File: statespace_dfm_coincident.py

package info (click to toggle)
statsmodels 0.13.5%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 46,912 kB
  • sloc: python: 240,079; f90: 612; sh: 467; javascript: 337; asm: 156; makefile: 131; ansic: 16; xml: 9
file content (834 lines) | stat: -rw-r--r-- 31,061 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
#!/usr/bin/env python
# coding: utf-8

# DO NOT EDIT
# Autogenerated from the notebook statespace_dfm_coincident.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT

# # Dynamic factors and coincident indices
#
# Factor models generally try to find a small number of unobserved
# "factors" that influence a substantial portion of the variation in a
# larger number of observed variables, and they are related to dimension-
# reduction techniques such as principal components analysis. Dynamic factor
# models explicitly model the transition dynamics of the unobserved factors,
# and so are often applied to time-series data.
#
# Macroeconomic coincident indices are designed to capture the common
# component of the "business cycle"; such a component is assumed to
# simultaneously affect many macroeconomic variables. Although the
# estimation and use of coincident indices (for example the [Index of
# Coincident Economic Indicators](http://www.newyorkfed.org/research/regiona
# l_economy/coincident_summary.html)) pre-dates dynamic factor models, in
# several influential papers Stock and Watson (1989, 1991) used a dynamic
# factor model to provide a theoretical foundation for them.
#
# Below, we follow the treatment found in Kim and Nelson (1999), of the
# Stock and Watson (1991) model, to formulate a dynamic factor model,
# estimate its parameters via maximum likelihood, and create a coincident
# index.

# ## Macroeconomic data
#
# The coincident index is created by considering the comovements in four
# macroeconomic variables (versions of these variables are available on
# [FRED](https://research.stlouisfed.org/fred2/); the ID of the series used
# below is given in parentheses):
#
# - Industrial production (IPMAN)
# - Real aggregate income (excluding transfer payments) (W875RX1)
# - Manufacturing and trade sales (CMRMTSPL)
# - Employees on non-farm payrolls (PAYEMS)
#
# In all cases, the data is at the monthly frequency and has been
# seasonally adjusted; the time-frame considered is 1972 - 2005.

import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt

np.set_printoptions(precision=4, suppress=True, linewidth=120)

from pandas_datareader.data import DataReader

# Get the datasets from FRED
start = '1979-01-01'
end = '2014-12-01'
indprod = DataReader('IPMAN', 'fred', start=start, end=end)
income = DataReader('W875RX1', 'fred', start=start, end=end)
sales = DataReader('CMRMTSPL', 'fred', start=start, end=end)
emp = DataReader('PAYEMS', 'fred', start=start, end=end)
# dta = pd.concat((indprod, income, sales, emp), axis=1)
# dta.columns = ['indprod', 'income', 'sales', 'emp']

# **Note**: in a recent update on FRED (8/12/15) the time series CMRMTSPL
# was truncated to begin in 1997; this is probably a mistake due to the fact
# that CMRMTSPL is a spliced series, so the earlier period is from the
# series HMRMT and the latter period is defined by CMRMT.
#
# This has since (02/11/16) been corrected, however the series could also
# be constructed by hand from HMRMT and CMRMT, as shown below (process taken
# from the notes in the Alfred xls file).

# HMRMT = DataReader('HMRMT', 'fred', start='1967-01-01', end=end)
# CMRMT = DataReader('CMRMT', 'fred', start='1997-01-01', end=end)

# HMRMT_growth = HMRMT.diff() / HMRMT.shift()
# sales = pd.Series(np.zeros(emp.shape[0]), index=emp.index)

# # Fill in the recent entries (1997 onwards)
# sales[CMRMT.index] = CMRMT

# # Backfill the previous entries (pre 1997)
# idx = sales.loc[:'1997-01-01'].index
# for t in range(len(idx)-1, 0, -1):
#     month = idx[t]
#     prev_month = idx[t-1]
#     sales.loc[prev_month] = sales.loc[month] / (1 +
# HMRMT_growth.loc[prev_month].values)

dta = pd.concat((indprod, income, sales, emp), axis=1)
dta.columns = ['indprod', 'income', 'sales', 'emp']
dta.index.freq = dta.index.inferred_freq

dta.loc[:, 'indprod':'emp'].plot(subplots=True, layout=(2, 2), figsize=(15, 6))

# Stock and Watson (1991) report that for their datasets, they could not
# reject the null hypothesis of a unit root in each series (so the series
# are integrated), but they did not find strong evidence that the series
# were co-integrated.
#
# As a result, they suggest estimating the model using the first
# differences (of the logs) of the variables, demeaned and standardized.

