File: starpufftx2d.c

package info (click to toggle)
starpu-contrib 1.0.1%2Bdfsg-1
  • links: PTS, VCS
  • area: contrib
  • in suites: wheezy
  • size: 13,836 kB
  • sloc: ansic: 77,357; cpp: 23,334; sh: 12,088; makefile: 2,086; lisp: 758; yacc: 185; sed: 126; fortran: 13
file content (850 lines) | stat: -rw-r--r-- 24,661 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
/* StarPU --- Runtime system for heterogeneous multicore architectures.
 *
 * Copyright (C) 2009-2012  Université de Bordeaux 1
 * Copyright (C) 2010, 2011, 2012  Centre National de la Recherche Scientifique
 *
 * StarPU is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or (at
 * your option) any later version.
 *
 * StarPU is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 *
 * See the GNU Lesser General Public License in COPYING.LGPL for more details.
 */

#define DIV_2D_N 8
#define DIV_2D_M 8

#define I_SHIFT (I_BITS/2)
#define J_BITS I_SHIFT

#define STEP_TAG_2D(plan, step, i, j) _STEP_TAG(plan, step, ((starpu_tag_t) i << I_SHIFT) | (starpu_tag_t) j)

#ifdef __STARPU_USE_CUDA
/* Twist the full vector into a n2,m2 chunk */
static void
STARPUFFT(twist1_2d_kernel_gpu)(void *descr[], void *_args)
{
	struct STARPUFFT(args) *args = _args;
	STARPUFFT(plan) plan = args->plan;
	int i = args->i;
	int j = args->j;
	int n1 = plan->n1[0];
	int n2 = plan->n2[0];
	int m1 = plan->n1[1];
	int m2 = plan->n2[1];

	_cufftComplex * restrict in = (_cufftComplex *)STARPU_VECTOR_GET_PTR(descr[0]);
	_cufftComplex * restrict twisted1 = (_cufftComplex *)STARPU_VECTOR_GET_PTR(descr[1]);

	STARPUFFT(cuda_twist1_2d_host)(in, twisted1, i, j, n1, n2, m1, m2);
	cudaStreamSynchronize(starpu_cuda_get_local_stream());
}

/* fft1:
 *
 * Perform one fft of size n2,m2 */
static void
STARPUFFT(fft1_2d_plan_gpu)(void *args)
{
	STARPUFFT(plan) plan = args;
	int n2 = plan->n2[0];
	int m2 = plan->n2[1];
	int workerid = starpu_worker_get_id();
	cufftResult cures;

	cures = cufftPlan2d(&plan->plans[workerid].plan1_cuda, n2, m2, _CUFFT_C2C);
	STARPU_ASSERT(cures == CUFFT_SUCCESS);
	cufftSetStream(plan->plans[workerid].plan1_cuda, starpu_cuda_get_local_stream());
	STARPU_ASSERT(cures == CUFFT_SUCCESS);
}

static void
STARPUFFT(fft1_2d_kernel_gpu)(void *descr[], void *_args)
{
	struct STARPUFFT(args) *args = _args;
	STARPUFFT(plan) plan = args->plan;
	int i = args->i;
	int j = args->j;
	int n2 = plan->n2[0];
	int m2 = plan->n2[1];
	cufftResult cures;

	_cufftComplex * restrict in = (_cufftComplex *)STARPU_VECTOR_GET_PTR(descr[0]);
	_cufftComplex * restrict out = (_cufftComplex *)STARPU_VECTOR_GET_PTR(descr[1]);
	const _cufftComplex * restrict roots0 = (_cufftComplex *)STARPU_VECTOR_GET_PTR(descr[2]);
	const _cufftComplex * restrict roots1 = (_cufftComplex *)STARPU_VECTOR_GET_PTR(descr[3]);

	int workerid = starpu_worker_get_id();

	task_per_worker[workerid]++;

	cures = _cufftExecC2C(plan->plans[workerid].plan1_cuda, in, out, plan->sign == -1 ? CUFFT_FORWARD : CUFFT_INVERSE);
	STARPU_ASSERT(cures == CUFFT_SUCCESS);

