1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
/* StarPU --- Runtime system for heterogeneous multicore architectures.
*
* Copyright (C) 2010-2011 Université de Bordeaux 1
* Copyright (C) 2010 Mehdi Juhoor <mjuhoor@gmail.com>
* Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
*
* StarPU is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at
* your option) any later version.
*
* StarPU is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* See the GNU Lesser General Public License in COPYING.LGPL for more details.
*/
/*
* This example shows a simple implementation of a blocked matrix
* multiplication. Note that this is NOT intended to be an efficient
* implementation of sgemm! In this example, we show:
* - how to declare dense matrices (starpu_matrix_data_register)
* - how to manipulate matrices within codelets (eg. descr[0].blas.ld)
* - how to use filters to partition the matrices into blocks
* (starpu_data_partition and starpu_data_map_filters)
* - how to unpartition data (starpu_data_unpartition) and how to stop
* monitoring data (starpu_data_unregister)
* - how to manipulate subsets of data (starpu_data_get_sub_data)
* - how to construct an autocalibrated performance model (starpu_perfmodel)
* - how to submit asynchronous tasks
*/
#include <string.h>
#include <math.h>
#include <sys/types.h>
#include <sys/time.h>
#include <pthread.h>
#include <signal.h>
#include <starpu.h>
static float *A, *B, *C;
static starpu_data_handle_t A_handle, B_handle, C_handle;
static unsigned nslicesx = 4;
static unsigned nslicesy = 4;
static unsigned xdim = 1024;
static unsigned ydim = 1024;
static unsigned zdim = 512;
/*
* That program should compute C = A * B
*
* A of size (z,y)
* B of size (x,z)
* C of size (x,y)
|---------------|
z | B |
|---------------|
z x
|----| |---------------|
| | | |
| | | |
| A | y | C |
| | | |
| | | |
|----| |---------------|
*/
/*
* The codelet is passed 3 matrices, the "descr" union-type field gives a
* description of the layout of those 3 matrices in the local memory (ie. RAM
* in the case of CPU, GPU frame buffer in the case of GPU etc.). Since we have
* registered data with the "matrix" data interface, we use the matrix macros.
*/
static void cpu_mult(void *descr[], __attribute__((unused)) void *arg)
{
float *subA, *subB, *subC;
uint32_t nxC, nyC, nyA;
uint32_t ldA, ldB, ldC;
/* .blas.ptr gives a pointer to the first element of the local copy */
subA = (float *)STARPU_MATRIX_GET_PTR(descr[0]);
subB = (float *)STARPU_MATRIX_GET_PTR(descr[1]);
subC = (float *)STARPU_MATRIX_GET_PTR(descr[2]);
/* .blas.nx is the number of rows (consecutive elements) and .blas.ny
* is the number of lines that are separated by .blas.ld elements (ld
* stands for leading dimension).
* NB: in case some filters were used, the leading dimension is not
* guaranteed to be the same in main memory (on the original matrix)
* and on the accelerator! */
nxC = STARPU_MATRIX_GET_NX(descr[2]);
nyC = STARPU_MATRIX_GET_NY(descr[2]);
nyA = STARPU_MATRIX_GET_NY(descr[0]);
ldA = STARPU_MATRIX_GET_LD(descr[0]);
ldB = STARPU_MATRIX_GET_LD(descr[1]);
ldC = STARPU_MATRIX_GET_LD(descr[2]);
/* we assume a FORTRAN-ordering! */
unsigned i,j,k;
for (i = 0; i < nyC; i++)
{
for (j = 0; j < nxC; j++)
{
float sum = 0.0;
for (k = 0; k < nyA; k++)
{
sum += subA[j+k*ldA]*subB[k+i*ldB];
}
subC[j + i*ldC] = sum;
}
}
}
static void init_problem_data(void)
{
unsigned i,j;
/* we initialize matrices A, B and C in the usual way */
A = (float *) malloc(zdim*ydim*sizeof(float));
B = (float *) malloc(xdim*zdim*sizeof(float));
C = (float *) malloc(xdim*ydim*sizeof(float));
/* fill the A and B matrices */
srand(2009);
for (j=0; j < ydim; j++)
{
for (i=0; i < zdim; i++)
{
A[j+i*ydim] = (float)(starpu_drand48());
}
}
for (j=0; j < zdim; j++)
{
for (i=0; i < xdim; i++)
{
B[j+i*zdim] = (float)(starpu_drand48());
}
}
for (j=0; j < ydim; j++)
{
for (i=0; i < xdim; i++)
{
C[j+i*ydim] = (float)(0);
}
}
}
static void partition_mult_data(void)
{
/* note that we assume a FORTRAN ordering here! */
/* The BLAS data interface is described by 4 parameters:
* - the location of the first element of the matrix to monitor (3rd
* argument)
* - the number of elements between columns, aka leading dimension
* (4th arg)
* - the number of (contiguous) elements per column, ie. contiguous
* elements (5th arg)
* - the number of columns (6th arg)
* The first elements is a pointer to the data_handle that will be
* associated to the matrix, and the second elements gives the memory
* node in which resides the matrix: 0 means that the 3rd argument is
* an adress in main memory.
