1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
/* StarPU --- Runtime system for heterogeneous multicore architectures.
*
* Copyright (C) 2009, 2010 Université de Bordeaux 1
* Copyright (C) 2010, 2011 Centre National de la Recherche Scientifique
*
* StarPU is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at
* your option) any later version.
*
* StarPU is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* See the GNU Lesser General Public License in COPYING.LGPL for more details.
*/
#define _externC extern "C"
#include "cudax_kernels.h"
/* Note: these assume that the sizes are powers of two */
#define VARS_1d \
unsigned start = threadIdx.x + blockIdx.x * blockDim.x; \
unsigned numthreads = blockDim.x * gridDim.x;
#define DISTRIB_1d(n, func,args) \
unsigned threads_per_block = 128; \
\
if (n < threads_per_block) \
{ \
dim3 dimGrid(n); \
func <<<dimGrid, 1, 0, starpu_cuda_get_local_stream()>>> args; \
} \
else \
{ \
dim3 dimGrid(n / threads_per_block); \
dim3 dimBlock(threads_per_block); \
func <<<dimGrid, dimBlock, 0, starpu_cuda_get_local_stream()>>> args; \
} \
cudaStreamSynchronize(starpu_cuda_get_local_stream()); \
extern "C" __global__ void
STARPUFFT(cuda_twist1_1d)(const _cuComplex *in, _cuComplex *twisted1, unsigned i, unsigned n1, unsigned n2)
{
unsigned j;
VARS_1d
unsigned end = n2;
for (j = start; j < end; j += numthreads)
twisted1[j] = in[i+j*n1];
}
extern "C" void
STARPUFFT(cuda_twist1_1d_host)(const _cuComplex *in, _cuComplex *twisted1, unsigned i, unsigned n1, unsigned n2)
{
DISTRIB_1d(n2, STARPUFFT(cuda_twist1_1d), (in, twisted1, i, n1, n2));
}
extern "C" __global__ void
STARPUFFT(cuda_twiddle_1d)(_cuComplex * out, const _cuComplex * roots, unsigned n, unsigned i)
{
unsigned j;
VARS_1d
unsigned end = n;
for (j = start; j < end; j += numthreads)
out[j] = _cuCmul(out[j], roots[i*j]);
return;
}
extern "C" void
STARPUFFT(cuda_twiddle_1d_host)(_cuComplex *out, const _cuComplex *roots, unsigned n, unsigned i)
{
DISTRIB_1d(n, STARPUFFT(cuda_twiddle_1d), (out, roots, n, i));
}
#define VARS_2d \
unsigned startx = threadIdx.x + blockIdx.x * blockDim.x; \
unsigned starty = threadIdx.y + blockIdx.y * blockDim.y; \
unsigned numthreadsx = blockDim.x * gridDim.x; \
unsigned numthreadsy = blockDim.y * gridDim.y;
/* FIXME: introduce threads_per_dim_n / m instead */
#define DISTRIB_2d(n, m, func, args) \
unsigned threads_per_dim = 16; \
if (n < threads_per_dim) \
{ \
if (m < threads_per_dim) \
{ \
dim3 dimGrid(n, m); \
func <<<dimGrid, 1, 0, starpu_cuda_get_local_stream()>>> args; \
} \
else \
{ \
dim3 dimGrid(1, m / threads_per_dim); \
dim3 dimBlock(n, threads_per_dim); \
func <<<dimGrid, dimBlock, 0, starpu_cuda_get_local_stream()>>> args; \
} \
} \
else \
{ \
if (m < threads_per_dim) \
{ \
dim3 dimGrid(n / threads_per_dim, 1); \
dim3 dimBlock(threads_per_dim, m); \
func <<<dimGrid, dimBlock, 0, starpu_cuda_get_local_stream()>>> args; \
} \
else \
{ \
dim3 dimGrid(n / threads_per_dim, m / threads_per_dim); \
dim3 dimBlock(threads_per_dim, threads_per_dim); \
func <<<dimGrid, dimBlock, 0, starpu_cuda_get_local_stream()>>> args; \
} \
} \
cudaStreamSynchronize(starpu_cuda_get_local_stream()); \
extern "C" __global__ void
STARPUFFT(cuda_twist1_2d)(const _cuComplex *in, _cuComplex *twisted1, unsigned i, unsigned j, unsigned n1, unsigned n2, unsigned m1, unsigned m2)
{
unsigned k, l;
VARS_2d
unsigned endx = n2;
unsigned endy = m2;
unsigned m = m1*m2;
for (k = startx; k < endx; k += numthreadsx)
for (l = starty; l < endy; l += numthreadsy)
twisted1[k*m2+l] = in[i*m+j+k*m*n1+l*m1];
}
extern "C" void
STARPUFFT(cuda_twist1_2d_host)(const _cuComplex *in, _cuComplex *twisted1, unsigned i, unsigned j, unsigned n1, unsigned n2, unsigned m1, unsigned m2)
{
DISTRIB_2d(n2, m2, STARPUFFT(cuda_twist1_2d), (in, twisted1, i, j, n1, n2, m1, m2));
}
extern "C" __global__ void
STARPUFFT(cuda_twiddle_2d)(_cuComplex * out, const _cuComplex * roots0, const _cuComplex * roots1, unsigned n2, unsigned m2, unsigned i, unsigned j)
{
unsigned k, l;
VARS_2d
unsigned endx = n2;
unsigned endy = m2;
for (k = startx; k < endx ; k += numthreadsx)
for (l = starty; l < endy ; l += numthreadsy)
out[k*m2 + l] = _cuCmul(_cuCmul(out[k*m2 + l], roots0[i*k]), roots1[j*l]);
return;
}
extern "C" void
STARPUFFT(cuda_twiddle_2d_host)(_cuComplex *out, const _cuComplex *roots0, const _cuComplex *roots1, unsigned n2, unsigned m2, unsigned i, unsigned j)
{
DISTRIB_2d(n2, m2, STARPUFFT(cuda_twiddle_2d), (out, roots0, roots1, n2, m2, i, j));
}
|