	/* synchronization is done after the twiddling */
	STARPUFFT(cuda_twiddle_2d_host)(out, roots0, roots1, n2, m2, i, j);

	cudaStreamSynchronize(starpu_cuda_get_local_stream());
}

/* fft2:
 *
 * Perform n3*m3 ffts of size n1,m1 */
static void
STARPUFFT(fft2_2d_plan_gpu(void *args))
{
	STARPUFFT(plan) plan = args;
	int n1 = plan->n1[0];
	int m1 = plan->n1[1];
	cufftResult cures;
	int workerid = starpu_worker_get_id();

	cures = cufftPlan2d(&plan->plans[workerid].plan2_cuda, n1, m1, _CUFFT_C2C);
	STARPU_ASSERT(cures == CUFFT_SUCCESS);
	cufftSetStream(plan->plans[workerid].plan2_cuda, starpu_cuda_get_local_stream());
	STARPU_ASSERT(cures == CUFFT_SUCCESS);
}

static void
STARPUFFT(fft2_2d_kernel_gpu)(void *descr[], void *_args)
{
	struct STARPUFFT(args) *args = _args;
	STARPUFFT(plan) plan = args->plan;
	int n1 = plan->n1[0];
	int n2 = plan->n2[0];
	int m1 = plan->n1[1];
	int m2 = plan->n2[1];
	int n3 = n2/DIV_2D_N;
	int m3 = m2/DIV_2D_M;
	int n;
	cufftResult cures;

	_cufftComplex * restrict in = (_cufftComplex *)STARPU_VECTOR_GET_PTR(descr[0]);
	_cufftComplex * restrict out = (_cufftComplex *)STARPU_VECTOR_GET_PTR(descr[1]);

	int workerid = starpu_worker_get_id();

	task_per_worker[workerid]++;

	for (n = 0; n < n3*m3; n++) {
		cures = _cufftExecC2C(plan->plans[workerid].plan2_cuda, in + n * n1*m1, out + n * n1*m1, plan->sign == -1 ? CUFFT_FORWARD : CUFFT_INVERSE);
		STARPU_ASSERT(cures == CUFFT_SUCCESS);
	}

	cudaStreamSynchronize(starpu_cuda_get_local_stream());
}
#endif

/* Twist the full vector into a n2,m2 chunk */
static void
STARPUFFT(twist1_2d_kernel_cpu)(void *descr[], void *_args)
{
	struct STARPUFFT(args) *args = _args;
	STARPUFFT(plan) plan = args->plan;
	int i = args->i;
	int j = args->j;
	int k, l;
	int n1 = plan->n1[0];
	int n2 = plan->n2[0];
	int m1 = plan->n1[1];
	int m2 = plan->n2[1];
	int m = plan->n[1];

	STARPUFFT(complex) * restrict in = (STARPUFFT(complex) *)STARPU_VECTOR_GET_PTR(descr[0]);
	STARPUFFT(complex) * restrict twisted1 = (STARPUFFT(complex) *)STARPU_VECTOR_GET_PTR(descr[1]);

	/* printf("twist1 %d %d %g\n", i, j, (double) cabs(plan->in[i+j])); */

	for (k = 0; k < n2; k++)
		for (l = 0; l < m2; l++)
			twisted1[k*m2+l] = in[i*m+j+k*m*n1+l*m1];
}

#ifdef STARPU_HAVE_FFTW
/* Perform an n2,m2 fft */
static void
STARPUFFT(fft1_2d_kernel_cpu)(void *descr[], void *_args)
{
	struct STARPUFFT(args) *args = _args;
	STARPUFFT(plan) plan = args->plan;
	int i = args->i;
	int j = args->j;
	int k, l;
	int n2 = plan->n2[0];
	int m2 = plan->n2[1];
	int workerid = starpu_worker_get_id();

	task_per_worker[workerid]++;

	STARPUFFT(complex) *twisted1 = (STARPUFFT(complex) *)STARPU_VECTOR_GET_PTR(descr[0]);
	STARPUFFT(complex) *fft1 = (STARPUFFT(complex) *)STARPU_VECTOR_GET_PTR(descr[1]);

	/* printf("fft1 %d %d %g\n", i, j, (double) cabs(twisted1[0])); */

	_FFTW(execute_dft)(plan->plans[workerid].plan1_cpu, twisted1, fft1);
	for (k = 0; k < n2; k++)
		for (l = 0; l < m2; l++)
			fft1[k*m2 + l] = fft1[k*m2 + l] * plan->roots[0][i*k] * plan->roots[1][j*l];
}
#endif

