File: README.rst

package info (click to toggle)
statsmodels 0.12.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 46,076 kB
  • sloc: python: 232,741; f90: 612; sh: 389; javascript: 337; makefile: 164; asm: 156; ansic: 16; xml: 9
file content (194 lines) | stat: -rw-r--r-- 6,422 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|PyPI Version| |Conda Version| |License| |Travis Build Status| |Azure CI Build Status|
|Appveyor Build Status| |Coveralls Coverage| |PyPI downloads| |Conda downloads|

About statsmodels
=================

statsmodels is a Python package that provides a complement to scipy for
statistical computations including descriptive statistics and estimation
and inference for statistical models.


Documentation
=============

The documentation for the latest release is at

https://www.statsmodels.org/stable/

The documentation for the development version is at

https://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

https://www.statsmodels.org/stable/release/version0.9.html

Backups of documentation are available at https://statsmodels.github.io/stable/
and https://statsmodels.github.io/dev/.


Main Features
=============

* Linear regression models:

  - Ordinary least squares
  - Generalized least squares
  - Weighted least squares
  - Least squares with autoregressive errors
  - Quantile regression
  - Recursive least squares

* Mixed Linear Model with mixed effects and variance components
* GLM: Generalized linear models with support for all of the one-parameter
  exponential family distributions
* Bayesian Mixed GLM for Binomial and Poisson
* GEE: Generalized Estimating Equations for one-way clustered or longitudinal data
* Discrete models:

  - Logit and Probit
  - Multinomial logit (MNLogit)
  - Poisson and Generalized Poisson regression
  - Negative Binomial regression
  - Zero-Inflated Count models

* RLM: Robust linear models with support for several M-estimators.
* Time Series Analysis: models for time series analysis

  - Complete StateSpace modeling framework

    - Seasonal ARIMA and ARIMAX models
    - VARMA and VARMAX models
    - Dynamic Factor models
    - Unobserved Component models

  - Markov switching models (MSAR), also known as Hidden Markov Models (HMM)
  - Univariate time series analysis: AR, ARIMA
  - Vector autoregressive models, VAR and structural VAR
  - Vector error correction modle, VECM
  - exponential smoothing, Holt-Winters
  - Hypothesis tests for time series: unit root, cointegration and others
  - Descriptive statistics and process models for time series analysis

* Survival analysis:

  - Proportional hazards regression (Cox models)
  - Survivor function estimation (Kaplan-Meier)
  - Cumulative incidence function estimation

* Multivariate:

  - Principal Component Analysis with missing data
  - Factor Analysis with rotation
  - MANOVA
  - Canonical Correlation

* Nonparametric statistics: Univariate and multivariate kernel density estimators
* Datasets: Datasets used for examples and in testing
* Statistics: a wide range of statistical tests

  - diagnostics and specification tests
  - goodness-of-fit and normality tests
  - functions for multiple testing
  - various additional statistical tests

* Imputation with MICE, regression on order statistic and Gaussian imputation
* Mediation analysis
* Graphics includes plot functions for visual analysis of data and model results

* I/O

  - Tools for reading Stata .dta files, but pandas has a more recent version
  - Table output to ascii, latex, and html

* Miscellaneous models
* Sandbox: statsmodels contains a sandbox folder with code in various stages of
  development and testing which is not considered "production ready".  This covers
  among others

  - Generalized method of moments (GMM) estimators
  - Kernel regression
  - Various extensions to scipy.stats.distributions
  - Panel data models
  - Information theoretic measures

How to get it
=============
The master branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

https://pypi.org/project/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels


Installing from sources
=======================

See INSTALL.txt for requirements or see the documentation

https://statsmodels.github.io/dev/install.html

Contributing
============
Contributions in any form are welcome, including:

* Documentation improvements
* Additional tests
* New features to existing models
* New models

https://www.statsmodels.org/stable/dev/test_notes

for instructions on installing statsmodels in *editable* mode.

License
=======

Modified BSD (3-clause)

Discussion and Development
==========================

Discussions take place on the mailing list

https://groups.google.com/group/pystatsmodels

and in the issue tracker. We are very interested in feedback
about usability and suggestions for improvements.

Bug Reports
===========

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

.. |Travis Build Status| image:: https://travis-ci.org/statsmodels/statsmodels.svg?branch=master
   :target: https://travis-ci.org/statsmodels/statsmodels
.. |Azure CI Build Status| image:: https://dev.azure.com/statsmodels/statsmodels-testing/_apis/build/status/statsmodels.statsmodels?branch=master
   :target: https://dev.azure.com/statsmodels/statsmodels-testing/_build/latest?definitionId=1&branch=master
.. |Appveyor Build Status| image:: https://ci.appveyor.com/api/projects/status/gx18sd2wc63mfcuc/branch/master?svg=true
   :target: https://ci.appveyor.com/project/josef-pkt/statsmodels/branch/master
.. |Coveralls Coverage| image:: https://coveralls.io/repos/github/statsmodels/statsmodels/badge.svg?branch=master
   :target: https://coveralls.io/github/statsmodels/statsmodels?branch=master
.. |PyPI downloads| image:: https://img.shields.io/pypi/dm/statsmodels.svg?label=Pypi%20downloads
   :target: https://pypi.org/project/statsmodels/
.. |Conda downloads| image:: https://img.shields.io/conda/dn/conda-forge/statsmodels.svg?label=Conda%20downloads
   :target: https://anaconda.org/conda-forge/statsmodels/
.. |PyPI Version| image:: https://img.shields.io/pypi/v/statsmodels.svg
   :target: https://pypi.org/project/statsmodels/
.. |Conda Version| image:: https://anaconda.org/conda-forge/statsmodels/badges/version.svg
   :target: https://anaconda.org/conda-forge/statsmodels/
.. |License| image:: https://img.shields.io/pypi/l/statsmodels.svg
   :target: https://github.com/statsmodels/statsmodels/blob/master/LICENSE.txt