend )++ ) {
if ( !( isalnum( c ) || ( c == '_' ) ) ) break;
}
}
}
static void ParseVariable( const char *method, const char *class,
const char *exprs, int istart, int nvar,
const char *var[], int *ivar, int *iend, int *status ) {
/*
* Name:
* ParseVariable
* Purpose:
* Parse a variable name.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* void ParseVariable( const char *method, const char *class,
* const char *exprs, int istart, int nvar,
* const char *var[], int *ivar, int *iend, int *status )
* Class Membership:
* MathMap member function.
* Description:
* This routine parses an expression, looking for a recognised variable
* name starting at the character with index "istart" in the string
* "exprs". If it identifies a variable name successfully, "*ivar" will
* return a value identifying it and "*iend" will return the index of the
* final variable name character in "exprs". To be recognised, a name
* must begin with an alphabetic character and subsequently contain only
* alphanumeric characters or underscores. It must also appear in the
* list of defined variable names supplied to this function.
*
* If the expression does not contain a name at the specified location,
* "*ivar" and "*iend" are set to -1 and no error results. However, if
* the expression contains a name but it is not in the list of defined
* variable names supplied, then an error is reported.
*
* This function is case sensitive. The expression should not contain
* embedded white space.
* Parameters:
* method
* Pointer to a constant null-terminated character string
* containing the name of the method that invoked this function.
* This method name is used solely for constructing error messages.
* class
* Pointer to a constant null-terminated character string containing the
* class name of the Object being processed. This name is used solely
* for constructing error messages.
* exprs
* Pointer to a null-terminated string containing the expression
* to be parsed.
* istart
* Index of the first character in "exprs" to be considered by this
* function.
* nvar
* The number of defined variable names.
* var
* An array of pointers (with "nvar" elements) to null-terminated
* strings. Each of these should contain a variable name to be
* recognised. These strings are case sensitive and should contain
* no white space.
* ivar
* Pointer to an int in which to return the index in "vars" of the
* variable name found. If no variable name is found, a value of -1
* is returned.
* iend
* Pointer to an int in which to return the index in "exprs" of the
* final character which forms part of the variable name. If no variable
* name is found, a value of -1 is returned.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
int found; /* Variable name recognised? */
int nc; /* Number of characters in variable name */
/* Check the global error status. */
if ( !astOK ) return;
/* Initialise. */
*ivar = -1;
*iend = -1;
/* Determine if the characters in the expression starting at index
"istart" constitute a valid name. */
ParseName( exprs, istart, iend, status );
/* If so, calculate the length of the name. */
if ( *iend >= istart ) {
nc = *iend - istart + 1;
/* Loop to compare the name with the list of variable names
supplied. */
found = 0;
for ( *ivar = 0; *ivar < nvar; ( *ivar )++ ) {
found = ( nc == (int) strlen( var[ *ivar ] ) ) &&
!strncmp( exprs + istart, var[ *ivar ], (size_t) nc );
/* Break if the name is recognised. */
if ( found ) break;
}
/* If it was not recognised, then report an error and reset the output
values. */
if ( !found ) {
astError( AST__UDVOF,
"%s(%s): Undefined variable or function in the expression "
"\"%.*s\".", status,
method, class, *iend + 1, exprs );
*ivar = -1;
*iend = -1;
}
}
}
static double Poisson( Rcontext *context, double mean, int *status ) {
/*
* Name:
* Poisson
* Purpose:
* Produce a pseudo-random sample from a Poisson distribution.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* double Poisson( Rcontext *context, double mean, int *status )
* Class Membership:
* MathMap member function.
* Description:
* On each invocation, this function returns a pseudo-random sample drawn
* from a Poisson distribution with a specified mean. A combination of
* methods is used, depending on the value of the mean. The algorithm is
* based on that given by Press et al. (Numerical Recipes), but
* re-implemented and extended.
* Parameters:
* context
* Pointer to an Rcontext structure which holds the random number
* generator's context between invocations.
* mean
* The mean of the Poisson distribution, which should not be
* negative.
* status
* Pointer to the inherited status variable.
* Returned Value:
* A sample (which will only take integer values) from the Poisson
* distribution, or AST__BAD if the mean supplied is negative.
* Notes:
* - The sequence of numbers returned is determined by the "seed"
* value in the Rcontext structure supplied.
* - If the seed value is changed, the "active" flag must also be cleared
* so that this function can re-initiallise the Rcontext structure before
* generating the next pseudo-random number. The "active" flag should
* also be clear to force initialisation the first time an Rcontext
* structure is used.
* - This function does not perform error checking and does not generate
* errors. It will execute even if the global error status is set.
*/
/* Local Constants: */
const double small = 9.3; /* "Small" distribution mean value */
/* Local Variables: */
double pfract; /* Probability of accepting sample */
double product; /* Product of random samples */
double ran; /* Sample from Lorentzian distribution */
double result; /* Result value to return */
static double beta; /* Constant for forming acceptance ratio */
static double huge; /* Large mean where std. dev. is negligible */
static double last_mean; /* Value of "mean" on last invocation */
static double log_mean; /* Logarithm of "mean" */
static double pi; /* Value of pi */
static double ranmax; /* Maximum safe value of "ran" */
static double root_2mean; /* sqrt( 2.0 * mean ) */
static double sqrt_point9; /* Square root of 0.9 */
static double thresh; /* Threshold for product of samples */
static int init = 0; /* Local initialisation performed? */
LOCK_MUTEX6
/* If initialisation has not yet been performed, then perform it
now. */
if ( !init ) {
/* Initialise the mean value from the previous invocation. */
last_mean = -1.0;
/* Calculate simple constants. */
pi = acos( -1.0 );
sqrt_point9 = sqrt( 0.9 );
/* Calculate the value of the distribution mean for which the smallest
representable deviation from the mean permitted by the machine
precision is one thousand standard deviations. */
huge = pow( 1.0e3 / DBL_EPSILON, 2.0 );
/* Calculate the largest value such that
(0.9+(sqrt_point9*ranmax)*(sqrt_point9*ranmax)) doesn't overflow,
allowing a small margin for rounding error. */
ranmax = ( sqrt( DBL_MAX - 0.9 ) / sqrt( 0.9 ) ) *
( 1.0 - 4.0 * DBL_EPSILON );
/* Note that initialisation has been performed. */
init = 1;
}
/* If the distribution mean is less than zero, then return a bad
result. */
if ( mean < 0.0 ) {
result = AST__BAD;
/* If the mean is zero, then the result can only be zero. */
} else if ( mean == 0.0 ) {
result = 0.0;
/* Otherwise, if the mean is sufficiently small, we can use the direct
method of summing a series of exponentially distributed random samples
and counting the number which occur before the mean is exceeded. This
is equivalent to multiplying a series of uniformly distributed
samples and counting the number which occur before the product
becomes less then an equivalent threshold. */
} else if ( mean <= small ) {
/* If the mean has changed since the last invocation, store the new
mean and calculate a new threshold. */
if ( mean != last_mean ) {
last_mean = mean;
thresh = exp( -mean );
}
/* Initialise the product and the result. */
product = 1.0;
result = -1.0;
/* Multiply the random samples, counting the number needed to reach
the threshold. */
do {
product *= Rand( context, status );
result += 1.0;
} while ( product > thresh );
/* Otherwise, if the distribution mean is large (but not huge), we
must use an indirect rejection method. */
} else if ( mean <= huge ) {
/* If the mean has changed since the last invocation, then
re-calculate the constants required below. Note that because of the
restrictions we have placed on "mean", these calculations are safe
against overflow. */
if ( mean != last_mean ) {
last_mean = mean;
log_mean = log( mean );
root_2mean = sqrt( 2.0 * mean );
beta = mean * log_mean - LogGamma( mean + 1.0, status );
}
/* Loop until a suitable random sample has been generated. */
do {
do {
/* First transform a sample from a uniform distribution to obtain a
sample from a Lorentzian distribution. Check that the result is not so
large as to cause overflow later. Also check for overflow in the maths
library. If necessary, obtain a new sample. */
do {
errno = 0;
ran = tan( pi * Rand( context, status ) );
} while ( ( ran > ranmax ) ||
( ( errno == ERANGE ) &&
( ( ( ran >= 0.0 ) ? ran : -ran ) == HUGE_VAL ) ) );
/* If OK, scale the sample and add a constant so that the sample's
distribution approximates the Poisson distribution we
require. Overflow is prevented by the check on "ran" above, together
with the restricted value of "mean". */
result = ran * root_2mean + mean;
/* If the result is less than zero (where the Poisson distribution has
value zero), then obtain a new sample. */
} while ( result < 0.0 );
/* Round down to an integer, so that the sample is valid for a Poisson
distribution. */
result = floor( result );
/* Calculate the ratio between the required Poisson distribution and
the Lorentzian from which we have sampled (the factor of 0.9 prevents
this exceeding 1.0, and overflow is again prevented by the checks
performed above). */
ran *= sqrt_point9;
pfract = ( 0.9 + ran * ran ) *
exp( result * log_mean - LogGamma( result + 1.0, status ) - beta );
/* Accept the sample with this fractional probability, otherwise
obtain a new sample. */
} while ( Rand( context, status ) > pfract );
/* If the mean is huge, the relative standard deviation will be
negligible compared to the machine precision. In such cases, the
probability of getting a result that differs from the mean is
effectively zero, so we can simply return the mean. */
} else {
result = mean;
}
UNLOCK_MUTEX6
/* Return the result. */
return result;
}
static double Rand( Rcontext *context, int *status ) {
/*
* Name:
* Rand
* Purpose:
* Produce a uniformly distributed pseudo-random number.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* double Rand( Rcontext *context, int *status )
* Class Membership:
* MathMap member function.
* Description:
* On each invocation, this function returns a pseudo-random number
* uniformly distributed in the range 0.0 to 1.0 (inclusive). The
* underlying algorithm is that used by the "ran2" function of Press et
* al. (Numerical Recipes), which has a long period and good statistical
* properties. This independent implementation returns double precision
* values.
* Parameters:
* context
* Pointer to an Rcontext structure which holds the random number
* generator's context between invocations.
* status
* Pointer to the inherited status variable.
* Notes:
* - The sequence of numbers returned is determined by the "seed"
* value in the Rcontext structure supplied.
* - If the seed value is changed, the "active" flag must also be cleared
* so that this function can re-initiallise the Rcontext structure before
* generating the next pseudo-random number. The "active" flag should
* also be clear to force initialisation the first time an Rcontext
* structure is used.
* - This function does not perform error checking and does not generate
* errors. It will execute even if the global error status is set.