/* Twist the full vector into a package of n2/DIV_2D_N,m2/DIV_2D_M (n1,m1) chunks */
static void
STARPUFFT(twist2_2d_kernel_cpu)(void *descr[], void *_args)
{
	struct STARPUFFT(args) *args = _args;
	STARPUFFT(plan) plan = args->plan;
	int kk = args->kk;	/* between 0 and DIV_2D_N */
	int ll = args->ll;	/* between 0 and DIV_2D_M */
	int kkk, lll;		/* beetween 0,0 and n3,m3 */
	int i, j;
	int n1 = plan->n1[0];
	int n2 = plan->n2[0];
	int m1 = plan->n1[1];
	int m2 = plan->n2[1];
	int n3 = n2/DIV_2D_N;
	int m3 = m2/DIV_2D_M;

	STARPUFFT(complex) * restrict twisted2 = (STARPUFFT(complex) *)STARPU_VECTOR_GET_PTR(descr[0]);

	/* printf("twist2 %d %d %g\n", kk, ll, (double) cabs(plan->fft1[kk+ll])); */

	for (kkk = 0; kkk < n3; kkk++) {
		int k = kk * n3 + kkk;
		for (lll = 0; lll < m3; lll++) {
			int l = ll * m3 + lll;
			for (i = 0; i < n1; i++)
				for (j = 0; j < m1; j++)
					twisted2[kkk*m3*n1*m1+lll*n1*m1+i*m1+j] = plan->fft1[i*n1*n2*m2+j*n2*m2+k*m2+l];
		}
	}
}

#ifdef STARPU_HAVE_FFTW
/* Perform (n2/DIV_2D_N)*(m2/DIV_2D_M) (n1,m1) ffts */
static void
STARPUFFT(fft2_2d_kernel_cpu)(void *descr[], void *_args)
{
	struct STARPUFFT(args) *args = _args;
	STARPUFFT(plan) plan = args->plan;
	/* int kk = args->kk; */
	/* int ll = args->ll; */
	int workerid = starpu_worker_get_id();

	task_per_worker[workerid]++;

	STARPUFFT(complex) *twisted2 = (STARPUFFT(complex) *)STARPU_VECTOR_GET_PTR(descr[0]);
	STARPUFFT(complex) *fft2 = (STARPUFFT(complex) *)STARPU_VECTOR_GET_PTR(descr[1]);

	/* printf("fft2 %d %d %g\n", kk, ll, (double) cabs(twisted2[plan->totsize4-1])); */

	_FFTW(execute_dft)(plan->plans[workerid].plan2_cpu, twisted2, fft2);
}
#endif

/* Spread the package of (n2/DIV_2D_N)*(m2/DIV_2D_M) (n1,m1) chunks into the full vector */
static void
STARPUFFT(twist3_2d_kernel_cpu)(void *descr[], void *_args)
{
	struct STARPUFFT(args) *args = _args;
	STARPUFFT(plan) plan = args->plan;
	int kk = args->kk;	/* between 0 and DIV_2D_N */
	int ll = args->ll;	/* between 0 and DIV_2D_M */
	int kkk, lll;		/* beetween 0,0 and n3,m3 */
	int i, j;
	int n1 = plan->n1[0];
	int n2 = plan->n2[0];
	int m1 = plan->n1[1];
	int m2 = plan->n2[1];
	int n3 = n2/DIV_2D_N;
	int m3 = m2/DIV_2D_M;
	int m = plan->n[1];

	const STARPUFFT(complex) * restrict fft2 = (STARPUFFT(complex) *)STARPU_VECTOR_GET_PTR(descr[0]);

	/* printf("twist3 %d %d %g\n", kk, ll, (double) cabs(fft2[0])); */

	for (kkk = 0; kkk < n3; kkk++) {
		int k = kk * n3 + kkk;
		for (lll = 0; lll < m3; lll++) {
			int l = ll * m3 + lll;
			for (i = 0; i < n1; i++)
				for (j = 0; j < m1; j++)
					plan->out[i*n2*m+j*m2+k*m+l] = fft2[kkk*m3*n1*m1+lll*n1*m1+i*m1+j];
		}
	}
}

struct starpu_perfmodel STARPUFFT(twist1_2d_model) = {
	.type = STARPU_HISTORY_BASED,
	.symbol = TYPE"twist1_2d"
};

struct starpu_perfmodel STARPUFFT(fft1_2d_model) = {
	.type = STARPU_HISTORY_BASED,
	.symbol = TYPE"fft1_2d"
};

struct starpu_perfmodel STARPUFFT(twist2_2d_model) = {
	.type = STARPU_HISTORY_BASED,
	.symbol = TYPE"twist2_2d"
};

struct starpu_perfmodel STARPUFFT(fft2_2d_model) = {
	.type = STARPU_HISTORY_BASED,
	.symbol = TYPE"fft2_2d"
};