# Create log-differenced series
dta['dln_indprod'] = (np.log(dta.indprod)).diff() * 100
dta['dln_income'] = (np.log(dta.income)).diff() * 100
dta['dln_sales'] = (np.log(dta.sales)).diff() * 100
dta['dln_emp'] = (np.log(dta.emp)).diff() * 100

# De-mean and standardize
dta['std_indprod'] = (dta['dln_indprod'] -
                      dta['dln_indprod'].mean()) / dta['dln_indprod'].std()
dta['std_income'] = (dta['dln_income'] -
                     dta['dln_income'].mean()) / dta['dln_income'].std()
dta['std_sales'] = (dta['dln_sales'] -
                    dta['dln_sales'].mean()) / dta['dln_sales'].std()
dta['std_emp'] = (dta['dln_emp'] -
                  dta['dln_emp'].mean()) / dta['dln_emp'].std()

# ## Dynamic factors
#
# A general dynamic factor model is written as:
#
# $$
# \begin{align}
# y_t & = \Lambda f_t + B x_t + u_t \\
# f_t & = A_1 f_{t-1} + \dots + A_p f_{t-p} + \eta_t \qquad \eta_t \sim
# N(0, I)\\
# u_t & = C_1 u_{t-1} + \dots + C_q u_{t-q} + \varepsilon_t \qquad
# \varepsilon_t \sim N(0, \Sigma)
# \end{align}
# $$
#
# where $y_t$ are observed data, $f_t$ are the unobserved factors
# (evolving as a vector autoregression), $x_t$ are (optional) exogenous
# variables, and $u_t$ is the error, or "idiosyncratic", process ($u_t$ is
# also optionally allowed to be autocorrelated). The $\Lambda$ matrix is
# often referred to as the matrix of "factor loadings". The variance of the
# factor error term is set to the identity matrix to ensure identification
# of the unobserved factors.
#
# This model can be cast into state space form, and the unobserved factor
# estimated via the Kalman filter. The likelihood can be evaluated as a
# byproduct of the filtering recursions, and maximum likelihood estimation
# used to estimate the parameters.

# ## Model specification
#
# The specific dynamic factor model in this application has 1 unobserved
# factor which is assumed to follow an AR(2) process. The innovations
# $\varepsilon_t$ are assumed to be independent (so that $\Sigma$ is a
# diagonal matrix) and the error term associated with each equation,
# $u_{i,t}$ is assumed to follow an independent AR(2) process.
#
# Thus the specification considered here is:
#
# $$
# \begin{align}
# y_{i,t} & = \lambda_i f_t + u_{i,t} \\
# u_{i,t} & = c_{i,1} u_{1,t-1} + c_{i,2} u_{i,t-2} + \varepsilon_{i,t}
# \qquad & \varepsilon_{i,t} \sim N(0, \sigma_i^2) \\
# f_t & = a_1 f_{t-1} + a_2 f_{t-2} + \eta_t \qquad & \eta_t \sim N(0,
# I)\\
# \end{align}
# $$
#
# where $i$ is one of: `[indprod, income, sales, emp ]`.
#
# This model can be formulated using the `DynamicFactor` model built-in to
# statsmodels. In particular, we have the following specification:
#
# - `k_factors = 1` - (there is 1 unobserved factor)
# - `factor_order = 2` - (it follows an AR(2) process)
# - `error_var = False` - (the errors evolve as independent AR processes
# rather than jointly as a VAR - note that this is the default option, so it
# is not specified below)
# - `error_order = 2` - (the errors are autocorrelated of order 2: i.e.
# AR(2) processes)
# - `error_cov_type = 'diagonal'` - (the innovations are uncorrelated;
# this is again the default)
#
# Once the model is created, the parameters can be estimated via maximum
# likelihood; this is done using the `fit()` method.
#
# **Note**: recall that we have demeaned and standardized the data; this
# will be important in interpreting the results that follow.
#
# **Aside**: in their empirical example, Kim and Nelson (1999) actually
# consider a slightly different model in which the employment variable is
# allowed to also depend on lagged values of the factor - this model does
# not fit into the built-in `DynamicFactor` class, but can be accommodated
# by using a subclass to implement the required new parameters and
# restrictions - see Appendix A, below.