*/
/* Local Constants: */
const long int a1 = 40014L; /* Random number generator constants... */
const long int a2 = 40692L;
const long int m1 = 2147483563L;
const long int m2 = 2147483399L;
const long int q1 = 53668L;
const long int q2 = 52774L;
const long int r1 = 12211L;
const long int r2 = 3791L;
const int ntab = /* Size of shuffle table */
AST_MATHMAP_RAND_CONTEXT_NTAB_;
const int nwarm = 8; /* Number of warm-up iterations */
/* Local Variables: */
double result; /* Result value to return */
double scale; /* Scale factor for random integers */
double sum; /* Sum for forming normalisation constant */
int dbits; /* Approximate bits in double mantissa */
int irand; /* Loop counter for random integers */
int itab; /* Loop counter for shuffle table */
int lbits; /* Approximate bits used by generators */
long int seed; /* Random number seed */
long int tmp; /* Temporary variable */
static double norm; /* Normalisation constant */
static double scale0; /* Scale decrement for successive integers */
static int init = 0; /* Local initialisation performed? */
static int nrand; /* Number of random integers to use */
/* If the random number generator context is not active, then
initialise it. */
if ( !context->active ) {
/* First, perform local initialisation for this function, if not
already done. */
LOCK_MUTEX4
if ( !init ) {
/* Obtain the approximate number of bits used by the random integer
generator from the value "m1". */
(void) frexp( (double) m1, &lbits );
/* Obtain the approximate number of bits used by the mantissa of the
double value we want to produce, allowing for the (unlikely)
possibility that the mantissa's radix isn't 2. */
dbits = (int) ceil( (double) DBL_MANT_DIG *
log( (double) FLT_RADIX ) / log( 2.0 ) );
/* Hence determine how many random integers we need to combine to
produce each double value, so that all the mantissa's bits will be
used. */
nrand = ( dbits + lbits - 1 ) / lbits;
/* Calculate the scale factor by which each successive random
integer's contribution to the result is reduced so as to generate
progressively less significant bits. */
scale0 = 1.0 / (double) ( m1 - 1L );
/* Loop to sum the maximum contributions from each random integer
(assuming that each takes the largest possible value, of "m1-1",
from which we will later subtract 1). This produces the normalisation
factor by which the result must be scaled so as to lie between 0.0 and
1.0 (inclusive). */
sum = 0.0;
scale = 1.0;
for ( irand = 0; irand < nrand; irand++ ) {
scale *= scale0;
sum += scale;
}
norm = 1.0 / ( sum * (double) ( m1 - 2L ) );
/* Note that local initialisation has been done. */
init = 1;
}
UNLOCK_MUTEX4
/* Obtain the seed value, enforcing positivity. */
seed = (long int) context->seed;
if ( seed < 1 ) seed = seed + LONG_MAX;
if ( seed < 1 ) seed = LONG_MAX;
/* Initialise the random number generators with this seed. */
context->rand1 = context->rand2 = seed;
/* Now loop to initialise the shuffle table with an initial set of
random values. We generate more values than required in order to "warm
up" the generator before recording values in the table. */
for ( itab = ntab + nwarm - 1; itab >= 0; itab-- ) {
/* Repeatedly update "rand1" from the expression "(rand1*a1)%m1" while
avoiding overflow. */
tmp = context->rand1 / q1;
context->rand1 = a1 * ( context->rand1 - tmp * q1 ) - tmp * r1;
if ( context->rand1 < 0L ) context->rand1 += m1;
/* After warming up, start recording values in the table. */
if ( itab < ntab ) context->table[ itab ] = context->rand1;
}
/* Record the last entry in the table as the "previous" random
integer. */
context->random_int = context->table[ 0 ];
/* Note the random number generator context is active. */
context->active = 1;
}
/* Generate a random value. */
/* ------------------------ */
/* Initialise. */
result = 0.0;
/* Loop to generate sufficient random integers to combine into a
double value. */
scale = norm;
for ( irand = 0; irand < nrand; irand++ ) {
/* Update the first generator "rand1" from the expression
"(a1*rand1)%m1" while avoiding overflow. */
tmp = context->rand1 / q1;
context->rand1 = a1 * ( context->rand1 - tmp * q1 ) - tmp * r1;
if ( context->rand1 < 0L ) context->rand1 += m1;
/* Similarly, update the second generator "rand2" from the expression
"(a2*rand2)%m2". */
tmp = context->rand2 / q2;
context->rand2 = a2 * ( context->rand2 - tmp * q2 ) - tmp * r2;
if ( context->rand2 < 0L ) context->rand2 += m2;
/* Use the previous random integer to generate an index into the
shuffle table. */
itab = (int) ( context->random_int /
( 1L + ( m1 - 1L ) / (long int) ntab ) );
/* The algorithm left by RFWS seems to have a bug that "itab" can
sometimes be outside the range of [0.,ntab-1] causing the context->table
array to be addressed out of bounds. To avoid this, use the
following sticking plaster, since I'm not sure what the correct fix is. */
if( itab < 0 ) itab = -itab;
itab = itab % ntab;
/* Extract the table entry and replace it with a new random value from
the first generator "rand1". This is the Bays-Durham shuffle. */
context->random_int = context->table[ itab ];
context->table[ itab ] = context->rand1;
/* Combine the extracted value with the latest value from the second
generator "rand2". */
context->random_int -= context->rand2;
if ( context->random_int < 1L ) context->random_int += m1 - 1L;
/* Update the scale factor to apply to the resulting random integer
and accumulate its contribution to the result. */
scale *= scale0;
result += scale * (double) ( context->random_int - 1L );
}
/* Return the result. */
return result;
}
static void SetAttrib( AstObject *this_object, const char *setting, int *status ) {
/*
* Name:
* SetAttrib
* Purpose:
* Set an attribute value for a MathMap.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* void SetAttrib( AstObject *this, const char *setting, int *status )
* Class Membership:
* MathMap member function (extends the astSetAttrib method inherited from
* the Mapping class).
* Description:
* This function assigns an attribute value for a MathMap, the attribute
* and its value being specified by means of a string of the form:
*
* "attribute= value "
*
* Here, "attribute" specifies the attribute name and should be in lower
* case with no white space present. The value to the right of the "="
* should be a suitable textual representation of the value to be assigned
* and this will be interpreted according to the attribute's data type.
* White space surrounding the value is only significant for string
* attributes.
* Parameters:
* this
* Pointer to the MathMap.
* setting
* Pointer to a null terminated string specifying the new attribute
* value.
* status
* Pointer to the inherited status variable.
* Returned Value:
* void
*/
/* Local Vaiables: */
AstMathMap *this; /* Pointer to the MathMap structure */
int ival; /* Integer attribute value */
int len; /* Length of setting string */
int nc; /* Number of characters read by astSscanf */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the MathMap structure. */
this = (AstMathMap *) this_object;
/* Obtain the length of the setting string. */
len = strlen( setting );
/* Test for each recognised attribute in turn, using "astSscanf" to parse the
setting string and extract the attribute value (or an offset to it in the
case of string values). In each case, use the value set in "nc" to check
that the entire string was matched. Once a value has been obtained, use the
appropriate method to set it. */
/* Seed. */
/* ----- */
if ( nc = 0,
( 1 == astSscanf( setting, "seed= %d %n", &ival, &nc ) )
&& ( nc >= len ) ) {
astSetSeed( this, ival );
/* SimpFI. */
/* ------- */
} else if ( nc = 0,
( 1 == astSscanf( setting, "simpfi= %d %n", &ival, &nc ) )
&& ( nc >= len ) ) {
astSetSimpFI( this, ival );
/* SimpIF. */
/* ------- */
} else if ( nc = 0,
( 1 == astSscanf( setting, "simpif= %d %n", &ival, &nc ) )
&& ( nc >= len ) ) {
astSetSimpIF( this, ival );
/* Pass any unrecognised setting to the parent method for further
interpretation. */
} else {
(*parent_setattrib)( this_object, setting, status );
}
}
static int TestAttrib( AstObject *this_object, const char *attrib, int *status ) {
/*
* Name:
* TestAttrib
* Purpose:
* Test if a specified attribute value is set for a MathMap.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* int TestAttrib( AstObject *this, const char *attrib, int *status )
* Class Membership:
* MathMap member function (over-rides the astTestAttrib protected
* method inherited from the Mapping class).
* Description:
* This function returns a boolean result (0 or 1) to indicate whether
* a value has been set for one of a MathMap's attributes.
* Parameters:
* this
* Pointer to the MathMap.
* attrib
* Pointer to a null terminated string specifying the attribute
* name. This should be in lower case with no surrounding white
* space.
* status
* Pointer to the inherited status variable.
* Returned Value:
* One if a value has been set, otherwise zero.
* Notes:
* - A value of zero will be returned if this function is invoked
* with the global status set, or if it should fail for any reason.
*/
/* Local Variables: */
AstMathMap *this; /* Pointer to the MathMap structure */
int result; /* Result value to return */
/* Initialise. */
result = 0;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the MathMap structure. */
this = (AstMathMap *) this_object;
/* Check the attribute name and test the appropriate attribute. */
/* Seed. */
/* ----- */
if ( !strcmp( attrib, "seed" ) ) {
result = astTestSeed( this );
/* SimpFI. */
/* ------- */
} else if ( !strcmp( attrib, "simpfi" ) ) {
result = astTestSimpFI( this );
/* SimpIF. */
/* ------- */
} else if ( !strcmp( attrib, "simpif" ) ) {
result = astTestSimpIF( this );
/* If the attribute is not recognised, pass it on to the parent method
for further interpretation. */
} else {
result = (*parent_testattrib)( this_object, attrib, status );
}
/* Return the result, */
return result;
}
static AstPointSet *Transform( AstMapping *map, AstPointSet *in,
int forward, AstPointSet *out, int *status ) {
/*
* Name:
* Transform
* Purpose:
* Apply a MathMap to transform a set of points.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* AstPointSet *Transform( AstMapping *map, AstPointSet *in,
* int forward, AstPointSet *out, int *status )
* Class Membership:
* MathMap member function (over-rides the astTransform method inherited
* from the Mapping class).
* Description:
* This function takes a MathMap and a set of points encapsulated in a
* PointSet and transforms the points so as to apply the required coordinate
* transformation.
* Parameters:
* map
* Pointer to the MathMap.
* in
* Pointer to the PointSet holding the input coordinate data.
* forward
* A non-zero value indicates that the forward coordinate transformation
* should be applied, while a zero value requests the inverse
* transformation.
* out
* Pointer to a PointSet which will hold the transformed (output)
* coordinate values. A NULL value may also be given, in which case a
* new PointSet will be created by this function.
* status
* Pointer to the inherited status variable.
* Returned Value:
* Pointer to the output (possibly new) PointSet.
* Notes:
* - A null pointer will be returned if this function is invoked with the
* global error status set, or if it should fail for any reason.
* - The number of coordinate values per point in the input PointSet must
* match the number of coordinates for the MathMap being applied.
* - If an output PointSet is supplied, it must have space for sufficient
* number of points and coordinate values per point to accommodate the
* result. Any excess space will be ignored.
*/
/* Local Variables: */
AstMathMap *this; /* Pointer to MathMap to be applied */
AstPointSet *result; /* Pointer to output PointSet */
double **data_ptr; /* Array of pointers to coordinate data */
double **ptr_in; /* Pointer to input coordinate data */
double **ptr_out; /* Pointer to output coordinate data */
double *work; /* Workspace for intermediate results */
int idata; /* Loop counter for data pointer elements */
int ifun; /* Loop counter for functions */
int ncoord_in; /* Number of coordinates per input point */
int ncoord_out; /* Number of coordinates per output point */
int ndata; /* Number of data pointer elements filled */
int nfun; /* Number of functions to evaluate */
int npoint; /* Number of points */
/* Check the global error status. */
if ( !astOK ) return NULL;
/* Initialise variables to avoid "used of uninitialised variable"
messages from dumb compilers. */
work = NULL;
/* Obtain a pointer to the MathMap. */
this = (AstMathMap *) map;
/* Apply the parent mapping using the stored pointer to the Transform member
function inherited from the parent Mapping class. This function validates
all arguments and generates an output PointSet if necessary, but does not
actually transform any coordinate values. */
result = (*parent_transform)( map, in, forward, out, status );
/* We will now extend the parent astTransform method by performing the
transformation needed to generate the output coordinate values. */
/* Determine the numbers of points and coordinates per point from the input
and output PointSets and obtain pointers for accessing the input and output
coordinate values. */
ncoord_in = astGetNcoord( in );
ncoord_out = astGetNcoord( result );
npoint = astGetNpoint( in );
ptr_in = astGetPoints( in );
ptr_out = astGetPoints( result );
/* Determine whether to apply the forward or inverse transformation, according
to the direction specified and whether the mapping has been inverted. */
if ( astGetInvert( this ) ) forward = !forward;
/* Obtain the number of transformation functions that must be
evaluated to perform the transformation. This will include any that
produce intermediate results from which the final results are
calculated. */
nfun = forward ? this->nfwd : this->ninv;
/* If intermediate results are to be calculated, then allocate
workspace to hold them (each intermediate result being a vector of
"npoint" double values). */
if ( nfun > ncoord_out ) {
work = astMalloc( sizeof( double) *
(size_t) ( npoint * ( nfun - ncoord_out ) ) );
}
/* Also allocate space for an array to hold pointers to the input
data, intermediate results and output data. */
data_ptr = astMalloc( sizeof( double * ) * (size_t) ( ncoord_in + nfun ) );
/* We now set up the "data_ptr" array to locate the data to be
processed. */
if ( astOK ) {
/* The first elements of this array point at the input data
vectors. */
ndata = 0;
for ( idata = 0; idata < ncoord_in; idata++ ) {
data_ptr[ ndata++ ] = ptr_in[ idata ];
}
/* The following elements point at successive vectors within the
workspace array (if allocated). These vectors will act first as output
arrays for intermediate results, and then as input arrays for
subsequent calculations which use these results. */
for ( idata = 0; idata < ( nfun - ncoord_out ); idata++ ) {
data_ptr[ ndata++ ] = work + ( idata * npoint );
}
/* The final elements point at the output coordinate data arrays into
which the final results will be written. */
for ( idata = 0; idata < ncoord_out; idata++ ) {
data_ptr[ ndata++ ] = ptr_out[ idata ];
}
/* Perform coordinate transformation. */
/* ---------------------------------- */
/* Loop to evaluate each transformation function in turn. */
for ( ifun = 0; ifun < nfun; ifun++ ) {
/* Invoke the function that evaluates compiled expressions. Pass the
appropriate code and constants arrays, depending on the direction of
coordinate transformation, together with the required stack size. The
output array is the vector located by successive elements of the
"data_ptr" array (skipping the input data elements), while the
function has access to all previous elements of the "data_ptr" array
to locate the required input data. */
EvaluateFunction( &this->rcontext, npoint, (const double **) data_ptr,
forward ? this->fwdcode[ ifun ] :
this->invcode[ ifun ],
forward ? this->fwdcon[ ifun ] :
this->invcon[ ifun ],
forward ? this->fwdstack : this->invstack,
data_ptr[ ifun + ncoord_in ], status );
}
}
/* Free the array of data pointers and any workspace allocated for
intermediate results. */
data_ptr = astFree( data_ptr );
if ( nfun > ncoord_out ) work = astFree( work );
/* If an error occurred, then return a NULL pointer. If no output
PointSet was supplied, also delete any new one that may have been
created. */
if ( !astOK ) {
result = ( result == out ) ? NULL : astDelete( result );
}
/* Return a pointer to the output PointSet. */
return result;
}
static void ValidateSymbol( const char *method, const char *class,
const char *exprs, int iend, int sym,
int *lpar, int **argcount, int **opensym,
int *ncon, double **con, int *status ) {
/*
* Name:
* ValidateSymbol
* Purpose:
* Validate a symbol in an expression.