struct starpu_perfmodel STARPUFFT(twist3_2d_model) = {
	.type = STARPU_HISTORY_BASED,
	.symbol = TYPE"twist3_2d"
};

static struct starpu_codelet STARPUFFT(twist1_2d_codelet) = {
	.where =
#ifdef __STARPU_USE_CUDA
		STARPU_CUDA|
#endif
		STARPU_CPU,
#ifdef __STARPU_USE_CUDA
	.cuda_funcs = {STARPUFFT(twist1_2d_kernel_gpu), NULL},
#endif
	.cpu_funcs = {STARPUFFT(twist1_2d_kernel_cpu), NULL},
	CAN_EXECUTE
	.model = &STARPUFFT(twist1_2d_model),
	.nbuffers = 2,
	.modes = {STARPU_R, STARPU_W}
};

static struct starpu_codelet STARPUFFT(fft1_2d_codelet) = {
	.where =
#ifdef __STARPU_USE_CUDA
		STARPU_CUDA|
#endif
#ifdef STARPU_HAVE_FFTW
		STARPU_CPU|
#endif
		0,
#ifdef __STARPU_USE_CUDA
	.cuda_funcs = {STARPUFFT(fft1_2d_kernel_gpu), NULL},
#endif
#ifdef STARPU_HAVE_FFTW
	.cpu_funcs = {STARPUFFT(fft1_2d_kernel_cpu), NULL},
#endif
	CAN_EXECUTE
	.model = &STARPUFFT(fft1_2d_model),
	.nbuffers = 4,
	.modes = {STARPU_R, STARPU_W, STARPU_R, STARPU_R}
};

static struct starpu_codelet STARPUFFT(twist2_2d_codelet) = {
	.where = STARPU_CPU,
	.cpu_funcs = {STARPUFFT(twist2_2d_kernel_cpu), NULL},
	CAN_EXECUTE
	.model = &STARPUFFT(twist2_2d_model),
	.nbuffers = 1,
	.modes = {STARPU_W}
};

static struct starpu_codelet STARPUFFT(fft2_2d_codelet) = {
	.where =
#ifdef __STARPU_USE_CUDA
		STARPU_CUDA|
#endif
#ifdef STARPU_HAVE_FFTW
		STARPU_CPU|
#endif
		0,
#ifdef __STARPU_USE_CUDA
	.cuda_funcs = {STARPUFFT(fft2_2d_kernel_gpu), NULL},
#endif
#ifdef STARPU_HAVE_FFTW
	.cpu_funcs = {STARPUFFT(fft2_2d_kernel_cpu), NULL},
#endif
	CAN_EXECUTE
	.model = &STARPUFFT(fft2_2d_model),
	.nbuffers = 2,
	.modes = {STARPU_R, STARPU_W}
};

static struct starpu_codelet STARPUFFT(twist3_2d_codelet) = {
	.where = STARPU_CPU,
	.cpu_funcs = {STARPUFFT(twist3_2d_kernel_cpu), NULL},
	CAN_EXECUTE
	.model = &STARPUFFT(twist3_2d_model),
	.nbuffers = 1,
	.modes = {STARPU_R}
};

/*
 *
 * Sequential version
 *
 */

#ifdef __STARPU_USE_CUDA
/* Perform one fft of size n,m */
static void
STARPUFFT(fft_2d_plan_gpu)(void *args)
{
	STARPUFFT(plan) plan = args;
	cufftResult cures;
	int n = plan->n[0];
	int m = plan->n[1];
	int workerid = starpu_worker_get_id();

	cures = cufftPlan2d(&plan->plans[workerid].plan_cuda, n, m, _CUFFT_C2C);
	STARPU_ASSERT(cures == CUFFT_SUCCESS);
	cufftSetStream(plan->plans[workerid].plan_cuda, starpu_cuda_get_local_stream());
	STARPU_ASSERT(cures == CUFFT_SUCCESS);
}

static void
STARPUFFT(fft_2d_kernel_gpu)(void *descr[], void *args)
{
	STARPUFFT(plan) plan = args;
	cufftResult cures;