# ## Parameter estimation
#
# Multivariate models can have a relatively large number of parameters,
# and it may be difficult to escape from local minima to find the maximized
# likelihood. In an attempt to mitigate this problem, I perform an initial
# maximization step (from the model-defined starting parameters) using the
# modified Powell method available in Scipy (see the minimize documentation
# for more information). The resulting parameters are then used as starting
# parameters in the standard LBFGS optimization method.

# Get the endogenous data
endog = dta.loc['1979-02-01':, 'std_indprod':'std_emp']

# Create the model
mod = sm.tsa.DynamicFactor(endog, k_factors=1, factor_order=2, error_order=2)
initial_res = mod.fit(method='powell', disp=False)
res = mod.fit(initial_res.params, disp=False)

# ## Estimates
#
# Once the model has been estimated, there are two components that we can
# use for analysis or inference:
#
# - The estimated parameters
# - The estimated factor

# ### Parameters
#
# The estimated parameters can be helpful in understanding the
# implications of the model, although in models with a larger number of
# observed variables and / or unobserved factors they can be difficult to
# interpret.
#
# One reason for this difficulty is due to identification issues between
# the factor loadings and the unobserved factors. One easy-to-see
# identification issue is the sign of the loadings and the factors: an
# equivalent model to the one displayed below would result from reversing
# the signs of all factor loadings and the unobserved factor.
#
# Here, one of the easy-to-interpret implications in this model is the
# persistence of the unobserved factor: we find that exhibits substantial
# persistence.

print(res.summary(separate_params=False))

# ### Estimated factors
#
# While it can be useful to plot the unobserved factors, it is less useful
# here than one might think for two reasons:
#
# 1. The sign-related identification issue described above.
# 2. Since the data was differenced, the estimated factor explains the
# variation in the differenced data, not the original data.
#
# It is for these reasons that the coincident index is created (see
# below).
#
# With these reservations, the unobserved factor is plotted below, along
# with the NBER indicators for US recessions. It appears that the factor is
# successful at picking up some degree of business cycle activity.

fig, ax = plt.subplots(figsize=(13, 3))

# Plot the factor
dates = endog.index._mpl_repr()
ax.plot(dates, res.factors.filtered[0], label='Factor')
ax.legend()

# Retrieve and also plot the NBER recession indicators
rec = DataReader('USREC', 'fred', start=start, end=end)
ylim = ax.get_ylim()
ax.fill_between(dates[:-3],
                ylim[0],
                ylim[1],
                rec.values[:-4, 0],
                facecolor='k',
                alpha=0.1)

# ## Post-estimation
#
# Although here we will be able to interpret the results of the model by
# constructing the coincident index, there is a useful and generic approach
# for getting a sense for what is being captured by the estimated factor. By
# taking the estimated factors as given, regressing them (and a constant)
# each (one at a time) on each of the observed variables, and recording the
# coefficients of determination ($R^2$ values), we can get a sense of the
# variables for which each factor explains a substantial portion of the
# variance and the variables for which it does not.
#
# In models with more variables and more factors, this can sometimes lend
# interpretation to the factors (for example sometimes one factor will load
# primarily on real variables and another on nominal variables).
#
# In this model, with only four endogenous variables and one factor, it is
# easy to digest a simple table of the $R^2$ values, but in larger models it
# is not. For this reason, a bar plot is often employed; from the plot we
# can easily see that the factor explains most of the variation in
# industrial production index and a large portion of the variation in sales
# and employment, it is less helpful in explaining income.

res.plot_coefficients_of_determination(figsize=(8, 2))

# ## Coincident Index
#
# As described above, the goal of this model was to create an
# interpretable series which could be used to understand the current status
# of the macroeconomy. This is what the coincident index is designed to do.
# It is constructed below. For readers interested in an explanation of the
# construction, see Kim and Nelson (1999) or Stock and Watson (1991).
#
# In essence, what is done is to reconstruct the mean of the (differenced)
# factor. We will compare it to the coincident index on published by the
# Federal Reserve Bank of Philadelphia (USPHCI on FRED).