* Type:
* Private function.
* Synopsis:
* #include "mathmap.h"
* void ValidateSymbol( const char *method, const char *class,
* const char *exprs, int iend, int sym, int *lpar,
* int **argcount, int **opensym, int *ncon,
* double **con, int *status )
* Class Membership:
* MathMap member function.
* Description:
* This function validates an identified standard symbol during
* compilation of an expression. Its main task is to keep track of the
* level of parenthesis in the expression and to count the number of
* arguments supplied to functions at each level of parenthesis (for
* nested function calls). On this basis it is able to interpret and
* accept or reject symbols which represent function calls, parentheses
* and delimiters. Other symbols are accepted automatically.
* Parameters:
* method
* Pointer to a constant null-terminated character string
* containing the name of the method that invoked this function.
* This method name is used solely for constructing error messages.
* class
* Pointer to a constant null-terminated character string containing the
* class name of the Object being processed. This name is used solely
* for constructing error messages.
* exprs
* Pointer to a null-terminated string containing the expression
* being parsed. This is only used for constructing error messages.
* iend
* Index in "exprs" of the last character belonging to the most
* recently identified symbol. This is only used for constructing error
* messages.
* sym
* Index in the static "symbol" array of the most recently identified
* symbol in the expression. This is the symbol to be verified.
* lpar
* Pointer to an int which holds the current level of parenthesis. On
* the first invocation, this should be zero. The returned value should
* be passed to subsequent invocations.
* argcount
* Address of a pointer to a dynamically allocated array of int in
* which argument count information is maintained for each level of
* parenthesis (e.g. for nested function calls). On the first invocation,
* "*argcount" should be NULL. This function will allocate the required
* space as needed and update this pointer. The returned pointer value
* should be passed to subsequent invocations.
*
* The allocated space must be freed by the caller (using astFree) when
* no longer required.
* opensym
* Address of a pointer to a dynamically allocated array of int, in which
* information is maintained about the functions associated with each
* level of parenthesis (e.g. for nested function calls). On the first
* invocation, "*opensym" should be NULL. This function will allocate the
* required space as needed and update this pointer. The returned pointer
* value should be passed to subsequent invocations.
*
* The allocated space must be freed by the caller (using astFree) when
* no longer required.
* ncon
* Pointer to an int which holds a count of the constants associated
* with the expression (and determines the size of the "*con" array).
* This function will update the count to reflect any new constants
* appended to the "*con" array and the returned value should be passed
* to subsequent invocations.
* con
* Address of a pointer to a dynamically allocated array of double, in
* which the constants associated with the expression being parsed are
* accumulated. On entry, "*con" should point at a dynamic array with
* at least "*ncon" elements containing existing constants (or may be
* NULL if no constants have yet been stored). This function will
* allocate the required space as needed and update this pointer (and
* "*ncon") appropriately. The returned pointer value should be passed
* to subsequent invocations.
*
* The allocated space must be freed by the caller (using astFree) when
* no longer required.
* status
* Pointer to the inherited status variable.
* Notes:
* - The dynamically allocated arrays normally returned by this function
* will be freed and NULL pointers will be returned if this function is
* invoked with the global error status set, or if it should fail for any
* reason.
*/
/* Check the global error status, but do not return at this point
because dynamic arrays may require freeing. */
if ( astOK ) {
/* Check if the symbol is a comma. */
if ( ( symbol[ sym ].text[ 0 ] == ',' ) &&
( symbol[ sym ].text[ 1 ] == '\0' ) ) {
/* A comma is only used to delimit function arguments. If the current
level of parenthesis is zero, or the symbol which opened the current
level of parenthesis was not a function call (indicated by an argument
count of zero at the current level of parenthesis), then report an
error. */
if ( ( *lpar <= 0 ) || ( ( *argcount )[ *lpar - 1 ] == 0 ) ) {
astError( AST__COMIN,
"%s(%s): Spurious comma encountered in the expression "
"\"%.*s\".", status,
method, class, iend + 1, exprs );
/* If a comma is valid, then increment the argument count at the
current level of parenthesis. */
} else {
( *argcount )[ *lpar - 1 ]++;
}
/* If the symbol is not a comma, check if it increases the current
level of parenthesis. */
} else if ( symbol[ sym ].parincrement > 0 ) {
/* Increase the size of the arrays which hold parenthesis level
information and check for errors. */
*argcount = astGrow( *argcount, *lpar + 1, sizeof( int ) );
*opensym = astGrow( *opensym, *lpar + 1, sizeof( int ) );
if ( astOK ) {
/* Increment the level of parenthesis and initialise the argument
count at the new level. This count is set to zero if the symbol which
opens the parenthesis level is not a function call (indicated by a
zero "nargs" entry in the symbol data), and it subsequently remains at
zero. If the symbol is a function call, the argument count is
initially set to 1 and increments whenever a comma is encountered at
this parenthesis level. */
( *argcount )[ ++( *lpar ) - 1 ] = ( symbol[ sym ].nargs != 0 );
/* Remember the symbol which opened this parenthesis level. */
( *opensym )[ *lpar - 1 ] = sym;
}
/* Check if the symbol decreases the current parenthesis level. */
} else if ( symbol[ sym ].parincrement < 0 ) {
/* Ensure that the parenthesis level is not already at zero. If it is,
then there is a missing left parenthesis in the expression being
compiled, so report an error. */
if ( *lpar == 0 ) {
astError( AST__MLPAR,
"%s(%s): Missing left parenthesis in the expression "
"\"%.*s\".", status,
method, class, iend + 1, exprs );
/* If the parenthesis level is valid and the symbol which opened this
level of parenthesis was a function call with a fixed number of
arguments (indicated by a positive "nargs" entry in the symbol data),
then we must check the number of function arguments which have been
encountered. */
} else if ( symbol[ ( *opensym )[ *lpar - 1 ] ].nargs > 0 ) {
/* Report an error if the number of arguments is wrong. */
if ( ( *argcount )[ *lpar - 1 ] !=
symbol[ ( *opensym )[ *lpar - 1 ] ].nargs ) {
astError( AST__WRNFA,
"%s(%s): Wrong number of function arguments in the "
"expression \"%.*s\".", status,
method, class, iend + 1, exprs );
/* If the number of arguments is valid, decrement the parenthesis
level. */
} else {
( *lpar )--;
}
/* If the symbol which opened this level of parenthesis was a function
call with a variable number of arguments (indicated by a negative
"nargs" entry in the symbol data), then we must check and process the
number of function arguments. */
} else if ( symbol[ ( *opensym )[ *lpar - 1 ] ].nargs < 0 ) {
/* Check that the minimum required number of arguments have been
supplied. Report an error if they have not. */
if ( ( *argcount )[ *lpar - 1 ] <
( -symbol[ ( *opensym )[ *lpar - 1 ] ].nargs ) ) {
astError( AST__WRNFA,
"%s(%s): Insufficient function arguments in the "
"expression \"%.*s\".", status,
method, class, iend + 1, exprs );
/* If the number of arguments is valid, increase the size of the
constants array and check for errors. */
} else {
*con = astGrow( *con, *ncon + 1, sizeof( double ) );
if ( astOK ) {
/* Append the argument count to the end of the array of constants and
decrement the parenthesis level. */
( *con )[ ( *ncon )++ ] =
(double) ( *argcount )[ --( *lpar ) ];
}
}
/* Finally, if the symbol which opened this level of parenthesis was
not a function call ("nargs" entry in the symbol data is zero), then
decrement the parenthesis level. In this case there is no need to
check the argument count, because it will not have been
incremented. */
} else {
( *lpar )--;
}
}
}
/* If an error occurred (or the global error status was set on entry),
then reset the parenthesis level and free any memory which may have
been allocated. */
if ( !astOK ) {
*lpar = 0;
if ( *argcount ) *argcount = astFree( *argcount );
if ( *opensym ) *opensym = astFree( *opensym );
if ( *con ) *con = astFree( *con );
}
}
/* Functions which access class attributes. */
/* ---------------------------------------- */
/* Implement member functions to access the attributes associated with
this class using the macros defined for this purpose in the
"object.h" file. For a description of each attribute, see the class
interface (in the associated .h file). */
/*
*att++
* Name:
* Seed
* Purpose:
* Random number seed for a MathMap.
* Type:
* Public attribute.
* Synopsis:
* Integer.
* Description:
* This attribute, which may take any integer value, determines the
* sequence of random numbers produced by the random number functions in
* MathMap expressions. It is set to an unpredictable default value when
* a MathMap is created, so that by default each MathMap uses a different
* set of random numbers.
*
* If required, you may set this Seed attribute to a value of your
* choosing in order to produce repeatable behaviour from the random
* number functions. You may also enquire the Seed value (e.g. if an
* initially unpredictable value has been used) and then use it to
* reproduce the resulting sequence of random numbers, either from the
* same MathMap or from another one.
*
* Clearing the Seed attribute gives it a new unpredictable default
* value.
* Applicability:
* MathMap
* All MathMaps have this attribute.
*att--
*/
/* Clear the Seed value by setting it to a new unpredictable value
produced by DefaultSeed and clearing the "seed_set" flag in the
MathMap's random number generator context. Also clear the "active"
flag, so that the generator will be re-initialised to use this seed
when it is next invoked. */
astMAKE_CLEAR(MathMap,Seed,rcontext.seed,( this->rcontext.seed_set = 0,
this->rcontext.active = 0,
DefaultSeed( &this->rcontext, status ) ))
/* Return the "seed" value from the random number generator
context. */
astMAKE_GET(MathMap,Seed,int,0,this->rcontext.seed)
/* Store the new seed value in the MathMap's random number generator
context and set the context's "seed_set" flag. Also clear the "active"
flag, so that the generator will be re-initialised to use this seed
when it is next invoked. */
astMAKE_SET(MathMap,Seed,int,rcontext.seed,( this->rcontext.seed_set = 1,
this->rcontext.active = 0,
value ))
/* Test the "seed_set" flag in the random number generator context. */
astMAKE_TEST(MathMap,Seed,( this->rcontext.seed_set ))
/*
*att++
* Name:
* SimpFI
* Purpose:
* Forward-inverse MathMap pairs simplify?
* Type:
* Public attribute.
* Synopsis:
* Integer (boolean).
* Description:
c This attribute should be set to a non-zero value if applying a
c MathMap's forward transformation, followed immediately by the matching
c inverse transformation will always restore the original set of
c coordinates. It indicates that AST may replace such a sequence of
c operations by an identity Mapping (a UnitMap) if it is encountered
c while simplifying a compound Mapping (e.g. using astSimplify).
f This attribute should be set to a non-zero value if applying a
f MathMap's forward transformation, followed immediately by the matching
f inverse transformation will always restore the original set of
f coordinates. It indicates that AST may replace such a sequence of
f operations by an identity Mapping (a UnitMap) if it is encountered
f while simplifying a compound Mapping (e.g. using AST_SIMPLIFY).
*
* By default, the SimpFI attribute is zero, so that AST will not perform
* this simplification unless you have set SimpFI to indicate that it is
* safe to do so.
* Applicability:
* MathMap
* All MathMaps have this attribute.
* Notes:
* - For simplification to occur, the two MathMaps must be in series and
* be identical (with textually identical transformation
* functions). Functional equivalence is not sufficient.
* - The consent of both MathMaps is required before simplification can
* take place. If either has a SimpFI value of zero, then simplification
* will not occur.
* - The SimpFI attribute controls simplification only in the case where
* a MathMap's forward transformation is followed by the matching inverse
* transformation. It does not apply if an inverse transformation is
* followed by a forward transformation. This latter case is controlled
* by the SimpIF attribute.
c - The "forward" and "inverse" transformations referred to are those
c defined when the MathMap is created (corresponding to the "fwd" and
c "inv" parameters of its constructor function). If the MathMap is
c inverted (i.e. its Invert attribute is non-zero), then the role of the
c SimpFI and SimpIF attributes will be interchanged.
f - The "forward" and "inverse" transformations referred to are those
f defined when the MathMap is created (corresponding to the FWD and
f INV arguments of its constructor function). If the MathMap is
f inverted (i.e. its Invert attribute is non-zero), then the role of the
f SimpFI and SimpIF attributes will be interchanged.
*att--
*/
/* Clear the SimpFI value by setting it to -INT_MAX. */
astMAKE_CLEAR(MathMap,SimpFI,simp_fi,-INT_MAX)
/* Supply a default of 0 if no SimpFI value has been set. */
astMAKE_GET(MathMap,SimpFI,int,0,( ( this->simp_fi != -INT_MAX ) ?
this->simp_fi : 0 ))
/* Set a SimpFI value of 1 if any non-zero value is supplied. */
astMAKE_SET(MathMap,SimpFI,int,simp_fi,( value != 0 ))
/* The SimpFI value is set if it is not -INT_MAX. */
astMAKE_TEST(MathMap,SimpFI,( this->simp_fi != -INT_MAX ))
/*
*att++
* Name:
* SimpIF
* Purpose:
* Inverse-forward MathMap pairs simplify?
* Type:
* Public attribute.
* Synopsis:
* Integer (boolean).
