File: graphics_functional_hdrboxplot.py

package info (click to toggle)
statsmodels 0.13.5%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 46,912 kB
  • sloc: python: 240,079; f90: 612; sh: 467; javascript: 337; asm: 156; makefile: 131; ansic: 16; xml: 9
file content (33 lines) | stat: -rw-r--r-- 968 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# coding: utf-8

#Load the El Nino dataset.  Consists of 60 years worth of Pacific Ocean sea
#surface temperature data.

import matplotlib.pyplot as plt
import numpy as np

import statsmodels.api as sm

data = sm.datasets.elnino.load()

#Create a HDR functional boxplot. We see that the years 1982-83 and 1997-98 are
#outliers; these are the years where El Nino (a climate pattern
#characterized by warming up of the sea surface and higher air pressures)
#occurred with unusual intensity.

fig = plt.figure()
ax = fig.add_subplot(111)
fig, res = sm.graphics.hdrboxplot(data.raw_data.iloc[:, 1:],
                                  labels=data.raw_data.iloc[:, 0].astype(int),
                                  ax=ax)

ax.plot([0, 10], [25, 25])
ax.set_xlabel("Month of the year")
ax.set_ylabel("Sea surface temperature (C)")
ax.set_xticks(np.arange(13, step=3) - 1)
ax.set_xticklabels(["", "Mar", "Jun", "Sep", "Dec"])
ax.set_xlim([-0.2, 11.2])

plt.show()

print(res)