File: palDmat.c

package info (click to toggle)
starlink-pal 0.9.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 1,808 kB
  • sloc: ansic: 6,689; makefile: 128; sh: 81
file content (182 lines) | stat: -rw-r--r-- 4,288 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/*
*+
*  Name:
*     palDmat

*  Purpose:
*     Matrix inversion & solution of simultaneous equations

*  Language:
*     Starlink ANSI C

*  Type of Module:
*     Library routine

*  Invocation:
*     void palDmat( int n, double *a, double *y, double *d, int *jf,
*                    int *iw );

*  Arguments:
*     n = int (Given)
*        Number of simultaneous equations and number of unknowns.
*     a = double[] (Given & Returned)
*        A non-singular NxN matrix (implemented as a contiguous block
*        of memory). After calling this routine "a" contains the
*        inverse of the matrix.
*     y = double[] (Given & Returned)
*        On input the vector of N knowns. On exit this vector contains the
*        N solutions.
*     d = double * (Returned)
*        The determinant.
*     jf = int * (Returned)
*        The singularity flag.  If the matrix is non-singular, jf=0
*        is returned.  If the matrix is singular, jf=-1 & d=0.0 are
*        returned.  In the latter case, the contents of array "a" on
*        return are undefined.
*     iw = int[] (Given)
*        Integer workspace of size N.

*  Description:
*     Matrix inversion & solution of simultaneous equations
*     For the set of n simultaneous equations in n unknowns:
*          A.Y = X
*     this routine calculates the inverse of A, the determinant
*     of matrix A and the vector of N unknowns.

*  Authors:
*     PTW: Pat Wallace (STFC)
*     TIMJ: Tim Jenness (JAC, Hawaii)
*     {enter_new_authors_here}

*  History:
*     2012-02-11 (TIMJ):
*        Combination of a port of the Fortran and a comparison
*        with the obfuscated GPL C routine.
*        Adapted with permission from the Fortran SLALIB library.
*     {enter_further_changes_here}

*  Notes:
*     - Implemented using Gaussian elimination with partial pivoting.
*     - Optimized for speed rather than accuracy with errors 1 to 4
*       times those of routines optimized for accuracy.

*  Copyright:
*     Copyright (C) 2001 Rutherford Appleton Laboratory.
*     Copyright (C) 2012 Science and Technology Facilities Council.
*     All Rights Reserved.

*  Licence:
*     This program is free software: you can redistribute it and/or
*     modify it under the terms of the GNU Lesser General Public
*     License as published by the Free Software Foundation, either
*     version 3 of the License, or (at your option) any later
*     version.
*
*     This program is distributed in the hope that it will be useful,
*     but WITHOUT ANY WARRANTY; without even the implied warranty of
*     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
*     GNU Lesser General Public License for more details.
*
*     You should have received a copy of the GNU Lesser General
*     License along with this program.  If not, see
*     <http://www.gnu.org/licenses/>.

*  Bugs:
*     {note_any_bugs_here}
*-
*/

#include "pal.h"

void palDmat ( int n, double *a, double *y, double *d, int *jf, int *iw ) {

  const double SFA = 1e-20;

  int k;
  double*aoff;

  *jf=0;
  *d=1.0;
  for(k=0,aoff=a; k<n; k++, aoff+=n){
    int imx;
    double * aoff2 = aoff;
    double amx=fabs(aoff[k]);
    imx=k;
    if(k!=n){
      int i;
      double *apos2;
      for(i=k+1,apos2=aoff+n;i<n;i++,apos2+=n){
	double t=fabs(apos2[k]);
	if(t>amx){
	  amx=t;
	  imx=i;
	  aoff2=apos2;
	}
      }
    }
    if(amx<SFA){
      *jf=-1;
    } else {
      if(imx!=k){
	double t;
	int j;
	for(j=0;j<n;j++){
	  t=aoff[j];
	  aoff[j]=aoff2[j];
	  aoff2[j]=t;
	}
	t=y[k];
	y[k]=y[imx];
	y[imx]=t;*d=-*d;
      }
      iw[k]=imx;
      *d*=aoff[k];
      if(fabs(*d)<SFA){
	*jf=-1;
      } else {
	double yk;
	double * apos2;
	int i, j;
	aoff[k]=1.0/aoff[k];
	for(j=0;j<n;j++){
	  if(j!=k){
	    aoff[j]*=aoff[k];
	  }
	}
	yk=y[k]*aoff[k];
	y[k]=yk;
	for(i=0,apos2=a;i<n;i++,apos2+=n){
	  if(i!=k){
	    for(j=0;j<n;j++){
	      if(j!=k){
		apos2[j]-=apos2[k]*aoff[j];
	      }
	    }
	    y[i]-=apos2[k]*yk;
	  }
	}
	for(i=0,apos2=a;i<n;i++,apos2+=n){
	  if(i!=k){
	    apos2[k]*=-aoff[k];
	  }
	}
      }
    }
  }
  if(*jf!=0){
    *d=0.0;
  } else {
    for(k=n;k-->0;){
      int ki=iw[k];
      if(k!=ki){
	int i;
	double *apos = a;
	for(i=0;i<n;i++,apos+=n){
	  double t=apos[k];
	  apos[k]=apos[ki];
	  apos[ki]=t;
	}
      }
    }
  }
}