* Description:
c This attribute should be set to a non-zero value if applying a
c MathMap's inverse transformation, followed immediately by the matching
c forward transformation will always restore the original set of
c coordinates. It indicates that AST may replace such a sequence of
c operations by an identity Mapping (a UnitMap) if it is encountered
c while simplifying a compound Mapping (e.g. using astSimplify).
f This attribute should be set to a non-zero value if applying a
f MathMap's inverse transformation, followed immediately by the matching
f forward transformation will always restore the original set of
f coordinates. It indicates that AST may replace such a sequence of
f operations by an identity Mapping (a UnitMap) if it is encountered
f while simplifying a compound Mapping (e.g. using AST_SIMPLIFY).
*
* By default, the SimpIF attribute is zero, so that AST will not perform
* this simplification unless you have set SimpIF to indicate that it is
* safe to do so.
* Applicability:
* MathMap
* All MathMaps have this attribute.
* Notes:
* - For simplification to occur, the two MathMaps must be in series and
* be identical (with textually identical transformation
* functions). Functional equivalence is not sufficient.
* - The consent of both MathMaps is required before simplification can
* take place. If either has a SimpIF value of zero, then simplification
* will not occur.
* - The SimpIF attribute controls simplification only in the case where
* a MathMap's inverse transformation is followed by the matching forward
* transformation. It does not apply if a forward transformation is
* followed by an inverse transformation. This latter case is controlled
* by the SimpFI attribute.
c - The "forward" and "inverse" transformations referred to are those
c defined when the MathMap is created (corresponding to the "fwd" and
c "inv" parameters of its constructor function). If the MathMap is
c inverted (i.e. its Invert attribute is non-zero), then the role of the
c SimpFI and SimpIF attributes will be interchanged.
f - The "forward" and "inverse" transformations referred to are those
f defined when the MathMap is created (corresponding to the FWD and
f INV arguments of its constructor function). If the MathMap is
f inverted (i.e. its Invert attribute is non-zero), then the role of the
f SimpFI and SimpIF attributes will be interchanged.
*att--
*/
/* Clear the SimpIF value by setting it to -INT_MAX. */
astMAKE_CLEAR(MathMap,SimpIF,simp_if,-INT_MAX)
/* Supply a default of 0 if no SimpIF value has been set. */
astMAKE_GET(MathMap,SimpIF,int,0,( ( this->simp_if != -INT_MAX ) ?
this->simp_if : 0 ))
/* Set a SimpIF value of 1 if any non-zero value is supplied. */
astMAKE_SET(MathMap,SimpIF,int,simp_if,( value != 0 ))
/* The SimpIF value is set if it is not -INT_MAX. */
astMAKE_TEST(MathMap,SimpIF,( this->simp_if != -INT_MAX ))
/* Copy constructor. */
/* ----------------- */
static void Copy( const AstObject *objin, AstObject *objout, int *status ) {
/*
* Name:
* Copy
* Purpose:
* Copy constructor for MathMap objects.
* Type:
* Private function.
* Synopsis:
* void Copy( const AstObject *objin, AstObject *objout, int *status )
* Description:
* This function implements the copy constructor for MathMap objects.
* Parameters:
* objin
* Pointer to the object to be copied.
* objout
* Pointer to the object being constructed.
* status
* Pointer to the inherited status variable.
* Returned Value:
* void
* Notes:
* - This constructor makes a deep copy.
*/
/* Local Variables: */
AstMathMap *in; /* Pointer to input MathMap */
AstMathMap *out; /* Pointer to output MathMap */
int ifun; /* Loop counter for functions */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain pointers to the input and output MathMaps. */
in = (AstMathMap *) objin;
out = (AstMathMap *) objout;
/* For safety, first clear any references to the input memory from
the output MathMap. */
out->fwdfun = NULL;
out->invfun = NULL;
out->fwdcode = NULL;
out->invcode = NULL;
out->fwdcon = NULL;
out->invcon = NULL;
/* Now allocate and initialise each of the output pointer arrays
required. */
if ( in->fwdfun ) {
MALLOC_POINTER_ARRAY( out->fwdfun, char *, out->nfwd )
}
if ( in->invfun ) {
MALLOC_POINTER_ARRAY( out->invfun, char *, out->ninv )
}
if ( in->fwdcode ) {
MALLOC_POINTER_ARRAY( out->fwdcode, int *, out->nfwd )
}
if ( in->invcode ) {
MALLOC_POINTER_ARRAY( out->invcode, int *, out->ninv )
}
if ( in->fwdcon ) {
MALLOC_POINTER_ARRAY( out->fwdcon, double *, out->nfwd )
}
if ( in->invcon ) {
MALLOC_POINTER_ARRAY( out->invcon, double *, out->ninv )
}
/* If OK, loop to make copies of the data (where available) associated
with each forward transformation function, storing pointers to the
copy in the output pointer arrays allocated above. */
if ( astOK ) {
for ( ifun = 0; ifun < out->nfwd; ifun++ ) {
if ( in->fwdfun && in->fwdfun[ ifun ] ) {
out->fwdfun[ ifun ] = astStore( NULL, in->fwdfun[ ifun ],
astSizeOf( in->fwdfun[ ifun ] ) );
}
if ( in->fwdcode && in->fwdcode[ ifun ] ) {
out->fwdcode[ ifun ] = astStore( NULL, in->fwdcode[ ifun ],
astSizeOf( in->fwdcode[ ifun ] ) );
}
if ( in->fwdcon && in->fwdcon[ ifun ] ) {
out->fwdcon[ ifun ] = astStore( NULL, in->fwdcon[ ifun ],
astSizeOf( in->fwdcon[ ifun ] ) );
}
if ( !astOK ) break;
}
}
/* Repeat this process for the inverse transformation functions. */
if ( astOK ) {
for ( ifun = 0; ifun < out->ninv; ifun++ ) {
if ( in->invfun && in->invfun[ ifun ] ) {
out->invfun[ ifun ] = astStore( NULL, in->invfun[ ifun ],
astSizeOf( in->invfun[ ifun ] ) );
}
if ( in->invcode && in->invcode[ ifun ] ) {
out->invcode[ ifun ] = astStore( NULL, in->invcode[ ifun ],
astSizeOf( in->invcode[ ifun ] ) );
}
if ( in->invcon && in->invcon[ ifun ] ) {
out->invcon[ ifun ] = astStore( NULL, in->invcon[ ifun ],
astSizeOf( in->invcon[ ifun ] ) );
}
if ( !astOK ) break;
}
}
/* If an error occurred, clean up by freeing all output memory
allocated above. */
if ( !astOK ) {
FREE_POINTER_ARRAY( out->fwdfun, out->nfwd )
FREE_POINTER_ARRAY( out->invfun, out->ninv )
FREE_POINTER_ARRAY( out->fwdcode, out->nfwd )
FREE_POINTER_ARRAY( out->invcode, out->ninv )
FREE_POINTER_ARRAY( out->fwdcon, out->nfwd )
FREE_POINTER_ARRAY( out->invcon, out->ninv )
}
}
/* Destructor. */
/* ----------- */
static void Delete( AstObject *obj, int *status ) {
/*
* Name:
* Delete
* Purpose:
* Destructor for MathMap objects.
* Type:
* Private function.
* Synopsis:
* void Delete( AstObject *obj, int *status )
* Description:
* This function implements the destructor for MathMap objects.
* Parameters:
* obj
* Pointer to the object to be deleted.
* status
* Pointer to the inherited status variable.
* Returned Value:
* void
* Notes:
* This function attempts to execute even if the global error status is
* set.
*/
/* Local Variables: */
AstMathMap *this; /* Pointer to MathMap */
/* Obtain a pointer to the MathMap structure. */
this = (AstMathMap *) obj;
/* Free all memory allocated by the MathMap. */
FREE_POINTER_ARRAY( this->fwdfun, this->nfwd )
FREE_POINTER_ARRAY( this->invfun, this->ninv )
FREE_POINTER_ARRAY( this->fwdcode, this->nfwd )
FREE_POINTER_ARRAY( this->invcode, this->ninv )
FREE_POINTER_ARRAY( this->fwdcon, this->nfwd )
FREE_POINTER_ARRAY( this->invcon, this->ninv )
}
/* Dump function. */
/* -------------- */
static void Dump( AstObject *this_object, AstChannel *channel, int *status ) {
/*
* Name:
* Dump
* Purpose:
* Dump function for MathMap objects.
* Type:
* Private function.
* Synopsis:
* void Dump( AstObject *this, AstChannel *channel, int *status )
* Description:
* This function implements the Dump function which writes out data
* for the MathMap class to an output Channel.
* Parameters:
* this
* Pointer to the MathMap whose data are being written.
* channel
* Pointer to the Channel to which the data are being written.
* status
* Pointer to the inherited status variable.
*/
/* Local Constants: */
#define COMMENT_LEN 150 /* Maximum length of a comment string */
#define KEY_LEN 50 /* Maximum length of a keyword */
/* Local Variables: */
AstMathMap *this; /* Pointer to the MathMap structure */
char comment[ COMMENT_LEN + 1 ]; /* Buffer for comment strings */
char key[ KEY_LEN + 1 ]; /* Buffer for keyword strings */
int ifun; /* Loop counter for functions */
int invert; /* MathMap inverted? */
int ival; /* Integer attribute value */
int nin; /* True number of input coordinates */
int nout; /* True number of output coordinates */
int set; /* Attribute value set? */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the MathMap structure. */
this = (AstMathMap *) this_object;
/* Determine if the MathMap is inverted and obtain the "true" number
of input and output coordinates by un-doing the effects of any
inversion. */
invert = astGetInvert( this );
nin = !invert ? astGetNin( this ) : astGetNout( this );
nout = !invert ? astGetNout( this ) : astGetNin( this );
/* Write out values representing the instance variables for the
MathMap class. Accompany these with appropriate comment strings,
possibly depending on the values being written.*/
/* In the case of attributes, we first use the appropriate (private)
Test... member function to see if they are set. If so, we then use
the (private) Get... function to obtain the value to be written
out.
For attributes which are not set, we use the astGet... method to
obtain the value instead. This will supply a default value
(possibly provided by a derived class which over-rides this method)
which is more useful to a human reader as it corresponds to the
actual default attribute value. Since "set" will be zero, these
values are for information only and will not be read back. */
/* Number of forward transformation functions. */
/* ------------------------------------------- */
/* We regard this value as set if it differs from the number of output
coordinates for the MathMap. */
set = ( this->nfwd != nout );
astWriteInt( channel, "Nfwd", set, 0, this->nfwd,
"Number of forward transformation functions" );
/* Forward transformation functions. */
/* --------------------------------- */
/* Loop to write out each forward transformation function, generating
a suitable keyword and comment for each one. */
for ( ifun = 0; ifun < this->nfwd; ifun++ ) {
(void) sprintf( key, "Fwd%d", ifun + 1 );
(void) sprintf( comment, "Forward function %d", ifun + 1 );
astWriteString( channel, key, 1, 1, this->fwdfun[ ifun ], comment );
}
/* Number of inverse transformation functions. */
/* ------------------------------------------- */
/* We regard this value as set if it differs from the number of input
coordinates for the MathMap. */
set = ( this->ninv != nin );
astWriteInt( channel, "Ninv", set, 0, this->ninv,
"Number of inverse transformation functions" );
/* Inverse transformation functions. */
/* --------------------------------- */
/* Similarly, loop to write out each inverse transformation
function. */
for ( ifun = 0; ifun < this->ninv; ifun++ ) {
(void) sprintf( key, "Inv%d", ifun + 1 );
(void) sprintf( comment, "Inverse function %d", ifun + 1 );
astWriteString( channel, key, 1, 1, this->invfun[ ifun ], comment );
}
/* SimpFI. */
/* ------- */
/* Write out the forward-inverse simplification flag. */
set = TestSimpFI( this, status );
ival = set ? GetSimpFI( this, status ) : astGetSimpFI( this );
astWriteInt( channel, "SimpFI", set, 0, ival,
ival ? "Forward-inverse pairs may simplify" :
"Forward-inverse pairs do not simplify" );
/* SimpIF. */
/* ------- */
/* Write out the inverse-forward simplification flag. */
set = TestSimpIF( this, status );
ival = set ? GetSimpIF( this, status ) : astGetSimpIF( this );
astWriteInt( channel, "SimpIF", set, 0, ival,
ival ? "Inverse-forward pairs may simplify" :
"Inverse-forward pairs do not simplify" );
/* Seed. */
/* ----- */
/* Write out any random number seed value which is set. Prefix this with
a separate flag which indicates if the seed has been set. */
set = TestSeed( this, status );
ival = set ? GetSeed( this, status ) : astGetSeed( this );
astWriteInt( channel, "Seeded", set, 0, set,
set? "Explicit random number seed set" :
"No random number seed set" );
astWriteInt( channel, "Seed", set, 0, ival,
set ? "Random number seed value" :
"Default random number seed used" );
/* Undefine macros local to this function. */
#undef COMMENT_LEN
#undef KEY_LEN
}
/* Standard class functions. */
/* ========================= */
/* Implement the astIsAMathMap and astCheckMathMap functions using the macros
defined for this purpose in the "object.h" header file. */
astMAKE_ISA(MathMap,Mapping)
astMAKE_CHECK(MathMap)
AstMathMap *astMathMap_( int nin, int nout,
int nfwd, const char *fwd[],
int ninv, const char *inv[],
const char *options, int *status, ...) {
/*
*+
* Name:
* astMathMap
* Purpose:
* Create a MathMap.