*/
starpu_matrix_data_register(&A_handle, 0, (uintptr_t)A,
ydim, ydim, zdim, sizeof(float));
starpu_matrix_data_register(&B_handle, 0, (uintptr_t)B,
zdim, zdim, xdim, sizeof(float));
starpu_matrix_data_register(&C_handle, 0, (uintptr_t)C,
ydim, ydim, xdim, sizeof(float));
/* A filter is a method to partition a data into disjoint chunks, it is
* described by the means of the "struct starpu_data_filter" structure that
* contains a function that is applied on a data handle to partition it
* into smaller chunks, and an argument that is passed to the function
* (eg. the number of blocks to create here).
*/
/* StarPU supplies some basic filters such as the partition of a matrix
* into blocks, note that we are using a FORTRAN ordering so that the
* name of the filters are a bit misleading */
struct starpu_data_filter vert =
{
.filter_func = starpu_vertical_block_filter_func,
.nchildren = nslicesx
};
struct starpu_data_filter horiz =
{
.filter_func = starpu_block_filter_func,
.nchildren = nslicesy
};
/*
* Illustration with nslicex = 4 and nslicey = 2, it is possible to access
* sub-data by using the "starpu_data_get_sub_data" method, which takes a data handle,
* the number of filters to apply, and the indexes for each filters, for
* instance:
*
* A' handle is starpu_data_get_sub_data(A_handle, 1, 1);
* B' handle is starpu_data_get_sub_data(B_handle, 1, 2);
* C' handle is starpu_data_get_sub_data(C_handle, 2, 2, 1);
*
* Note that here we applied 2 filters recursively onto C.
*
* "starpu_data_get_sub_data(C_handle, 1, 3)" would return a handle to the 4th column
* of blocked matrix C for example.
*
* |---|---|---|---|
* | | | B'| | B
* |---|---|---|---|
* 0 1 2 3
* |----| |---|---|---|---|
* | | | | | | |
* | | 0 | | | | |
* |----| |---|---|---|---|
* | A' | | | | C'| |
* | | | | | | |
* |----| |---|---|---|---|
* A C
*
* IMPORTANT: applying filters is equivalent to partitionning a piece of
* data in a hierarchical manner, so that memory consistency is enforced
* for each of the elements independantly. The tasks should therefore NOT
* access inner nodes (eg. one column of C or the whole C) but only the
* leafs of the tree (ie. blocks here). Manipulating inner nodes is only
* possible by disapplying the filters (using starpu_data_unpartition), to
* enforce memory consistency.
*/
starpu_data_partition(B_handle, &vert);
starpu_data_partition(A_handle, &horiz);
/* starpu_data_map_filters is a variable-arity function, the first argument
* is the handle of the data to partition, the second argument is the
* number of filters to apply recursively. Filters are applied in the
* same order as the arguments.