	_cufftComplex * restrict in = (_cufftComplex *)STARPU_VECTOR_GET_PTR(descr[0]);
	_cufftComplex * restrict out = (_cufftComplex *)STARPU_VECTOR_GET_PTR(descr[1]);

	int workerid = starpu_worker_get_id();

	task_per_worker[workerid]++;

	cures = _cufftExecC2C(plan->plans[workerid].plan_cuda, in, out, plan->sign == -1 ? CUFFT_FORWARD : CUFFT_INVERSE);
	STARPU_ASSERT(cures == CUFFT_SUCCESS);

	cudaStreamSynchronize(starpu_cuda_get_local_stream());
}
#endif

#ifdef STARPU_HAVE_FFTW
/* Perform one fft of size n,m */
static void
STARPUFFT(fft_2d_kernel_cpu)(void *descr[], void *_args)
{
	STARPUFFT(plan) plan = _args;
	int workerid = starpu_worker_get_id();

	task_per_worker[workerid]++;

	STARPUFFT(complex) * restrict in = (STARPUFFT(complex) *)STARPU_VECTOR_GET_PTR(descr[0]);
	STARPUFFT(complex) * restrict out = (STARPUFFT(complex) *)STARPU_VECTOR_GET_PTR(descr[1]);

	_FFTW(execute_dft)(plan->plans[workerid].plan_cpu, in, out);
}
#endif

static struct starpu_perfmodel STARPUFFT(fft_2d_model) = {
	.type = STARPU_HISTORY_BASED,
	.symbol = TYPE"fft_2d"
};

static struct starpu_codelet STARPUFFT(fft_2d_codelet) = {
	.where =
#ifdef __STARPU_USE_CUDA
		STARPU_CUDA|
#endif
#ifdef STARPU_HAVE_FFTW
		STARPU_CPU|
#endif
		0,
#ifdef __STARPU_USE_CUDA
	.cuda_funcs = {STARPUFFT(fft_2d_kernel_gpu), NULL},
#endif
#ifdef STARPU_HAVE_FFTW
	.cpu_funcs = {STARPUFFT(fft_2d_kernel_cpu), NULL},
#endif
	CAN_EXECUTE
	.model = &STARPUFFT(fft_2d_model),
	.nbuffers = 2,
	.modes = {STARPU_R, STARPU_W}
};

STARPUFFT(plan)
STARPUFFT(plan_dft_2d)(int n, int m, int sign, unsigned flags)
{
	int workerid;
	int n1 = DIV_2D_N;
	int n2 = n / n1;
	int n3;
	int m1 = DIV_2D_M;
	int m2 = m / m1;
	int m3;
	int z;
	struct starpu_task *task;

if (PARALLEL) {
	/*
	 * Simple strategy:
	 *
	 * - twist1: twist input in n1*m1 (n2,m2) chunks
	 * - fft1:   perform n1*m1 (n2,m2) ffts
	 * - twist2: twist into n2*m2 (n1,m1) chunks distributed in
	 *           DIV_2D_N*DIV_2D_M groups
	 * - fft2:   perform DIV_2D_N*DIV_2D_M times n3*m3 (n1,m1) ffts
	 * - twist3: twist back into output
	 */

#ifdef __STARPU_USE_CUDA
	/* cufft 2D-3D limited to [2,16384] */
	while (n2 > 16384) {
		n1 *= 2;
		n2 /= 2;
	}
#endif
	STARPU_ASSERT(n == n1*n2);
	STARPU_ASSERT(n1 < (1ULL << J_BITS));


#ifdef __STARPU_USE_CUDA
	/* cufft 2D-3D limited to [2,16384] */
	while (m2 > 16384) {
		m1 *= 2;
		m2 /= 2;
	}
#endif
	STARPU_ASSERT(m == m1*m2);
	STARPU_ASSERT(m1 < (1ULL << J_BITS));

	/* distribute the n2*m2 second ffts into DIV_2D_N*DIV_2D_M packages */
	n3 = n2 / DIV_2D_N;
	STARPU_ASSERT(n2 == n3*DIV_2D_N);
	m3 = m2 / DIV_2D_M;
	STARPU_ASSERT(m2 == m3*DIV_2D_M);
}

	/* TODO: flags? Automatically set FFTW_MEASURE on calibration? */
	STARPU_ASSERT(flags == 0);

	STARPUFFT(plan) plan = malloc(sizeof(*plan));
	memset(plan, 0, sizeof(*plan));

if (PARALLEL) {
	plan->number = STARPU_ATOMIC_ADD(&starpufft_last_plan_number, 1) - 1;