* Type:
* Protected function.
* Synopsis:
* #include "mathmap.h"
* AstMathMap *astMathMap( int nin, int nout,
* int nfwd, const char *fwd[],
* int ninv, const char *inv[],
* const char *options, ..., int *status )
* Class Membership:
* MathMap constructor.
* Description:
* This function creates a new MathMap and optionally initialises its
* attributes.
* Parameters:
* nin
* Number of input variables for the MathMap.
* nout
* Number of output variables for the MathMap.
* nfwd
* The number of forward transformation functions being supplied.
* This must be at least equal to "nout".
* fwd
* Pointer to an array, with "nfwd" elements, of pointers to null
* terminated strings which contain each of the forward transformation
* functions.
* ninv
* The number of inverse transformation functions being supplied.
* This must be at least equal to "nin".
* inv
* Pointer to an array, with "ninv" elements, of pointers to null
* terminated strings which contain each of the inverse transformation
* functions.
* options
* Pointer to a null terminated string containing an optional
* comma-separated list of attribute assignments to be used for
* initialising the new MathMap. The syntax used is the same as
* for the astSet method and may include "printf" format
* specifiers identified by "%" symbols in the normal way.
* status
* Pointer to the inherited status variable.
* ...
* If the "options" string contains "%" format specifiers, then
* an optional list of arguments may follow it in order to
* supply values to be substituted for these specifiers. The
* rules for supplying these are identical to those for the
* astSet method (and for the C "printf" function).
* Returned Value:
* A pointer to the new MathMap.
* Notes:
* - A NULL pointer will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*-
* Implementation Notes:
* - This function implements the basic MathMap constructor which is
* available via the protected interface to the MathMap class. A
* public interface is provided by the astMathMapId_ function.
*/
/* Local Variables: */
astDECLARE_GLOBALS /* Pointer to thread-specific global data */
AstMathMap *new; /* Pointer to new MathMap */
va_list args; /* Variable argument list */
/* Get a pointer to the thread specific global data structure. */
astGET_GLOBALS(NULL);
/* Check the global status. */
if ( !astOK ) return NULL;
/* Initialise the MathMap, allocating memory and initialising the
virtual function table as well if necessary. */
new = astInitMathMap( NULL, sizeof( AstMathMap ), !class_init, &class_vtab,
"MathMap", nin, nout, nfwd, fwd, ninv, inv );
/* If successful, note that the virtual function table has been
initialised. */
if ( astOK ) {
class_init = 1;
/* Obtain the variable argument list and pass it along with the options string
to the astVSet method to initialise the new MathMap's attributes. */
va_start( args, status );
astVSet( new, options, NULL, args );
va_end( args );
/* If an error occurred, clean up by deleting the new object. */
if ( !astOK ) new = astDelete( new );
}
/* Return a pointer to the new MathMap. */
return new;
}
AstMathMap *astMathMapId_( int nin, int nout,
int nfwd, const char *fwd[],
int ninv, const char *inv[],
const char *options, ... ) {
/*
*++
* Name:
c astMathMap
f AST_MATHMAP
* Purpose:
* Create a MathMap.
* Type:
* Public function.
* Synopsis:
c #include "mathmap.h"
c AstMathMap *astMathMap( int nin, int nout,
c int nfwd, const char *fwd[],
c int ninv, const char *inv[],
c const char *options, ... )
f RESULT = AST_MATHMAP( NIN, NOUT, NFWD, FWD, NINV, INV, OPTIONS, STATUS )
* Class Membership:
* MathMap constructor.
* Description:
* This function creates a new MathMap and optionally initialises its
* attributes.
*
c A MathMap is a Mapping which allows you to specify a set of forward
c and/or inverse transformation functions using arithmetic operations
c and mathematical functions similar to those available in C. The
c MathMap interprets these functions at run-time, whenever its forward
c or inverse transformation is required. Because the functions are not
c compiled in the normal sense (unlike an IntraMap), they may be used to
c describe coordinate transformations in a transportable manner. A
c MathMap therefore provides a flexible way of defining new types of
c Mapping whose descriptions may be stored as part of a dataset and
c interpreted by other programs.
f A MathMap is a Mapping which allows you to specify a set of forward
f and/or inverse transformation functions using arithmetic operations
f and mathematical functions similar to those available in Fortran. The
f MathMap interprets these functions at run-time, whenever its forward
f or inverse transformation is required. Because the functions are not
f compiled in the normal sense (unlike an IntraMap), they may be used to
f describe coordinate transformations in a transportable manner. A
f MathMap therefore provides a flexible way of defining new types of
f Mapping whose descriptions may be stored as part of a dataset and
f interpreted by other programs.
* Parameters:
c nin
f NIN = INTEGER
* Number of input variables for the MathMap. This determines the
* value of its Nin attribute.
c nout
f NOUT = INTEGER
* Number of output variables for the MathMap. This determines the
* value of its Nout attribute.
c nfwd
f NFWD = INTEGER
* The number of forward transformation functions being supplied.
c This must be at least equal to "nout", but may be increased to
f This must be at least equal to NOUT, but may be increased to
* accommodate any additional expressions which define intermediate
* variables for the forward transformation (see the "Calculating
* Intermediate Values" section below).
c fwd
f FWD = CHARACTER * ( * )( NFWD )
c An array (with "nfwd" elements) of pointers to null terminated strings
c which contain the expressions defining the forward transformation.
f An array which contains the expressions defining the forward
f transformation.
* The syntax of these expressions is described below.
c ninv
f NINV = INTEGER
* The number of inverse transformation functions being supplied.
c This must be at least equal to "nin", but may be increased to
f This must be at least equal to NIN, but may be increased to
* accommodate any additional expressions which define intermediate
* variables for the inverse transformation (see the "Calculating
* Intermediate Values" section below).
c inv
f INV = CHARACTER * ( * )( NINV )
c An array (with "ninv" elements) of pointers to null terminated strings
c which contain the expressions defining the inverse transformation.
f An array which contains the expressions defining the inverse
f transformation.
* The syntax of these expressions is described below.
c options
f OPTIONS = CHARACTER * ( * ) (Given)
c Pointer to a null-terminated string containing an optional
c comma-separated list of attribute assignments to be used for
c initialising the new MathMap. The syntax used is identical to
c that for the astSet function and may include "printf" format
c specifiers identified by "%" symbols in the normal way.
c If no initialisation is required, a zero-length string may be
c supplied.
f A character string containing an optional comma-separated
f list of attribute assignments to be used for initialising the
f new MathMap. The syntax used is identical to that for the
f AST_SET routine. If no initialisation is required, a blank
f value may be supplied.
c ...
c If the "options" string contains "%" format specifiers, then
c an optional list of additional arguments may follow it in
c order to supply values to be substituted for these
c specifiers. The rules for supplying these are identical to
c those for the astSet function (and for the C "printf"
c function).
f STATUS = INTEGER (Given and Returned)
f The global status.
* Returned Value:
c astMathMap()
f AST_MATHMAP = INTEGER
* A pointer to the new MathMap.
* Defining Transformation Functions:
c A MathMap's transformation functions are supplied as a set of
c expressions in an array of character strings. Normally you would
c supply the same number of expressions for the forward transformation,
c via the "fwd" parameter, as there are output variables (given by the
c MathMap's Nout attribute). For instance, if Nout is 2 you might use:
c - "r = sqrt( x * x + y * y )"
c - "theta = atan2( y, x )"
c
c which defines a transformation from Cartesian to polar
c coordinates. Here, the variables that appear on the left of each
c expression ("r" and "theta") provide names for the output variables
c and those that appear on the right ("x" and "y") are references to
c input variables.
f A MathMap's transformation functions are supplied as a set of
f expressions in an array of character strings. Normally you would
f supply the same number of expressions for the forward transformation,
f via the FWD argument, as there are output variables (given by the
f MathMap's Nout attribute). For instance, if Nout is 2 you might use:
f - 'R = SQRT( X * X + Y * Y )'
f - 'THETA = ATAN2( Y, X )'
f
f which defines a transformation from Cartesian to polar
f coordinates. Here, the variables that appear on the left of each
f expression (R and THETA) provide names for the output variables and
f those that appear on the right (X and Y) are references to input
f variables.
*
c To complement this, you must also supply expressions for the inverse
c transformation via the "inv" parameter. In this case, the number of
c expressions given would normally match the number of MathMap input
c coordinates (given by the Nin attribute). If Nin is 2, you might use:
c - "x = r * cos( theta )"
c - "y = r * sin( theta )"
c
c which expresses the transformation from polar to Cartesian
c coordinates. Note that here the input variables ("x" and "y") are
c named on the left of each expression, and the output variables ("r"
c and "theta") are referenced on the right.
f To complement this, you must also supply expressions for the inverse
f transformation via the INV argument. In this case, the number of
f expressions given would normally match the number of MathMap input
f coordinates (given by the Nin attribute). If Nin is 2, you might use:
f - 'X = R * COS( THETA )'
f - 'Y = R * SIN( THETA )'
f
f which expresses the transformation from polar to Cartesian
f coordinates. Note that here the input variables (X and Y) are named on
f the left of each expression, and the output variables (R and THETA)
f are referenced on the right.
*
* Normally, you cannot refer to a variable on the right of an expression
* unless it is named on the left of an expression in the complementary
* set of functions. Therefore both sets of functions (forward and
* inverse) must be formulated using the same consistent set of variable
* names. This means that if you wish to leave one of the transformations
* undefined, you must supply dummy expressions which simply name each of
* the output (or input) variables. For example, you might use:
c - "x"
c - "y"
f - 'X'
f - 'Y'
*
* for the inverse transformation above, which serves to name the input
* variables but without defining an inverse transformation.
* Calculating Intermediate Values:
c It is sometimes useful to calculate intermediate values and then to
c use these in the final expressions for the output (or input)
c variables. This may be done by supplying additional expressions for
c the forward (or inverse) transformation functions. For instance, the
c following array of five expressions describes 2-dimensional pin-cushion
c distortion:
c - "r = sqrt( xin * xin + yin * yin )"
c - "rout = r * ( 1 + 0.1 * r * r )"
c - "theta = atan2( yin, xin )"
c - "xout = rout * cos( theta )"
c - "yout = rout * sin( theta )"
f It is sometimes useful to calculate intermediate values and then to
f use these in the final expressions for the output (or input)
f variables. This may be done by supplying additional expressions for
f the forward (or inverse) transformation functions. For instance, the
f following array of five expressions describes 2-dimensional pin-cushion
f distortion:
f - 'R = SQRT( XIN * XIN + YIN * YIN )'
f - 'ROUT = R * ( 1 + 0.1 * R * R )'
f - 'THETA = ATAN2( YIN, XIN )',
f - 'XOUT = ROUT * COS( THETA )'
f - 'YOUT = ROUT * SIN( THETA )'
*
c Here, we first calculate three intermediate results ("r", "rout"
c and "theta") and then use these to calculate the final results ("xout"
c and "yout"). The MathMap knows that only the final two results
c constitute values for the output variables because its Nout attribute
c is set to 2. You may define as many intermediate variables in this
c way as you choose. Having defined a variable, you may then refer to it
c on the right of any subsequent expressions.
f Here, we first calculate three intermediate results (R, ROUT
f and THETA) and then use these to calculate the final results (XOUT
f and YOUT). The MathMap knows that only the final two results
f constitute values for the output variables because its Nout attribute
f is set to 2. You may define as many intermediate variables in this
f way as you choose. Having defined a variable, you may then refer to it
f on the right of any subsequent expressions.
*
c Note that when defining the inverse transformation you may only refer
c to the output variables "xout" and "yout". The intermediate variables
c "r", "rout" and "theta" (above) are private to the forward
c transformation and may not be referenced by the inverse
c transformation. The inverse transformation may, however, define its
c own private intermediate variables.
f Note that when defining the inverse transformation you may only refer
f to the output variables XOUT and YOUT. The intermediate variables R,
f ROUT and THETA (above) are private to the forward transformation and
f may not be referenced by the inverse transformation. The inverse
f transformation may, however, define its own private intermediate
f variables.
* Expression Syntax:
c The expressions given for the forward and inverse transformations
c closely follow the syntax of the C programming language (with some
c extensions for compatibility with Fortran). They may contain
c references to variables and literal constants, together with
c arithmetic, boolean, relational and bitwise operators, and function
c invocations. A set of symbolic constants is also available. Each of
c these is described in detail below. Parentheses may be used to
c over-ride the normal order of evaluation. There is no built-in limit
c to the length of expressions and they are insensitive to case or the
c presence of additional white space.
f The expressions given for the forward and inverse transformations
f closely follow the syntax of Fortran (with some extensions for
f compatibility with the C language). They may contain references to
f variables and literal constants, together with arithmetic, logical,
f relational and bitwise operators, and function invocations. A set of
f symbolic constants is also available. Each of these is described in
f detail below. Parentheses may be used to over-ride the normal order of
f evaluation. There is no built-in limit to the length of expressions
f and they are insensitive to case or the presence of additional white
f space.
