1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
/* StarPU --- Runtime system for heterogeneous multicore architectures.
*
* Copyright (C) 2009-2011 Université de Bordeaux 1
* Copyright (C) 2010 Mehdi Juhoor <mjuhoor@gmail.com>
* Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
*
* StarPU is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at
* your option) any later version.
*
* StarPU is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* See the GNU Lesser General Public License in COPYING.LGPL for more details.
*/
#include <starpu_mpi.h>
#include "mpi_cholesky.h"
#include "mpi_cholesky_models.h"
/*
* Create the codelets
*/
static struct starpu_codelet cl11 =
{
.where = STARPU_CPU|STARPU_CUDA,
.cpu_funcs = {chol_cpu_codelet_update_u11, NULL},
#ifdef STARPU_USE_CUDA
.cuda_funcs = {chol_cublas_codelet_update_u11, NULL},
#endif
.nbuffers = 1,
.modes = {STARPU_RW},
.model = &chol_model_11
};
static struct starpu_codelet cl21 =
{
.where = STARPU_CPU|STARPU_CUDA,
.cpu_funcs = {chol_cpu_codelet_update_u21, NULL},
#ifdef STARPU_USE_CUDA
.cuda_funcs = {chol_cublas_codelet_update_u21, NULL},
#endif
.nbuffers = 2,
.modes = {STARPU_R, STARPU_RW},
.model = &chol_model_21
};
static struct starpu_codelet cl22 =
{
.where = STARPU_CPU|STARPU_CUDA,
.cpu_funcs = {chol_cpu_codelet_update_u22, NULL},
#ifdef STARPU_USE_CUDA
.cuda_funcs = {chol_cublas_codelet_update_u22, NULL},
#endif
.nbuffers = 3,
.modes = {STARPU_R, STARPU_R, STARPU_RW},
.model = &chol_model_22
};
/* Returns the MPI node number where data indexes index is */
int my_distrib(int x, int y, int nb_nodes)
{
return (x+y) % nb_nodes;
}
/*
* code to bootstrap the factorization
* and construct the DAG
*/
static void dw_cholesky(float ***matA, unsigned size, unsigned ld, unsigned nblocks, int rank, int nodes)
{
struct timeval start;
struct timeval end;
starpu_data_handle_t **data_handles;
int x, y;
/* create all the DAG nodes */
unsigned i,j,k;
data_handles = malloc(nblocks*sizeof(starpu_data_handle_t *));
for(x=0 ; x<nblocks ; x++) data_handles[x] = malloc(nblocks*sizeof(starpu_data_handle_t));
starpu_mpi_barrier(MPI_COMM_WORLD);
gettimeofday(&start, NULL);
for(x = 0; x < nblocks ; x++)
{
for (y = 0; y < nblocks; y++)
{
int mpi_rank = my_distrib(x, y, nodes);
if (mpi_rank == rank)
{
//fprintf(stderr, "[%d] Owning data[%d][%d]\n", rank, x, y);
starpu_matrix_data_register(&data_handles[x][y], 0, (uintptr_t)matA[x][y],
ld, size/nblocks, size/nblocks, sizeof(float));
}
/* TODO: make better test to only registering what is needed */
else
{
/* I don't own that index, but will need it for my computations */
//fprintf(stderr, "[%d] Neighbour of data[%d][%d]\n", rank, x, y);
starpu_matrix_data_register(&data_handles[x][y], -1, (uintptr_t)NULL,
ld, size/nblocks, size/nblocks, sizeof(float));
}
if (data_handles[x][y])