	/* 4bit limitation in the tag space */
	STARPU_ASSERT(plan->number < (1ULL << NUMBER_BITS));
}

	plan->dim = 2;
	plan->n = malloc(plan->dim * sizeof(*plan->n));
	plan->n[0] = n;
	plan->n[1] = m;

if (PARALLEL) {
	check_dims(plan);

	plan->n1 = malloc(plan->dim * sizeof(*plan->n1));
	plan->n1[0] = n1;
	plan->n1[1] = m1;
	plan->n2 = malloc(plan->dim * sizeof(*plan->n2));
	plan->n2[0] = n2;
	plan->n2[1] = m2;
}

	plan->totsize = n * m;

if (PARALLEL) {
	plan->totsize1 = n1 * m1;
	plan->totsize2 = n2 * m2;
	plan->totsize3 = DIV_2D_N * DIV_2D_M;
	plan->totsize4 = plan->totsize / plan->totsize3;
}
	plan->type = C2C;
	plan->sign = sign;

if (PARALLEL) {
	/* Compute the w^k just once. */
	compute_roots(plan);
}

	/* Initialize per-worker working set */
	for (workerid = 0; workerid < starpu_worker_get_count(); workerid++) {
		switch (starpu_worker_get_type(workerid)) {
		case STARPU_CPU_WORKER:
#ifdef STARPU_HAVE_FFTW
if (PARALLEL) {
			/* first fft plan: one n2*m2 fft */
			plan->plans[workerid].plan1_cpu = _FFTW(plan_dft_2d)(n2, m2, NULL, (void*) 1, sign, _FFTW_FLAGS);
			STARPU_ASSERT(plan->plans[workerid].plan1_cpu);

			/* second fft plan: n3*m3 n1*m1 ffts */
			plan->plans[workerid].plan2_cpu = _FFTW(plan_many_dft)(plan->dim,
					plan->n1, n3*m3,
					NULL, NULL, 1, plan->totsize1,
					(void*) 1, NULL, 1, plan->totsize1,
					sign, _FFTW_FLAGS);
			STARPU_ASSERT(plan->plans[workerid].plan2_cpu);
} else {
			/* fft plan: one fft of size n, m. */
			plan->plans[workerid].plan_cpu = _FFTW(plan_dft_2d)(n, m, NULL, (void*) 1, sign, _FFTW_FLAGS);
			STARPU_ASSERT(plan->plans[workerid].plan_cpu);
}
#else
/* #warning libstarpufft can not work correctly if libfftw3 is not installed */
#endif
			break;
		case STARPU_CUDA_WORKER:
			break;
		default:
			/* Do not care, we won't be executing anything there. */
			break;
		}
	}
#ifdef __STARPU_USE_CUDA
if (PARALLEL) {
	starpu_execute_on_each_worker(STARPUFFT(fft1_2d_plan_gpu), plan, STARPU_CUDA);
	starpu_execute_on_each_worker(STARPUFFT(fft2_2d_plan_gpu), plan, STARPU_CUDA);
} else {
	starpu_execute_on_each_worker(STARPUFFT(fft_2d_plan_gpu), plan, STARPU_CUDA);
}
#endif

if (PARALLEL) {
	/* Allocate buffers. */
	plan->twisted1 = STARPUFFT(malloc)(plan->totsize * sizeof(*plan->twisted1));
	memset(plan->twisted1, 0, plan->totsize * sizeof(*plan->twisted1));
	plan->fft1 = STARPUFFT(malloc)(plan->totsize * sizeof(*plan->fft1));
	memset(plan->fft1, 0, plan->totsize * sizeof(*plan->fft1));
	plan->twisted2 = STARPUFFT(malloc)(plan->totsize * sizeof(*plan->twisted2));
	memset(plan->twisted2, 0, plan->totsize * sizeof(*plan->twisted2));
	plan->fft2 = STARPUFFT(malloc)(plan->totsize * sizeof(*plan->fft2));
	memset(plan->fft2, 0, plan->totsize * sizeof(*plan->fft2));

	/* Allocate handle arrays */
	plan->twisted1_handle = malloc(plan->totsize1 * sizeof(*plan->twisted1_handle));
	plan->fft1_handle = malloc(plan->totsize1 * sizeof(*plan->fft1_handle));
	plan->twisted2_handle = malloc(plan->totsize3 * sizeof(*plan->twisted2_handle));
	plan->fft2_handle = malloc(plan->totsize3 * sizeof(*plan->fft2_handle));

	/* Allocate task arrays */
	plan->twist1_tasks = malloc(plan->totsize1 * sizeof(*plan->twist1_tasks));
	plan->fft1_tasks = malloc(plan->totsize1 * sizeof(*plan->fft1_tasks));
	plan->twist2_tasks = malloc(plan->totsize3 * sizeof(*plan->twist2_tasks));
	plan->fft2_tasks = malloc(plan->totsize3 * sizeof(*plan->fft2_tasks));
	plan->twist3_tasks = malloc(plan->totsize3 * sizeof(*plan->twist3_tasks));