usphci = DataReader('USPHCI', 'fred', start='1979-01-01',
                    end='2014-12-01')['USPHCI']
usphci.plot(figsize=(13, 3))

dusphci = usphci.diff()[1:].values


def compute_coincident_index(mod, res):
    # Estimate W(1)
    spec = res.specification
    design = mod.ssm['design']
    transition = mod.ssm['transition']
    ss_kalman_gain = res.filter_results.kalman_gain[:, :, -1]
    k_states = ss_kalman_gain.shape[0]

    W1 = np.linalg.inv(
        np.eye(k_states) -
        np.dot(np.eye(k_states) - np.dot(ss_kalman_gain, design), transition)
    ).dot(ss_kalman_gain)[0]

    # Compute the factor mean vector
    factor_mean = np.dot(
        W1, dta.loc['1972-02-01':, 'dln_indprod':'dln_emp'].mean())

    # Normalize the factors
    factor = res.factors.filtered[0]
    factor *= np.std(usphci.diff()[1:]) / np.std(factor)

    # Compute the coincident index
    coincident_index = np.zeros(mod.nobs + 1)
    # The initial value is arbitrary; here it is set to
    # facilitate comparison
    coincident_index[0] = usphci.iloc[0] * factor_mean / dusphci.mean()
    for t in range(0, mod.nobs):
        coincident_index[t + 1] = coincident_index[t] + factor[t] + factor_mean

    # Attach dates
    coincident_index = pd.Series(coincident_index, index=dta.index).iloc[1:]

    # Normalize to use the same base year as USPHCI
    coincident_index *= (usphci.loc['1992-07-01'] /
                         coincident_index.loc['1992-07-01'])

    return coincident_index


# Below we plot the calculated coincident index along with the US
# recessions and the comparison coincident index USPHCI.

fig, ax = plt.subplots(figsize=(13, 3))

# Compute the index
coincident_index = compute_coincident_index(mod, res)

# Plot the factor
dates = endog.index._mpl_repr()
ax.plot(dates, coincident_index, label='Coincident index')
ax.plot(usphci.index._mpl_repr(), usphci, label='USPHCI')
ax.legend(loc='lower right')

# Retrieve and also plot the NBER recession indicators
ylim = ax.get_ylim()
ax.fill_between(dates[:-3],
                ylim[0],
                ylim[1],
                rec.values[:-4, 0],
                facecolor='k',
                alpha=0.1)

