File: robust_models_1.py

package info (click to toggle)
statsmodels 0.12.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 46,076 kB
  • sloc: python: 232,741; f90: 612; sh: 389; javascript: 337; makefile: 164; asm: 156; ansic: 16; xml: 9
file content (364 lines) | stat: -rw-r--r-- 9,186 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# DO NOT EDIT
# Autogenerated from the notebook robust_models_1.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT

#!/usr/bin/env python3
# coding: utf-8

# # M-Estimators for Robust Linear Modeling

from statsmodels.compat import lmap
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt

import statsmodels.api as sm

# * An M-estimator minimizes the function
#
# $$Q(e_i, \rho) = \sum_i~\rho \left (\frac{e_i}{s}\right )$$
#
# where $\rho$ is a symmetric function of the residuals
#
# * The effect of $\rho$ is to reduce the influence of outliers
# * $s$ is an estimate of scale.
# * The robust estimates $\hat{\beta}$ are computed by the iteratively re-
# weighted least squares algorithm

# * We have several choices available for the weighting functions to be
# used

norms = sm.robust.norms


def plot_weights(support, weights_func, xlabels, xticks):
    fig = plt.figure(figsize=(12, 8))
    ax = fig.add_subplot(111)
    ax.plot(support, weights_func(support))
    ax.set_xticks(xticks)
    ax.set_xticklabels(xlabels, fontsize=16)
    ax.set_ylim(-.1, 1.1)
    return ax


# ### Andrew's Wave

help(norms.AndrewWave.weights)

a = 1.339
support = np.linspace(-np.pi * a, np.pi * a, 100)
andrew = norms.AndrewWave(a=a)
plot_weights(support, andrew.weights, ['$-\pi*a$', '0', '$\pi*a$'],
             [-np.pi * a, 0, np.pi * a])

# ### Hampel's 17A

help(norms.Hampel.weights)

c = 8
support = np.linspace(-3 * c, 3 * c, 1000)
hampel = norms.Hampel(a=2., b=4., c=c)
plot_weights(support, hampel.weights, ['3*c', '0', '3*c'], [-3 * c, 0, 3 * c])

# ### Huber's t

help(norms.HuberT.weights)

t = 1.345
support = np.linspace(-3 * t, 3 * t, 1000)
huber = norms.HuberT(t=t)
plot_weights(support, huber.weights, ['-3*t', '0', '3*t'], [-3 * t, 0, 3 * t])

# ### Least Squares

help(norms.LeastSquares.weights)

support = np.linspace(-3, 3, 1000)
lst_sq = norms.LeastSquares()
plot_weights(support, lst_sq.weights, ['-3', '0', '3'], [-3, 0, 3])

# ### Ramsay's Ea

help(norms.RamsayE.weights)

a = .3
support = np.linspace(-3 * a, 3 * a, 1000)
ramsay = norms.RamsayE(a=a)
plot_weights(support, ramsay.weights, ['-3*a', '0', '3*a'], [-3 * a, 0, 3 * a])

# ### Trimmed Mean

help(norms.TrimmedMean.weights)

c = 2
support = np.linspace(-3 * c, 3 * c, 1000)
trimmed = norms.TrimmedMean(c=c)
plot_weights(support, trimmed.weights, ['-3*c', '0', '3*c'],
             [-3 * c, 0, 3 * c])

# ### Tukey's Biweight

help(norms.TukeyBiweight.weights)

c = 4.685
support = np.linspace(-3 * c, 3 * c, 1000)
tukey = norms.TukeyBiweight(c=c)
plot_weights(support, tukey.weights, ['-3*c', '0', '3*c'], [-3 * c, 0, 3 * c])

# ### Scale Estimators

# * Robust estimates of the location

x = np.array([1, 2, 3, 4, 500])

# * The mean is not a robust estimator of location

x.mean()

# * The median, on the other hand, is a robust estimator with a breakdown
# point of 50%

np.median(x)

# * Analogously for the scale
# * The standard deviation is not robust

x.std()

# Median Absolute Deviation
#
# $$ median_i |X_i - median_j(X_j)|) $$

# Standardized Median Absolute Deviation is a consistent estimator for
# $\hat{\sigma}$
#
# $$\hat{\sigma}=K \cdot MAD$$
#
# where $K$ depends on the distribution. For the normal distribution for
# example,
#
# $$K = \Phi^{-1}(.75)$$

stats.norm.ppf(.75)

print(x)

sm.robust.scale.mad(x)

np.array([1, 2, 3, 4, 5.]).std()

# * The default for Robust Linear Models is MAD
# * another popular choice is Huber's proposal 2

np.random.seed(12345)
fat_tails = stats.t(6).rvs(40)

kde = sm.nonparametric.KDEUnivariate(fat_tails)
kde.fit()
fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111)
ax.plot(kde.support, kde.density)

print(fat_tails.mean(), fat_tails.std())

print(stats.norm.fit(fat_tails))

print(stats.t.fit(fat_tails, f0=6))

huber = sm.robust.scale.Huber()
loc, scale = huber(fat_tails)
print(loc, scale)

sm.robust.mad(fat_tails)

sm.robust.mad(fat_tails, c=stats.t(6).ppf(.75))

sm.robust.scale.mad(fat_tails)