* This would be equivalent to starpu_data_partition(C_handle, &vert) and
* then applying horiz on each sub-data (ie. each column of C)
*/
starpu_data_map_filters(C_handle, 2, &vert, &horiz);
}
static struct starpu_perfmodel mult_perf_model =
{
.type = STARPU_HISTORY_BASED,
.symbol = "mult_perf_model"
};
static struct starpu_codelet cl =
{
/* we can only execute that kernel on a CPU yet */
.where = STARPU_CPU,
/* CPU implementation of the codelet */
.cpu_funcs = {cpu_mult, NULL},
/* the codelet manipulates 3 buffers that are managed by the
* DSM */
.nbuffers = 3,
.modes = {STARPU_R, STARPU_R, STARPU_W},
/* in case the scheduling policy may use performance models */
.model = &mult_perf_model
};
static int launch_tasks(void)
{
int ret;
/* partition the work into slices */
unsigned taskx, tasky;
for (taskx = 0; taskx < nslicesx; taskx++)
{
for (tasky = 0; tasky < nslicesy; tasky++)
{
/* C[taskx, tasky] = A[tasky] B[taskx] */
/* by default, starpu_task_create() returns an
* asynchronous task (ie. task->synchronous = 0) */
struct starpu_task *task = starpu_task_create();
/* this task implements codelet "cl" */
task->cl = &cl;
/*
* |---|---|---|---|
* | | * | | | B
* |---|---|---|---|
* X
* |----| |---|---|---|---|
* |****| Y | |***| | |
* |****| | |***| | |
* |----| |---|---|---|---|
* | | | | | | |
* | | | | | | |
* |----| |---|---|---|---|
* A C
*/
/* there was a single filter applied to matrices A
* (respectively B) so we grab the handle to the chunk
* identified by "tasky" (respectively "taskx). The "1"
* tells StarPU that there is a single argument to the
* variable-arity function starpu_data_get_sub_data */
task->handles[0] = starpu_data_get_sub_data(A_handle, 1, tasky);
task->handles[1] = starpu_data_get_sub_data(B_handle, 1, taskx);
/* 2 filters were applied on matrix C, so we give
* starpu_data_get_sub_data 2 arguments. The order of the arguments
* must match the order in which the filters were
* applied.
* NB: starpu_data_get_sub_data(C_handle, 1, k) would have returned
* a handle to the column number k of matrix C.
* NB2: starpu_data_get_sub_data(C_handle, 2, taskx, tasky) is
* equivalent to
* starpu_data_get_sub_data(starpu_data_get_sub_data(C_handle, 1, taskx), 1, tasky)*/
task->handles[2] = starpu_data_get_sub_data(C_handle, 2, taskx, tasky);
/* this is not a blocking call since task->synchronous = 0 */
ret = starpu_task_submit(task);
if (ret == -ENODEV) return ret;
STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
}
}
return 0;
}
int main(__attribute__ ((unused)) int argc,
__attribute__ ((unused)) char **argv)
{
int ret;
/* start the runtime */
ret = starpu_init(NULL);
if (ret == -ENODEV)
return 77;
STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
/* initialize matrices A, B and C and register them to StarPU */
init_problem_data();
/* partition matrices into blocks that can be manipulated by the
* codelets */
partition_mult_data();
/* submit all tasks in an asynchronous fashion */
ret = launch_tasks();
if (ret == -ENODEV) goto enodev;
/* wait for termination */
starpu_task_wait_for_all();
/* remove the filters applied by the means of starpu_data_map_filters; now
* it's not possible to manipulate a subset of C using starpu_data_get_sub_data until
* starpu_data_map_filters is called again on C_handle.
* The second argument is the memory node where the different subsets
* should be reassembled, 0 = main memory (RAM) */
starpu_data_unpartition(A_handle, 0);
starpu_data_unpartition(B_handle, 0);
starpu_data_unpartition(C_handle, 0);
/* stop monitoring matrix C : after this, it is not possible to pass C
* (or any subset of C) as a codelet input/output. This also implements
* a barrier so that the piece of data is put back into main memory in
* case it was only available on a GPU for instance. */
starpu_data_unregister(A_handle);
starpu_data_unregister(B_handle);
starpu_data_unregister(C_handle);
free(A);
free(B);
free(C);
starpu_shutdown();
return 0;
enodev:
starpu_shutdown();
return 77;
}
|