# ## Appendix 1: Extending the dynamic factor model
#
# Recall that the previous specification was described by:
#
# $$
# \begin{align}
# y_{i,t} & = \lambda_i f_t + u_{i,t} \\
# u_{i,t} & = c_{i,1} u_{1,t-1} + c_{i,2} u_{i,t-2} + \varepsilon_{i,t}
# \qquad & \varepsilon_{i,t} \sim N(0, \sigma_i^2) \\
# f_t & = a_1 f_{t-1} + a_2 f_{t-2} + \eta_t \qquad & \eta_t \sim N(0,
# I)\\
# \end{align}
# $$
#
# Written in state space form, the previous specification of the model had
# the following observation equation:
#
# $$
# \begin{bmatrix}
# y_{\text{indprod}, t} \\
# y_{\text{income}, t} \\
# y_{\text{sales}, t} \\
# y_{\text{emp}, t} \\
# \end{bmatrix} = \begin{bmatrix}
# \lambda_\text{indprod} & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
# \lambda_\text{income}  & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
# \lambda_\text{sales}   & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
# \lambda_\text{emp}     & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
# \end{bmatrix}
# \begin{bmatrix}
# f_t \\
# f_{t-1} \\
# u_{\text{indprod}, t} \\
# u_{\text{income}, t} \\
# u_{\text{sales}, t} \\
# u_{\text{emp}, t} \\
# u_{\text{indprod}, t-1} \\
# u_{\text{income}, t-1} \\
# u_{\text{sales}, t-1} \\
# u_{\text{emp}, t-1} \\
# \end{bmatrix}
# $$
#
# and transition equation:
#
# $$
# \begin{bmatrix}
# f_t \\
# f_{t-1} \\
# u_{\text{indprod}, t} \\
# u_{\text{income}, t} \\
# u_{\text{sales}, t} \\
# u_{\text{emp}, t} \\
# u_{\text{indprod}, t-1} \\
# u_{\text{income}, t-1} \\
# u_{\text{sales}, t-1} \\
# u_{\text{emp}, t-1} \\
# \end{bmatrix} = \begin{bmatrix}
# a_1 & a_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
# 1   & 0   & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
# 0   & 0   & c_{\text{indprod}, 1} & 0 & 0 & 0 & c_{\text{indprod}, 2} &
# 0 & 0 & 0 \\
# 0   & 0   & 0 & c_{\text{income}, 1} & 0 & 0 & 0 & c_{\text{income}, 2}
# & 0 & 0 \\
# 0   & 0   & 0 & 0 & c_{\text{sales}, 1} & 0 & 0 & 0 & c_{\text{sales},
# 2} & 0 \\
# 0   & 0   & 0 & 0 & 0 & c_{\text{emp}, 1} & 0 & 0 & 0 & c_{\text{emp},
# 2} \\
# 0   & 0   & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
# 0   & 0   & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
# 0   & 0   & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
# 0   & 0   & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
# \end{bmatrix}
# \begin{bmatrix}
# f_{t-1} \\
# f_{t-2} \\
# u_{\text{indprod}, t-1} \\
# u_{\text{income}, t-1} \\
# u_{\text{sales}, t-1} \\
# u_{\text{emp}, t-1} \\
# u_{\text{indprod}, t-2} \\
# u_{\text{income}, t-2} \\
# u_{\text{sales}, t-2} \\
# u_{\text{emp}, t-2} \\
# \end{bmatrix}
# + R \begin{bmatrix}
# \eta_t \\
# \varepsilon_{t}
# \end{bmatrix}
# $$
#
# the `DynamicFactor` model handles setting up the state space
# representation and, in the `DynamicFactor.update` method, it fills in the
# fitted parameter values into the appropriate locations.