* Variables:
* Variable names must begin with an alphabetic character and may contain
* only alphabetic characters, digits, and the underscore character
* "_". There is no built-in limit to the length of variable names.
* Literal Constants:
c Literal constants, such as "0", "1", "0.007" or "2.505e-16" may appear
c in expressions, with the decimal point and exponent being optional (a
c "D" may also be used as an exponent character for compatibility with
c Fortran). A unary minus "-" may be used as a prefix.
f Literal constants, such as "0", "1", "0.007" or "2.505E-16" may appear
f in expressions, with the decimal point and exponent being optional (a
f "D" may also be used as an exponent character). A unary minus "-" may
f be used as a prefix.
* Arithmetic Precision:
* All arithmetic is floating point, performed in double precision.
* Propagation of Missing Data:
* Unless indicated otherwise, if any argument of a function or operator
* has the value AST__BAD (indicating missing data), then the result of
* that function or operation is also AST__BAD, so that such values are
* propagated automatically through all operations performed by MathMap
* transformations. The special value AST__BAD can be represented in
* expressions by the symbolic constant "<bad>".
*
* A <bad> result (i.e. equal to AST__BAD) is also produced in response
* to any numerical error (such as division by zero or numerical
* overflow), or if an invalid argument value is provided to a function
* or operator.
* Arithmetic Operators:
* The following arithmetic operators are available:
c - x1 + x2: Sum of "x1" and "x2".
f - X1 + X2: Sum of X1 and X2.
c - x1 - x2: Difference of "x1" and "x2".
f - X1 - X2: Difference of X1 and X2.
c - x1 * x2: Product of "x1" and "x1".
f - X1 * X2: Product of X1 and X2.
c - x1 / x2: Ratio of "x1" and "x2".
f - X1 / X2: Ratio of X1 and X2.
c - x1 ** x2: "x1" raised to the power of "x2".
f - X1 ** X2: X1 raised to the power of X2.
c - + x: Unary plus, has no effect on its argument.
f - + X: Unary plus, has no effect on its argument.
c - - x: Unary minus, negates its argument.
f - - X: Unary minus, negates its argument.
c Boolean Operators:
f Logical Operators:
c Boolean values are represented using zero to indicate false and
c non-zero to indicate true. In addition, the value AST__BAD is taken to
c mean "unknown". The values returned by boolean operators may therefore
c be 0, 1 or AST__BAD. Where appropriate, "tri-state" logic is
c implemented. For example, "a||b" may evaluate to 1 if "a" is non-zero,
c even if "b" has the value AST__BAD. This is because the result of the
c operation would not be affected by the value of "b", so long as "a" is
c non-zero.
f Logical values are represented using zero to indicate .FALSE. and
f non-zero to indicate .TRUE.. In addition, the value AST__BAD is taken to
f mean "unknown". The values returned by logical operators may therefore
f be 0, 1 or AST__BAD. Where appropriate, "tri-state" logic is
f implemented. For example, A.OR.B may evaluate to 1 if A is non-zero,
f even if B has the value AST__BAD. This is because the result of the
f operation would not be affected by the value of B, so long as A is
f non-zero.
*
c The following boolean operators are available:
f The following logical operators are available:
c - x1 && x2: Boolean AND between "x1" and "x2", returning 1 if both "x1"
c and "x2" are non-zero, and 0 otherwise. This operator implements
c tri-state logic. (The synonym ".and." is also provided for compatibility
c with Fortran.)
f - X1 .AND. X2: Logical AND between X1 and X2, returning 1 if both X1
f and X2 are non-zero, and 0 otherwise. This operator implements
f tri-state logic. (The synonym "&&" is also provided for compatibility
f with C.)
c - x1 || x2: Boolean OR between "x1" and "x2", returning 1 if either "x1"
c or "x2" are non-zero, and 0 otherwise. This operator implements
c tri-state logic. (The synonym ".or." is also provided for compatibility
c with Fortran.)
f - X1 .OR. X2: Logical OR between X1 and X2, returning 1 if either X1
f or X2 are non-zero, and 0 otherwise. This operator implements
f tri-state logic. (The synonym "||" is also provided for compatibility
f with C.)
c - x1 ^^ x2: Boolean exclusive OR (XOR) between "x1" and "x2", returning
c 1 if exactly one of "x1" and "x2" is non-zero, and 0 otherwise. Tri-state
c logic is not used with this operator. (The synonyms ".neqv." and ".xor."
c are also provided for compatibility with Fortran, although the second
c of these is not standard.)
f - X1 .NEQV. X2: Logical exclusive OR (XOR) between X1 and X2,
f returning 1 if exactly one of X1 and X2 is non-zero, and 0
f otherwise. Tri-state logic is not used with this operator. (The
f synonym ".XOR." is also provided, although this is not standard
f Fortran. In addition, the C-like synonym "^^" may be used, although
f this is also not standard.)
c - x1 .eqv. x2: This is provided only for compatibility with Fortran
c and tests whether the boolean states of "x1" and "x2" (i.e. true/false)
c are equal. It is the negative of the exclusive OR (XOR) function.
c Tri-state logic is not used with this operator.
f - X1 .EQV. X2: Tests whether the logical states of X1 and X2
f (i.e. .TRUE./.FALSE.) are equal. It is the negative of the exclusive OR
f (XOR) function. Tri-state logic is not used with this operator.
c - ! x: Boolean unary NOT operation, returning 1 if "x" is zero, and
c 0 otherwise. (The synonym ".not." is also provided for compatibility
c with Fortran.)
f - .NOT. X: Logical unary NOT operation, returning 1 if X is zero, and
f 0 otherwise. (The synonym "!" is also provided for compatibility with
f C.)
* Relational Operators:
c Relational operators return the boolean result (0 or 1) of comparing
c the values of two floating point values for equality or inequality. The
c value AST__BAD may also be returned if either argument is <bad>.
f Relational operators return the logical result (0 or 1) of comparing
f the values of two floating point values for equality or inequality. The
f value AST__BAD may also be returned if either argument is <bad>.
*
* The following relational operators are available:
c - x1 == x2: Tests whether "x1" equals "x1". (The synonym ".eq." is
c also provided for compatibility with Fortran.)
f - X1 .EQ. X2: Tests whether X1 equals X2. (The synonym "==" is also
f provided for compatibility with C.)
c - x1 != x2: Tests whether "x1" is unequal to "x2". (The synonym ".ne."
c is also provided for compatibility with Fortran.)
f - X1 .NE. X2: Tests whether X1 is unequal to X2. (The synonym "!=" is
f also provided for compatibility with C.)
c - x1 > x2: Tests whether "x1" is greater than "x2". (The synonym
c ".gt." is also provided for compatibility with Fortran.)
f - X1 .GT. X2: Tests whether X1 is greater than X2. (The synonym ">" is
f also provided for compatibility with C.)
c - x1 >= x2: Tests whether "x1" is greater than or equal to "x2". (The
c synonym ".ge." is also provided for compatibility with Fortran.)
f - X1 .GE. X2: Tests whether X1 is greater than or equal to X2. (The
f synonym ">=" is also provided for compatibility with C.)
c - x1 < x2: Tests whether "x1" is less than "x2". (The synonym ".lt."
c is also provided for compatibility with Fortran.)
f - X1 .LT. X2: Tests whether X1 is less than X2. (The synonym "<" is also
f provided for compatibility with C.)
c - x1 <= x2: Tests whether "x1" is less than or equal to "x2". (The
c synonym ".le." is also provided for compatibility with Fortran.)
f - X1 .LE. X2: Tests whether X1 is less than or equal to X2. (The synonym
f "<=" is also provided for compatibility with C.)
*
c Note that relational operators cannot usefully be used to compare
c values with the <bad> value (representing missing data), because the
c result is always <bad>. The isbad() function should be used instead.
f Note that relational operators cannot usefully be used to compare
f values with the <bad> value (representing missing data), because the
f result is always <bad>. The ISBAD() function should be used instead.
f
f Note, also, that because logical operators can operate on floating
f point values, care must be taken to use parentheses in some cases
f where they would not normally be required in Fortran. For example,
f the expresssion:
f - .NOT. A .EQ. B
f
f must be written:
f - .NOT. ( A .EQ. B )
f
f to prevent the .NOT. operator from associating with the variable A.
* Bitwise Operators:
c The bitwise operators provided by C are often useful when operating on
c raw data (e.g. from instruments), so they are also provided for use in
c MathMap expressions. In this case, however, the values on which they
c operate are floating point values rather than pure integers. In order
c to produce results which match the pure integer case, the operands are
c regarded as fixed point binary numbers (i.e. with the binary
c equivalent of a decimal point) with negative numbers represented using
c twos-complement notation. For integer values, the resulting bit
c pattern corresponds to that of the equivalent signed integer (digits
c to the right of the point being zero). Operations on the bits
c representing the fractional part are also possible, however.
f Bitwise operators are often useful when operating on raw data
f (e.g. from instruments), so they are provided for use in MathMap
f expressions. In this case, however, the values on which they operate
f are floating point values rather than the more usual pure integers. In
f order to produce results which match the pure integer case, the
f operands are regarded as fixed point binary numbers (i.e. with the
f binary equivalent of a decimal point) with negative numbers
f represented using twos-complement notation. For integer values, the
f resulting bit pattern corresponds to that of the equivalent signed
f integer (digits to the right of the point being zero). Operations on
f the bits representing the fractional part are also possible, however.
*
* The following bitwise operators are available:
c - x1 >> x2: Rightward bit shift. The integer value of "x2" is taken
c (rounding towards zero) and the bits representing "x1" are then
c shifted this number of places to the right (or to the left if the
c number of places is negative). This is equivalent to dividing "x1" by
c the corresponding power of 2.
f - X1 >> X2: Rightward bit shift. The integer value of X2 is taken
f (rounding towards zero) and the bits representing X1 are then
f shifted this number of places to the right (or to the left if the
f number of places is negative). This is equivalent to dividing X1 by
f the corresponding power of 2.
c - x1 << x2: Leftward bit shift. The integer value of "x2" is taken
c (rounding towards zero), and the bits representing "x1" are then
c shifted this number of places to the left (or to the right if the
c number of places is negative). This is equivalent to multiplying "x1"
c by the corresponding power of 2.
f - X1 << X2: Leftward bit shift. The integer value of X2 is taken
f (rounding towards zero), and the bits representing X1 are then
f shifted this number of places to the left (or to the right if the
f number of places is negative). This is equivalent to multiplying X1
f by the corresponding power of 2.
c - x1 & x2: Bitwise AND between the bits of "x1" and those of "x2"
c (equivalent to a boolean AND applied at each bit position in turn).
f - X1 & X2: Bitwise AND between the bits of X1 and those of X2
f (equivalent to a logical AND applied at each bit position in turn).
c - x1 | x2: Bitwise OR between the bits of "x1" and those of "x2"
c (equivalent to a boolean OR applied at each bit position in turn).
f - X1 | X2: Bitwise OR between the bits of X1 and those of X2
f (equivalent to a logical OR applied at each bit position in turn).
c - x1 ^ x2: Bitwise exclusive OR (XOR) between the bits of "x1" and
c those of "x2" (equivalent to a boolean XOR applied at each bit
c position in turn).
f - X1 ^ X2: Bitwise exclusive OR (XOR) between the bits of X1 and
f those of X2 (equivalent to a logical XOR applied at each bit
f position in turn).
*
c Note that no bit inversion operator ("~" in C) is provided. This is
c because inverting the bits of a twos-complement fixed point binary
c number is equivalent to simply negating it. This differs from the
c pure integer case because bits to the right of the binary point are
c also inverted. To invert only those bits to the left of the binary
c point, use a bitwise exclusive OR with the value -1 (i.e. "x^-1").
f Note that no bit inversion operator is provided. This is
f because inverting the bits of a twos-complement fixed point binary
f number is equivalent to simply negating it. This differs from the
f pure integer case because bits to the right of the binary point are
f also inverted. To invert only those bits to the left of the binary
f point, use a bitwise exclusive OR with the value -1 (i.e. X^-1).