{
starpu_data_set_rank(data_handles[x][y], mpi_rank);
starpu_data_set_tag(data_handles[x][y], (y*nblocks)+x);
}
}
}
for (k = 0; k < nblocks; k++)
{
int prio = STARPU_DEFAULT_PRIO;
if (!noprio) prio = STARPU_MAX_PRIO;
starpu_mpi_insert_task(MPI_COMM_WORLD, &cl11,
STARPU_PRIORITY, prio,
STARPU_RW, data_handles[k][k],
0);
for (j = k+1; j<nblocks; j++)
{
prio = STARPU_DEFAULT_PRIO;
if (!noprio&& (j == k+1)) prio = STARPU_MAX_PRIO;
starpu_mpi_insert_task(MPI_COMM_WORLD, &cl21,
STARPU_PRIORITY, prio,
STARPU_R, data_handles[k][k],
STARPU_RW, data_handles[k][j],
0);
for (i = k+1; i<nblocks; i++)
{
if (i <= j)
{
prio = STARPU_DEFAULT_PRIO;
if (!noprio && (i == k + 1) && (j == k +1) ) prio = STARPU_MAX_PRIO;
starpu_mpi_insert_task(MPI_COMM_WORLD, &cl22,
STARPU_PRIORITY, prio,
STARPU_R, data_handles[k][i],
STARPU_R, data_handles[k][j],
STARPU_RW, data_handles[i][j],
0);
}
}
}
}
starpu_task_wait_for_all();
for(x = 0; x < nblocks ; x++)
{
for (y = 0; y < nblocks; y++)
{
if (data_handles[x][y])
starpu_data_unregister(data_handles[x][y]);
}
free(data_handles[x]);
}
free(data_handles);
starpu_mpi_barrier(MPI_COMM_WORLD);
gettimeofday(&end, NULL);
if (rank == 0)
{
double timing = (double)((end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec));
fprintf(stderr, "Computation took (in ms)\n");
fprintf(stdout, "%2.2f\n", timing/1000);
double flop = (1.0f*size*size*size)/3.0f;
fprintf(stderr, "Synthetic GFlops : %2.2f\n", (flop/timing/1000.0f));
}
}
int main(int argc, char **argv)
{
/* create a simple definite positive symetric matrix example
*
* Hilbert matrix : h(i,j) = 1/(i+j+1)
* */
float ***bmat;
int rank, nodes;
parse_args(argc, argv);
struct starpu_conf conf;
starpu_conf_init(&conf);
conf.sched_policy_name = "heft";
conf.calibrate = 1;
int ret = starpu_init(&conf);
STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
starpu_mpi_initialize_extended(&rank, &nodes);
starpu_helper_cublas_init();
unsigned i,j,x,y;
bmat = malloc(nblocks * sizeof(float *));
for(x=0 ; x<nblocks ; x++)
{
bmat[x] = malloc(nblocks * sizeof(float *));
for(y=0 ; y<nblocks ; y++)
{
int mpi_rank = my_distrib(x, y, nodes);
if (mpi_rank == rank)
{
starpu_malloc((void **)&bmat[x][y], BLOCKSIZE*BLOCKSIZE*sizeof(float));
for (i = 0; i < BLOCKSIZE; i++)
{
for (j = 0; j < BLOCKSIZE; j++)
{
bmat[x][y][j +i*BLOCKSIZE] = (1.0f/(1.0f+(i+(x*BLOCKSIZE)+j+(y*BLOCKSIZE)))) + ((i+(x*BLOCKSIZE) == j+(y*BLOCKSIZE))?1.0f*size:0.0f);
//mat[j +i*size] = ((i == j)?1.0f*size:0.0f);
}
}
}
}
}
dw_cholesky(bmat, size, size/nblocks, nblocks, rank, nodes);
starpu_mpi_shutdown();
for(x=0 ; x<nblocks ; x++)
{
for(y=0 ; y<nblocks ; y++)
{
int mpi_rank = my_distrib(x, y, nodes);
if (mpi_rank == rank)
{
starpu_free((void *)bmat[x][y]);
}
}
free(bmat[x]);
}
free(bmat);
starpu_helper_cublas_shutdown();
starpu_shutdown();
return 0;
}
|