	/* Allocate codelet argument arrays */
	plan->fft1_args = malloc(plan->totsize1 * sizeof(*plan->fft1_args));
	plan->fft2_args = malloc(plan->totsize3 * sizeof(*plan->fft2_args));

	/* Create first-round tasks */
	for (z = 0; z < plan->totsize1; z++) {
		int i = z / m1, j = z % m1;
#define STEP_TAG(step)	STEP_TAG_2D(plan, step, i, j)

		/* TODO: get rid of tags */

		plan->fft1_args[z].plan = plan;
		plan->fft1_args[z].i = i;
		plan->fft1_args[z].j = j;

		/* Register (n2,m2) chunks */
		starpu_vector_data_register(&plan->twisted1_handle[z], 0, (uintptr_t) &plan->twisted1[z*plan->totsize2], plan->totsize2, sizeof(*plan->twisted1));
		starpu_vector_data_register(&plan->fft1_handle[z], 0, (uintptr_t) &plan->fft1[z*plan->totsize2], plan->totsize2, sizeof(*plan->fft1));

		/* We'll need it on the CPU for the second twist anyway */
		starpu_data_set_wt_mask(plan->fft1_handle[z], 1<<0);

		/* Create twist1 task */
		plan->twist1_tasks[z] = task = starpu_task_create();
		task->cl = &STARPUFFT(twist1_2d_codelet);
		/* task->handles[0] = to be filled at execution */
		task->handles[1] = plan->twisted1_handle[z];
		task->cl_arg = &plan->fft1_args[z];
		task->tag_id = STEP_TAG(TWIST1);
		task->use_tag = 1;
		task->destroy = 0;

		/* Tell that fft1 depends on twisted1 */
		starpu_tag_declare_deps(STEP_TAG(FFT1),
				1, STEP_TAG(TWIST1));

		/* Create FFT1 task */
		plan->fft1_tasks[z] = task = starpu_task_create();
		task->cl = &STARPUFFT(fft1_2d_codelet);
		task->handles[0] = plan->twisted1_handle[z];
		task->handles[1] = plan->fft1_handle[z];
		task->handles[2] = plan->roots_handle[0];
		task->handles[3] = plan->roots_handle[1];
		task->cl_arg = &plan->fft1_args[z];
		task->tag_id = STEP_TAG(FFT1);
		task->use_tag = 1;
		task->destroy = 0;

		/* Tell that to be done with first step we need to have
		 * finished this fft1 */
		starpu_tag_declare_deps(STEP_TAG_2D(plan, JOIN, 0, 0),
				1, STEP_TAG(FFT1));
#undef STEP_TAG
	}

	/* Create join task */
	plan->join_task = task = starpu_task_create();
	task->cl = NULL;
	task->tag_id = STEP_TAG_2D(plan, JOIN, 0, 0);
	task->use_tag = 1;
	task->destroy = 0;

	/* Create second-round tasks */
	for (z = 0; z < plan->totsize3; z++) {
		int kk = z / DIV_2D_M, ll = z % DIV_2D_M;
#define STEP_TAG(step)	STEP_TAG_2D(plan, step, kk, ll)

		plan->fft2_args[z].plan = plan;
		plan->fft2_args[z].kk = kk;
		plan->fft2_args[z].ll = ll;

		/* Register n3*m3 (n1,m1) chunks */
		starpu_vector_data_register(&plan->twisted2_handle[z], 0, (uintptr_t) &plan->twisted2[z*plan->totsize4], plan->totsize4, sizeof(*plan->twisted2));
		starpu_vector_data_register(&plan->fft2_handle[z], 0, (uintptr_t) &plan->fft2[z*plan->totsize4], plan->totsize4, sizeof(*plan->fft2));

		/* We'll need it on the CPU for the last twist anyway */
		starpu_data_set_wt_mask(plan->fft2_handle[z], 1<<0);

		/* Tell that twisted2 depends on the whole first step to be
		 * done */
		starpu_tag_declare_deps(STEP_TAG(TWIST2),
				1, STEP_TAG_2D(plan, JOIN, 0, 0));

		/* Create twist2 task */
		plan->twist2_tasks[z] = task = starpu_task_create();
		task->cl = &STARPUFFT(twist2_2d_codelet);
		task->handles[0] = plan->twisted2_handle[z];
		task->cl_arg = &plan->fft2_args[z];
		task->tag_id = STEP_TAG(TWIST2);
		task->use_tag = 1;
		task->destroy = 0;