* Functions:
* The following functions are available:
c - abs(x): Absolute value of "x" (sign removal), same as fabs(x).
f - ABS(X): Absolute value of X (sign removal), same as FABS(X).
c - acos(x): Inverse cosine of "x", in radians.
f - ACOS(X): Inverse cosine of X, in radians.
c - acosd(x): Inverse cosine of "x", in degrees.
f - ACOSD(X): Inverse cosine of X, in degrees.
c - acosh(x): Inverse hyperbolic cosine of "x".
f - ACOSH(X): Inverse hyperbolic cosine of X.
c - acoth(x): Inverse hyperbolic cotangent of "x".
f - ACOTH(X): Inverse hyperbolic cotangent of X.
c - acsch(x): Inverse hyperbolic cosecant of "x".
f - ACSCH(X): Inverse hyperbolic cosecant of X.
c - aint(x): Integer part of "x" (round towards zero), same as int(x).
f - AINT(X): Integer part of X (round towards zero), same as INT(X).
c - asech(x): Inverse hyperbolic secant of "x".
f - ASECH(X): Inverse hyperbolic secant of X.
c - asin(x): Inverse sine of "x", in radians.
f - ASIN(X): Inverse sine of X, in radians.
c - asind(x): Inverse sine of "x", in degrees.
f - ASIND(X): Inverse sine of X, in degrees.
c - asinh(x): Inverse hyperbolic sine of "x".
f - ASINH(X): Inverse hyperbolic sine of X.
c - atan(x): Inverse tangent of "x", in radians.
f - ATAN(X): Inverse tangent of X, in radians.
c - atand(x): Inverse tangent of "x", in degrees.
f - ATAND(X): Inverse tangent of X, in degrees.
c - atanh(x): Inverse hyperbolic tangent of "x".
f - ATANH(X): Inverse hyperbolic tangent of X.
c - atan2(x1, x2): Inverse tangent of "x1/x2", in radians.
f - ATAN2(X1, X2): Inverse tangent of X1/X2, in radians.
c - atan2d(x1, x2): Inverse tangent of "x1/x2", in degrees.
f - ATAN2D(X1, X2): Inverse tangent of X1/X2, in degrees.
c - ceil(x): Smallest integer value not less then "x" (round towards
c plus infinity).
f - CEIL(X): Smallest integer value not less then X (round towards
f plus infinity).
c - cos(x): Cosine of "x" in radians.
f - COS(X): Cosine of X in radians.
c - cosd(x): Cosine of "x" in degrees.
f - COSD(X): Cosine of X in degrees.
c - cosh(x): Hyperbolic cosine of "x".
f - COSH(X): Hyperbolic cosine of X.
c - coth(x): Hyperbolic cotangent of "x".
f - COTH(X): Hyperbolic cotangent of X.
c - csch(x): Hyperbolic cosecant of "x".
f - CSCH(X): Hyperbolic cosecant of X.
c - dim(x1, x2): Returns "x1-x2" if "x1" is greater than "x2", otherwise 0.
f - DIM(X1, X2): Returns X1-X2 if X1 is greater than X2, otherwise 0.
c - exp(x): Exponential function of "x".
f - EXP(X): Exponential function of X.
c - fabs(x): Absolute value of "x" (sign removal), same as abs(x).
f - FABS(X): Absolute value of X (sign removal), same as ABS(X).
c - floor(x): Largest integer not greater than "x" (round towards
c minus infinity).
f - FLOOR(X): Largest integer not greater than X (round towards
f minus infinity).
c - fmod(x1, x2): Remainder when "x1" is divided by "x2", same as
c mod(x1, x2).
f - FMOD(X1, X2): Remainder when X1 is divided by X2, same as
f MOD(X1, X2).
c - gauss(x1, x2): Random sample from a Gaussian distribution with mean
c "x1" and standard deviation "x2".
f - GAUSS(X1, X2): Random sample from a Gaussian distribution with mean
f X1 and standard deviation X2.
c - int(x): Integer part of "x" (round towards zero), same as aint(x).
f - INT(X): Integer part of X (round towards zero), same as AINT(X).
c - isbad(x): Returns 1 if "x" has the <bad> value (AST__BAD), otherwise 0.
f - ISBAD(X): Returns 1 if X has the <bad> value (AST__BAD), otherwise 0.
c - log(x): Natural logarithm of "x".
f - LOG(X): Natural logarithm of X.
c - log10(x): Logarithm of "x" to base 10.
f - LOG10(X): Logarithm of X to base 10.
c - max(x1, x2, ...): Maximum of two or more values.
f - MAX(X1, X2, ...): Maximum of two or more values.
c - min(x1, x2, ...): Minimum of two or more values.
f - MIN(X1, X2, ...): Minimum of two or more values.
c - mod(x1, x2): Remainder when "x1" is divided by "x2", same as
c fmod(x1, x2).
f - MOD(X1, X2): Remainder when X1 is divided by X2, same as
f FMOD(X1, X2).
c - nint(x): Nearest integer to "x" (round to nearest).
f - NINT(X): Nearest integer to X (round to nearest).
c - poisson(x): Random integer-valued sample from a Poisson
c distribution with mean "x".
f - POISSON(X): Random integer-valued sample from a Poisson
f distribution with mean X.
c - pow(x1, x2): "x1" raised to the power of "x2".
f - POW(X1, X2): X1 raised to the power of X2.
c - qif(x1, x2, x3): Returns "x2" if "x1" is true, and "x3" otherwise.
f - QIF(x1, x2, x3): Returns X2 if X1 is true, and X3 otherwise.
c - rand(x1, x2): Random sample from a uniform distribution in the
c range "x1" to "x2" inclusive.
f - RAND(X1, X2): Random sample from a uniform distribution in the
f range X1 to X2 inclusive.
c - sech(x): Hyperbolic secant of "x".
f - SECH(X): Hyperbolic secant of X.
c - sign(x1, x2): Absolute value of "x1" with the sign of "x2"
c (transfer of sign).
f - SIGN(X1, X2): Absolute value of X1 with the sign of X2
f (transfer of sign).
c - sin(x): Sine of "x" in radians.
f - SIN(X): Sine of X in radians.
c - sinc(x): Sinc function of "x" [= "sin(x)/x"].
f - SINC(X): Sinc function of X [= SIN(X)/X].
c - sind(x): Sine of "x" in degrees.
f - SIND(X): Sine of X in degrees.
c - sinh(x): Hyperbolic sine of "x".
f - SINH(X): Hyperbolic sine of X.
c - sqr(x): Square of "x" (= "x*x").
f - SQR(X): Square of X (= X*X).
c - sqrt(x): Square root of "x".
f - SQRT(X): Square root of X.
c - tan(x): Tangent of "x" in radians.
f - TAN(X): Tangent of X in radians.
c - tand(x): Tangent of "x" in degrees.
f - TAND(X): Tangent of X in degrees.
c - tanh(x): Hyperbolic tangent of "x".
f - TANH(X): Hyperbolic tangent of X.
* Symbolic Constants:
* The following symbolic constants are available (the enclosing "<>"
* brackets must be included):
c - <bad>: The "bad" value (AST__BAD) used to flag missing data. Note
c that you cannot usefully compare values with this constant because the
c result is always <bad>. The isbad() function should be used instead.
f - <bad>: The "bad" value (AST__BAD) used to flag missing data. Note
f that you cannot usefully compare values with this constant because the
f result is always <bad>. The ISBAD() function should be used instead.
c - <dig>: Number of decimal digits of precision available in a
c floating point (double) value.
f - <dig>: Number of decimal digits of precision available in a
f floating point (double precision) value.
* - <e>: Base of natural logarithms.
* - <epsilon>: Smallest positive number such that 1.0+<epsilon> is
* distinguishable from unity.
c - <mant_dig>: The number of base <radix> digits stored in the
c mantissa of a floating point (double) value.
f - <mant_dig>: The number of base <radix> digits stored in the
f mantissa of a floating point (double precision) value.
c - <max>: Maximum representable floating point (double) value.
f - <max>: Maximum representable floating point (double precision) value.
c - <max_10_exp>: Maximum integer such that 10 raised to that power
c can be represented as a floating point (double) value.
f - <max_10_exp>: Maximum integer such that 10 raised to that power
f can be represented as a floating point (double precision) value.
c - <max_exp>: Maximum integer such that <radix> raised to that
c power minus 1 can be represented as a floating point (double) value.
f - <max_exp>: Maximum integer such that <radix> raised to that
f power minus 1 can be represented as a floating point (double precision)
f value.
c - <min>: Smallest positive number which can be represented as a
c normalised floating point (double) value.
f - <min>: Smallest positive number which can be represented as a
f normalised floating point (double precision) value.
c - <min_10_exp>: Minimum negative integer such that 10 raised to that
c power can be represented as a normalised floating point (double) value.
f - <min_10_exp>: Minimum negative integer such that 10 raised to that
f power can be represented as a normalised floating point (double
f precision) value.
c - <min_exp>: Minimum negative integer such that <radix> raised to
c that power minus 1 can be represented as a normalised floating point
c (double) value.
f - <min_exp>: Minimum negative integer such that <radix> raised to
f that power minus 1 can be represented as a normalised floating point
f (double precision) value.
* - <pi>: Ratio of the circumference of a circle to its diameter.
c - <radix>: The radix (number base) used to represent the mantissa of
c floating point (double) values.
f - <radix>: The radix (number base) used to represent the mantissa of
f floating point (double precision) values.
* - <rounds>: The mode used for rounding floating point results after
* addition. Possible values include: -1 (indeterminate), 0 (toward
* zero), 1 (to nearest), 2 (toward plus infinity) and 3 (toward minus
* infinity). Other values indicate machine-dependent behaviour.
* Evaluation Precedence and Associativity:
* Items appearing in expressions are evaluated in the following order
* (highest precedence first):
* - Constants and variables
* - Function arguments and parenthesised expressions
* - Function invocations
* - Unary + - ! .not.
* - **
* - * /
* - + -
* - << >>
* - < .lt. <= .le. > .gt. >= .ge.
* - == .eq. != .ne.
* - &
* - ^
* - |
* - && .and.
* - ^^
* - || .or
* - .eqv. .neqv. .xor.
*
* All operators associate from left-to-right, except for unary +,
* unary -, !, .not. and ** which associate from right-to-left.
* Notes:
* - The sequence of numbers produced by the random number functions
* available within a MathMap is normally unpredictable and different for
* each MathMap. However, this behaviour may be controlled by means of
* the MathMap's Seed attribute.
c - Normally, compound Mappings (CmpMaps) which involve MathMaps will
c not be subject to simplification (e.g. using astSimplify) because AST
c cannot know how different MathMaps will interact. However, in the
c special case where a MathMap occurs in series with its own inverse,
c then simplification may be possible. Whether simplification does, in
c fact, occur under these circumstances is controlled by the MathMap's
c SimpFI and SimpIF attributes.
f - Normally, compound Mappings (CmpMaps) which involve MathMaps will
f not be subject to simplification (e.g. using AST_SIMPLIFY) because AST
f cannot know how different MathMaps will interact. However, in the
f special case where a MathMap occurs in series with its own inverse,
f then simplification may be possible. Whether simplification does, in
f fact, occur under these circumstances is controlled by the MathMap's
f SimpFI and SimpIF attributes.
* - A null Object pointer (AST__NULL) will be returned if this
c function is invoked with the AST error status set, or if it
f function is invoked with STATUS set to an error value, or if it
* should fail for any reason.
*--
* Implementation Notes:
* - This function implements the external (public) interface to
* the astMathMap constructor function. It returns an ID value
* (instead of a true C pointer) to external users, and must be
* provided because astMathMap_ has a variable argument list which
* cannot be encapsulated in a macro (where this conversion would
* otherwise occur).
* - The variable argument list also prevents this function from
* invoking astMathMap_ directly, so it must be a re-implementation
* of it in all respects, except for the final conversion of the
* result to an ID value.
*/
/* Local Variables: */
astDECLARE_GLOBALS /* Pointer to thread-specific global data */
AstMathMap *new; /* Pointer to new MathMap */
va_list args; /* Variable argument list */
int *status; /* Pointer to inherited status value */
/* Get a pointer to the inherited status value. */
status = astGetStatusPtr;
/* Get a pointer to the thread specific global data structure. */
astGET_GLOBALS(NULL);
/* Check the global error status. */
if ( !astOK ) return NULL;
/* Initialise the MathMap, allocating memory and initialising the virtual
function table as well if necessary. */
new = astInitMathMap( NULL, sizeof( AstMathMap ), !class_init, &class_vtab,
"MathMap", nin, nout, nfwd, fwd, ninv, inv );
/* If successful, note that the virtual function table has been initialised. */
if ( astOK ) {
class_init = 1;
/* Obtain the variable argument list and pass it along with the options string
to the astVSet method to initialise the new MathMap's attributes. */
va_start( args, options );
astVSet( new, options, NULL, args );
va_end( args );
/* If an error occurred, clean up by deleting the new object. */
if ( !astOK ) new = astDelete( new );
}
/* Return an ID value for the new MathMap. */
return astMakeId( new );
}
AstMathMap *astInitMathMap_( void *mem, size_t size, int init,
AstMathMapVtab *vtab, const char *name,
int nin, int nout,
int nfwd, const char *fwd[],
int ninv, const char *inv[], int *status ) {
/*
*+
* Name:
* astInitMathMap
* Purpose:
* Initialise a MathMap.
* Type:
* Protected function.
* Synopsis:
* #include "mathmap.h"
* AstMathMap *astInitMathMap_( void *mem, size_t size, int init,
* AstMathMapVtab *vtab, const char *name,
* int nin, int nout,
* int nfwd, const char *fwd[],
* int ninv, const char *inv[] )
* Class Membership:
* MathMap initialiser.
* Description:
* This function is provided for use by class implementations to initialise
* a new MathMap object. It allocates memory (if necessary) to accommodate
* the MathMap plus any additional data associated with the derived class.
* It then initialises a MathMap structure at the start of this memory. If
* the "init" flag is set, it also initialises the contents of a virtual
* function table for a MathMap at the start of the memory passed via the
* "vtab" parameter.