# ### Duncan's Occupational Prestige data - M-estimation for outliers

from statsmodels.graphics.api import abline_plot
from statsmodels.formula.api import ols, rlm

prestige = sm.datasets.get_rdataset("Duncan", "carData", cache=True).data

print(prestige.head(10))

fig = plt.figure(figsize=(12, 12))
ax1 = fig.add_subplot(211, xlabel='Income', ylabel='Prestige')
ax1.scatter(prestige.income, prestige.prestige)
xy_outlier = prestige.loc['minister', ['income', 'prestige']]
ax1.annotate('Minister', xy_outlier, xy_outlier + 1, fontsize=16)
ax2 = fig.add_subplot(212, xlabel='Education', ylabel='Prestige')
ax2.scatter(prestige.education, prestige.prestige)

ols_model = ols('prestige ~ income + education', prestige).fit()
print(ols_model.summary())

infl = ols_model.get_influence()
student = infl.summary_frame()['student_resid']
print(student)

print(student.loc[np.abs(student) > 2])

print(infl.summary_frame().loc['minister'])

sidak = ols_model.outlier_test('sidak')
sidak.sort_values('unadj_p', inplace=True)
print(sidak)

fdr = ols_model.outlier_test('fdr_bh')
fdr.sort_values('unadj_p', inplace=True)
print(fdr)

rlm_model = rlm('prestige ~ income + education', prestige).fit()
print(rlm_model.summary())

print(rlm_model.weights)

# ### Hertzprung Russell data for Star Cluster CYG 0B1 - Leverage Points

# * Data is on the luminosity and temperature of 47 stars in the direction
# of Cygnus.

dta = sm.datasets.get_rdataset("starsCYG", "robustbase", cache=True).data

from matplotlib.patches import Ellipse
fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(
    111,
    xlabel='log(Temp)',
    ylabel='log(Light)',
    title='Hertzsprung-Russell Diagram of Star Cluster CYG OB1')
ax.scatter(*dta.values.T)
# highlight outliers
e = Ellipse((3.5, 6), .2, 1, alpha=.25, color='r')
ax.add_patch(e)
ax.annotate(
    'Red giants',
    xy=(3.6, 6),
    xytext=(3.8, 6),
    arrowprops=dict(facecolor='black', shrink=0.05, width=2),
    horizontalalignment='left',
    verticalalignment='bottom',
    clip_on=True,  # clip to the axes bounding box
    fontsize=16,
)
# annotate these with their index
for i, row in dta.loc[dta['log.Te'] < 3.8].iterrows():
    ax.annotate(i, row, row + .01, fontsize=14)
xlim, ylim = ax.get_xlim(), ax.get_ylim()

from IPython.display import Image
Image(filename='star_diagram.png')

y = dta['log.light']
X = sm.add_constant(dta['log.Te'], prepend=True)
ols_model = sm.OLS(y, X).fit()
abline_plot(model_results=ols_model, ax=ax)

rlm_mod = sm.RLM(y, X, sm.robust.norms.TrimmedMean(.5)).fit()
abline_plot(model_results=rlm_mod, ax=ax, color='red')

# * Why? Because M-estimators are not robust to leverage points.

infl = ols_model.get_influence()

h_bar = 2 * (ols_model.df_model + 1) / ols_model.nobs
hat_diag = infl.summary_frame()['hat_diag']
hat_diag.loc[hat_diag > h_bar]

sidak2 = ols_model.outlier_test('sidak')
sidak2.sort_values('unadj_p', inplace=True)
print(sidak2)

fdr2 = ols_model.outlier_test('fdr_bh')
fdr2.sort_values('unadj_p', inplace=True)
print(fdr2)

# * Let's delete that line

l = ax.lines[-1]
l.remove()
del l

weights = np.ones(len(X))
weights[X[X['log.Te'] < 3.8].index.values - 1] = 0
wls_model = sm.WLS(y, X, weights=weights).fit()
abline_plot(model_results=wls_model, ax=ax, color='green')

# * MM estimators are good for this type of problem, unfortunately, we do
# not yet have these yet.
# * It's being worked on, but it gives a good excuse to look at the R cell
# magics in the notebook.

yy = y.values[:, None]
xx = X['log.Te'].values[:, None]

# **Note**: The R code and the results in this notebook has been converted
# to markdown so that R is not required to build the documents. The R
# results in the notebook were computed using R 3.5.1 and robustbase 0.93.

# ```ipython
# %load_ext rpy2.ipython
#
# %R library(robustbase)
# %Rpush yy xx
# %R mod <- lmrob(yy ~ xx);
# %R params <- mod$coefficients;
# %Rpull params
# ```

# ```ipython
# %R print(mod)
# ```

# ```
# Call:
# lmrob(formula = yy ~ xx)
#  \--> method = "MM"
# Coefficients:
# (Intercept)           xx
#      -4.969        2.253
# ```

params = [-4.969387980288108, 2.2531613477892365]  # Computed using R
print(params[0], params[1])

abline_plot(intercept=params[0], slope=params[1], ax=ax, color='red')

# ### Exercise: Breakdown points of M-estimator

np.random.seed(12345)
nobs = 200
beta_true = np.array([3, 1, 2.5, 3, -4])
X = np.random.uniform(-20, 20, size=(nobs, len(beta_true) - 1))
# stack a constant in front
X = sm.add_constant(X, prepend=True)  # np.c_[np.ones(nobs), X]
mc_iter = 500
contaminate = .25  # percentage of response variables to contaminate

all_betas = []
for i in range(mc_iter):
    y = np.dot(X, beta_true) + np.random.normal(size=200)
    random_idx = np.random.randint(0, nobs, size=int(contaminate * nobs))
    y[random_idx] = np.random.uniform(-750, 750)
    beta_hat = sm.RLM(y, X).fit().params
    all_betas.append(beta_hat)

all_betas = np.asarray(all_betas)
se_loss = lambda x: np.linalg.norm(x, ord=2)**2
se_beta = lmap(se_loss, all_betas - beta_true)

# #### Squared error loss

np.array(se_beta).mean()

all_betas.mean(0)

beta_true

se_loss(all_betas.mean(0) - beta_true)