		/* Tell that fft2 depends on twisted2 */
		starpu_tag_declare_deps(STEP_TAG(FFT2),
				1, STEP_TAG(TWIST2));

		/* Create FFT2 task */
		plan->fft2_tasks[z] = task = starpu_task_create();
		task->cl = &STARPUFFT(fft2_2d_codelet);
		task->handles[0] = plan->twisted2_handle[z];
		task->handles[1] = plan->fft2_handle[z];
		task->cl_arg = &plan->fft2_args[z];
		task->tag_id = STEP_TAG(FFT2);
		task->use_tag = 1;
		task->destroy = 0;

		/* Tell that twist3 depends on fft2 */
		starpu_tag_declare_deps(STEP_TAG(TWIST3),
				1, STEP_TAG(FFT2));

		/* Create twist3 tasks */
		/* These run only on CPUs and thus write directly into the
		 * application output buffer. */
		plan->twist3_tasks[z] = task = starpu_task_create();
		task->cl = &STARPUFFT(twist3_2d_codelet);
		task->handles[0] = plan->fft2_handle[z];
		task->cl_arg = &plan->fft2_args[z];
		task->tag_id = STEP_TAG(TWIST3);
		task->use_tag = 1;
		task->destroy = 0;

		/* Tell that to be completely finished we need to have finished this twisted3 */
		starpu_tag_declare_deps(STEP_TAG_2D(plan, END, 0, 0),
				1, STEP_TAG(TWIST3));
#undef STEP_TAG
	}

	/* Create end task */
	plan->end_task = task = starpu_task_create();
	task->cl = NULL;
	task->tag_id = STEP_TAG_2D(plan, END, 0, 0);
	task->use_tag = 1;
	task->destroy = 0;

}

	return plan;
}

/* Actually submit all the tasks. */
static struct starpu_task *
STARPUFFT(start2dC2C)(STARPUFFT(plan) plan, starpu_data_handle_t in, starpu_data_handle_t out)
{
	STARPU_ASSERT(plan->type == C2C);
	int z;
	int ret;

if (PARALLEL) {
	for (z=0; z < plan->totsize1; z++) {
		ret = starpu_task_submit(plan->twist1_tasks[z]);
		STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
		ret = starpu_task_submit(plan->fft1_tasks[z]);
		STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
	}

	ret = starpu_task_submit(plan->join_task);
	STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");

	for (z=0; z < plan->totsize3; z++) {
		ret = starpu_task_submit(plan->twist2_tasks[z]);
		STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
		ret = starpu_task_submit(plan->fft2_tasks[z]);
		STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
		ret = starpu_task_submit(plan->twist3_tasks[z]);
		STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
	}

	ret = starpu_task_submit(plan->end_task);
	STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");

	return plan->end_task;
} else /* !PARALLEL */ {
	struct starpu_task *task;

	/* Create FFT task */
	task = starpu_task_create();
	task->detach = 0;
	task->cl = &STARPUFFT(fft_2d_codelet);
	task->handles[0] = in;
	task->handles[1] = out;
	task->cl_arg = plan;

	ret = starpu_task_submit(task);
	STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
	return task;
}
}

/* Free all the tags. The generic code handles freeing the buffers. */
static void
STARPUFFT(free_2d_tags)(STARPUFFT(plan) plan)
{
	unsigned i, j;
	int n1 = plan->n1[0];
	int m1 = plan->n1[1];

	if (!PARALLEL)
		return;

	for (i = 0; i < n1; i++) {
		for (j = 0; j < m1; j++) {
			starpu_tag_remove(STEP_TAG_2D(plan, TWIST1, i, j));
			starpu_tag_remove(STEP_TAG_2D(plan, FFT1, i, j));
		}
	}

	starpu_tag_remove(STEP_TAG_2D(plan, JOIN, 0, 0));

	for (i = 0; i < DIV_2D_N; i++) {
		for (j = 0; j < DIV_2D_M; j++) {
			starpu_tag_remove(STEP_TAG_2D(plan, TWIST2, i, j));
			starpu_tag_remove(STEP_TAG_2D(plan, FFT2, i, j));
			starpu_tag_remove(STEP_TAG_2D(plan, TWIST3, i, j));
		}
	}

	starpu_tag_remove(STEP_TAG_2D(plan, END, 0, 0));
}