* Parameters:
* mem
* A pointer to the memory in which the MathMap is to be initialised.
* This must be of sufficient size to accommodate the MathMap data
* (sizeof(MathMap)) plus any data used by the derived class. If a value
* of NULL is given, this function will allocate the memory itself using
* the "size" parameter to determine its size.
* size
* The amount of memory used by the MathMap (plus derived class data).
* This will be used to allocate memory if a value of NULL is given for
* the "mem" parameter. This value is also stored in the MathMap
* structure, so a valid value must be supplied even if not required for
* allocating memory.
* init
* A logical flag indicating if the MathMap's virtual function table is
* to be initialised. If this value is non-zero, the virtual function
* table will be initialised by this function.
* vtab
* Pointer to the start of the virtual function table to be associated
* with the new MathMap.
* name
* Pointer to a constant null-terminated character string which contains
* the name of the class to which the new object belongs (it is this
* pointer value that will subsequently be returned by the Object
* astClass function).
* nin
* Number of input variables for the MathMap.
* nout
* Number of output variables for the MathMap.
* nfwd
* The number of forward transformation functions being supplied.
* This must be at least equal to "nout".
* fwd
* Pointer to an array, with "nfwd" elements, of pointers to null
* terminated strings which contain each of the forward transformation
* functions.
* ninv
* The number of inverse transformation functions being supplied.
* This must be at least equal to "nin".
* inv
* Pointer to an array, with "ninv" elements, of pointers to null
* terminated strings which contain each of the inverse transformation
* functions.
* Returned Value:
* A pointer to the new MathMap.
* Notes:
* - This function does not attempt to ensure that the forward and inverse
* transformations performed by the resulting MathMap are consistent in any
* way.
* - This function makes a copy of the contents of the strings supplied.
* - A null pointer will be returned if this function is invoked with the
* global error status set, or if it should fail for any reason.
*-
*/
/* Local Variables: */
AstMathMap *new; /* Pointer to new MathMap */
char **fwdfun; /* Array of cleaned forward functions */
char **invfun; /* Array of cleaned inverse functions */
double **fwdcon; /* Constants for forward functions */
double **invcon; /* Constants for inverse functions */
int **fwdcode; /* Code for forward functions */
int **invcode; /* Code for inverse functions */
int fwdstack; /* Stack size for forward functions */
int invstack; /* Stack size for inverse functions */
/* Initialise. */
new = NULL;
/* Check the global status. */
if ( !astOK ) return new;
/* If necessary, initialise the virtual function table. */
if ( init ) astInitMathMapVtab( vtab, name );
/* Check the numbers of input and output variables for validity,
reporting an error if necessary. */
if ( nin < 1 ) {
astError( AST__BADNI,
"astInitMathMap(%s): Bad number of input coordinates (%d).", status,
name, nin );
astError( AST__BADNI,
"This number should be one or more." , status);
} else if ( nout < 1 ) {
astError( AST__BADNO,
"astInitMathMap(%s): Bad number of output coordinates (%d).", status,
name, nout );
astError( AST__BADNI,
"This number should be one or more." , status);
/* Check that sufficient number of forward and inverse transformation
functions have been supplied and report an error if necessary. */
} else if ( nfwd < nout ) {
astError( AST__INNTF,
"astInitMathMap(%s): Too few forward transformation functions "
"given (%d).", status,
name, nfwd );
astError( astStatus,
"At least %d forward transformation functions must be "
"supplied. ", status,
nout );
} else if ( ninv < nin ) {
astError( AST__INNTF,
"astInitMathMap(%s): Too few inverse transformation functions "
"given (%d).", status,
name, ninv );
astError( astStatus,
"At least %d inverse transformation functions must be "
"supplied. ", status,
nin );
/* Of OK, clean the forward and inverse functions provided. This makes
a lower-case copy with white space removed. */
} else {
CleanFunctions( nfwd, fwd, &fwdfun, status );
CleanFunctions( ninv, inv, &invfun, status );
/* Compile the cleaned functions. From the returned pointers (if
successful), we can now tell which transformations (forward and/or
inverse) are defined. */
CompileMapping( "astInitMathMap", name, nin, nout,
nfwd, (const char **) fwdfun,
ninv, (const char **) invfun,
&fwdcode, &invcode, &fwdcon, &invcon,
&fwdstack, &invstack, status );
/* Initialise a Mapping structure (the parent class) as the first
component within the MathMap structure, allocating memory if
necessary. Specify that the Mapping should be defined in the required
directions. */
new = (AstMathMap *) astInitMapping( mem, size, 0,
(AstMappingVtab *) vtab, name,
nin, nout,
( fwdcode != NULL ),
( invcode != NULL ) );
/* If an error has occurred, free all the memory which may have been
allocated by the cleaning and compilation steps above. */
if ( !astOK ) {
FREE_POINTER_ARRAY( fwdfun, nfwd )
FREE_POINTER_ARRAY( invfun, ninv )
FREE_POINTER_ARRAY( fwdcode, nfwd )
FREE_POINTER_ARRAY( invcode, ninv )
FREE_POINTER_ARRAY( fwdcon, nfwd )
FREE_POINTER_ARRAY( invcon, ninv )
}
/* Initialise the MathMap data. */
/* ---------------------------- */
/* Store pointers to the compiled function information, together with
other MathMap data. */
if ( new ) {
new->fwdfun = fwdfun;
new->invfun = invfun;
new->fwdcode = fwdcode;
new->invcode = invcode;
new->fwdcon = fwdcon;
new->invcon = invcon;
new->fwdstack = fwdstack;
new->invstack = invstack;
new->nfwd = nfwd;
new->ninv = ninv;
new->simp_fi = -INT_MAX;
new->simp_if = -INT_MAX;
/* Initialise the random number generator context associated with the
MathMap, using an unpredictable default seed value. */
new->rcontext.active = 0;
new->rcontext.random_int = 0;
new->rcontext.seed_set = 0;
new->rcontext.seed = DefaultSeed( &new->rcontext, status );
/* If an error occurred, clean up by deleting the new object. */
if ( !astOK ) new = astDelete( new );
}
}
/* Return a pointer to the new object. */
return new;
}
AstMathMap *astLoadMathMap_( void *mem, size_t size,
AstMathMapVtab *vtab, const char *name,
AstChannel *channel, int *status ) {
/*
*+
* Name:
* astLoadMathMap
* Purpose:
* Load a MathMap.
* Type:
* Protected function.
* Synopsis:
* #include "mathmap.h"
* AstMathMap *astLoadMathMap( void *mem, size_t size,
* AstMathMapVtab *vtab, const char *name,
* AstChannel *channel )
* Class Membership:
* MathMap loader.
* Description:
* This function is provided to load a new MathMap using data read
* from a Channel. It first loads the data used by the parent class
* (which allocates memory if necessary) and then initialises a
* MathMap structure in this memory, using data read from the input
* Channel.
*
* If the "init" flag is set, it also initialises the contents of a
* virtual function table for a MathMap at the start of the memory
* passed via the "vtab" parameter.
* Parameters:
* mem
* A pointer to the memory into which the MathMap is to be
* loaded. This must be of sufficient size to accommodate the
* MathMap data (sizeof(MathMap)) plus any data used by derived
* classes. If a value of NULL is given, this function will
* allocate the memory itself using the "size" parameter to
* determine its size.
* size
* The amount of memory used by the MathMap (plus derived class
* data). This will be used to allocate memory if a value of
* NULL is given for the "mem" parameter. This value is also
* stored in the MathMap structure, so a valid value must be
* supplied even if not required for allocating memory.
*
* If the "vtab" parameter is NULL, the "size" value is ignored
* and sizeof(AstMathMap) is used instead.
* vtab
* Pointer to the start of the virtual function table to be
* associated with the new MathMap. If this is NULL, a pointer
* to the (static) virtual function table for the MathMap class
* is used instead.
* name
* Pointer to a constant null-terminated character string which
* contains the name of the class to which the new object
* belongs (it is this pointer value that will subsequently be
* returned by the astGetClass method).
*
* If the "vtab" parameter is NULL, the "name" value is ignored
* and a pointer to the string "MathMap" is used instead.
* Returned Value:
* A pointer to the new MathMap.
* Notes:
* - A null pointer will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*-
*/
/* Local Constants: */
astDECLARE_GLOBALS /* Pointer to thread-specific global data */
#define KEY_LEN 50 /* Maximum length of a keyword */
/* Local Variables: */
AstMathMap *new; /* Pointer to the new MathMap */
char key[ KEY_LEN + 1 ]; /* Buffer for keyword strings */
int ifun; /* Loop counter for functions */
int invert; /* Invert attribute value */
int nin; /* True number of input coordinates */
int nout; /* True number of output coordinates */
/* Get a pointer to the thread specific global data structure. */
astGET_GLOBALS(channel);
/* Initialise. */
new = NULL;
/* Check the global error status. */
if ( !astOK ) return new;
/* If a NULL virtual function table has been supplied, then this is
the first loader to be invoked for this MathMap. In this case the
MathMap belongs to this class, so supply appropriate values to be
passed to the parent class loader (and its parent, etc.). */
if ( !vtab ) {
size = sizeof( AstMathMap );
vtab = &class_vtab;
name = "MathMap";
/* If required, initialise the virtual function table for this class. */
if ( !class_init ) {
astInitMathMapVtab( vtab, name );
class_init = 1;
}
}
/* Invoke the parent class loader to load data for all the ancestral
classes of the current one, returning a pointer to the resulting
partly-built MathMap. */
new = astLoadMapping( mem, size, (AstMappingVtab *) vtab, name,
channel );
if ( astOK ) {
/* Read input data. */
/* ================ */
/* Request the input Channel to read all the input data appropriate to
this class into the internal "values list". */
astReadClassData( channel, "MathMap" );
/* Determine if the MathMap is inverted and obtain the "true" number
of input and output coordinates by un-doing the effects of any
inversion. */
invert = astGetInvert( new );
nin = invert ? astGetNout( new ) : astGetNin( new );
nout = invert ? astGetNin( new ) : astGetNout( new );
/* Now read each individual data item from this list and use it to
initialise the appropriate instance variable(s) for this class. */
/* In the case of attributes, we first read the "raw" input value,
supplying the "unset" value as the default. If a "set" value is
obtained, we then use the appropriate (private) Set... member
function to validate and set the value properly. */
/* Numbers of transformation functions. */
/* ------------------------------------ */
/* Read the numbers of forward and inverse transformation functions,
supplying appropriate defaults. */
new->nfwd = astReadInt( channel, "nfwd", nout );
new->ninv = astReadInt( channel, "ninv", nin );
if ( astOK ) {
/* Allocate memory for the MathMap's transformation function arrays. */
MALLOC_POINTER_ARRAY( new->fwdfun, char *, new->nfwd )
MALLOC_POINTER_ARRAY( new->invfun, char *, new->ninv )
if ( astOK ) {
/* Forward transformation functions. */
/* --------------------------------- */
/* Create a keyword for each forward transformation function and read
the function's value as a string. */
for ( ifun = 0; ifun < new->nfwd; ifun++ ) {
(void) sprintf( key, "fwd%d", ifun + 1 );
new->fwdfun[ ifun ] = astReadString( channel, key, "" );
}
/* Inverse transformation functions. */
/* --------------------------------- */
/* Repeat this process for the inverse transformation functions. */
for ( ifun = 0; ifun < new->ninv; ifun++ ) {
(void) sprintf( key, "inv%d", ifun + 1 );
new->invfun[ ifun ] = astReadString( channel, key, "" );
}
/* Forward-inverse simplification flag. */
/* ------------------------------------ */
new->simp_fi = astReadInt( channel, "simpfi", -INT_MAX );
if ( TestSimpFI( new, status ) ) SetSimpFI( new, new->simp_fi, status );
/* Inverse-forward simplification flag. */
/* ------------------------------------ */
new->simp_if = astReadInt( channel, "simpif", -INT_MAX );
if ( TestSimpIF( new, status ) ) SetSimpIF( new, new->simp_if, status );
/* Random number context. */
/* ---------------------- */
/* Initialise the random number generator context. */
new->rcontext.active = 0;
new->rcontext.random_int = 0;
/* Read the flag that determines if the Seed value is set, and the
Seed value itself. */
new->rcontext.seed_set = astReadInt( channel, "seeded", 0 );
if ( TestSeed( new, status ) ) {
new->rcontext.seed = astReadInt( channel, "seed", 0 );
SetSeed( new, new->rcontext.seed, status );
/* Supply an unpredictable default Seed value if necessary. */
} else {
new->rcontext.seed = DefaultSeed( &new->rcontext, status );
}
/* Compile the MathMap's transformation functions. */
CompileMapping( "astLoadMathMap", name, nin, nout,
new->nfwd, (const char **) new->fwdfun,
new->ninv, (const char **) new->invfun,
&new->fwdcode, &new->invcode,
&new->fwdcon, &new->invcon,
&new->fwdstack, &new->invstack, status );
}
/* If an error occurred, clean up by deleting the new MathMap. */
if ( !astOK ) new = astDelete( new );
}
}
/* Return the new MathMap pointer. */
return new;
/* Undefine macros local to this function. */
#undef KEY_LEN
}
|