# The extended specification is the same as in the previous example,
# except that we also want to allow employment to depend on lagged values of
# the factor. This creates a change to the $y_{\text{emp},t}$ equation. Now
# we have:
#
# $$
# \begin{align}
# y_{i,t} & = \lambda_i f_t + u_{i,t} \qquad & i \in \{\text{indprod},
# \text{income}, \text{sales} \}\\
# y_{i,t} & = \lambda_{i,0} f_t + \lambda_{i,1} f_{t-1} + \lambda_{i,2}
# f_{t-2} + \lambda_{i,2} f_{t-3} + u_{i,t} \qquad & i = \text{emp} \\
# u_{i,t} & = c_{i,1} u_{i,t-1} + c_{i,2} u_{i,t-2} + \varepsilon_{i,t}
# \qquad & \varepsilon_{i,t} \sim N(0, \sigma_i^2) \\
# f_t & = a_1 f_{t-1} + a_2 f_{t-2} + \eta_t \qquad & \eta_t \sim N(0,
# I)\\
# \end{align}
# $$
#
# Now, the corresponding observation equation should look like the
# following:
#
# $$
# \begin{bmatrix}
# y_{\text{indprod}, t} \\
# y_{\text{income}, t} \\
# y_{\text{sales}, t} \\
# y_{\text{emp}, t} \\
# \end{bmatrix} = \begin{bmatrix}
# \lambda_\text{indprod} & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
# \lambda_\text{income}  & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
# \lambda_\text{sales}   & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
# \lambda_\text{emp,1}   & \lambda_\text{emp,2} & \lambda_\text{emp,3} &
# \lambda_\text{emp,4} & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
# \end{bmatrix}
# \begin{bmatrix}
# f_t \\
# f_{t-1} \\
# f_{t-2} \\
# f_{t-3} \\
# u_{\text{indprod}, t} \\
# u_{\text{income}, t} \\
# u_{\text{sales}, t} \\
# u_{\text{emp}, t} \\
# u_{\text{indprod}, t-1} \\
# u_{\text{income}, t-1} \\
# u_{\text{sales}, t-1} \\
# u_{\text{emp}, t-1} \\
# \end{bmatrix}
# $$
#
# Notice that we have introduced two new state variables, $f_{t-2}$ and
# $f_{t-3}$, which means we need to update the  transition equation:
#
# $$
# \begin{bmatrix}
# f_t \\
# f_{t-1} \\
# f_{t-2} \\
# f_{t-3} \\
# u_{\text{indprod}, t} \\
# u_{\text{income}, t} \\
# u_{\text{sales}, t} \\
# u_{\text{emp}, t} \\
# u_{\text{indprod}, t-1} \\
# u_{\text{income}, t-1} \\
# u_{\text{sales}, t-1} \\
# u_{\text{emp}, t-1} \\
# \end{bmatrix} = \begin{bmatrix}
# a_1 & a_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
# 1   & 0   & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
# 0   & 1   & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
# 0   & 0   & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
# 0   & 0   & 0 & 0 & c_{\text{indprod}, 1} & 0 & 0 & 0 &
# c_{\text{indprod}, 2} & 0 & 0 & 0 \\
# 0   & 0   & 0 & 0 & 0 & c_{\text{income}, 1} & 0 & 0 & 0 &
# c_{\text{income}, 2} & 0 & 0 \\
# 0   & 0   & 0 & 0 & 0 & 0 & c_{\text{sales}, 1} & 0 & 0 & 0 &
# c_{\text{sales}, 2} & 0 \\
# 0   & 0   & 0 & 0 & 0 & 0 & 0 & c_{\text{emp}, 1} & 0 & 0 & 0 &
# c_{\text{emp}, 2} \\
# 0   & 0   & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
# 0   & 0   & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
# 0   & 0   & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
# 0   & 0   & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
# \end{bmatrix}
# \begin{bmatrix}
# f_{t-1} \\
# f_{t-2} \\
# f_{t-3} \\
# f_{t-4} \\
# u_{\text{indprod}, t-1} \\
# u_{\text{income}, t-1} \\
# u_{\text{sales}, t-1} \\
# u_{\text{emp}, t-1} \\
# u_{\text{indprod}, t-2} \\
# u_{\text{income}, t-2} \\
# u_{\text{sales}, t-2} \\
# u_{\text{emp}, t-2} \\
# \end{bmatrix}
# + R \begin{bmatrix}
# \eta_t \\
# \varepsilon_{t}
# \end{bmatrix}
# $$
#
# This model cannot be handled out-of-the-box by the `DynamicFactor`
# class, but it can be handled by creating a subclass when alters the state
# space representation in the appropriate way.

# First, notice that if we had set `factor_order = 4`, we would almost
# have what we wanted. In that case, the last line of the observation
# equation would be:
#
# $$
# \begin{bmatrix}
# \vdots \\
# y_{\text{emp}, t} \\
# \end{bmatrix} = \begin{bmatrix}
# \vdots &  &  &  &  &  &  &  &  &  &  & \vdots \\
# \lambda_\text{emp,1}   & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
# \end{bmatrix}
# \begin{bmatrix}
# f_t \\
# f_{t-1} \\
# f_{t-2} \\
# f_{t-3} \\
# \vdots
# \end{bmatrix}
# $$
#
#
# and the first line of the transition equation would be:
#
# $$
# \begin{bmatrix}
# f_t \\
# \vdots
# \end{bmatrix} = \begin{bmatrix}
# a_1 & a_2 & a_3 & a_4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
# \vdots &  &  &  &  &  &  &  &  &  &  & \vdots \\
# \end{bmatrix}
# \begin{bmatrix}
# f_{t-1} \\
# f_{t-2} \\
# f_{t-3} \\
# f_{t-4} \\
# \vdots
# \end{bmatrix}
# + R \begin{bmatrix}
# \eta_t \\
# \varepsilon_{t}
# \end{bmatrix}
# $$
#
# Relative to what we want, we have the following differences:
#
# 1. In the above situation, the $\lambda_{\text{emp}, j}$ are forced to
# be zero for $j > 0$, and we want them to be estimated as parameters.
# 2. We only want the factor to transition according to an AR(2), but
# under the above situation it is an AR(4).
#
# Our strategy will be to subclass `DynamicFactor`, and let it do most of
# the work (setting up the state space representation, etc.) where it
# assumes that `factor_order = 4`. The only things we will actually do in
# the subclass will be to fix those two issues.
#
# First, here is the full code of the subclass; it is discussed below. It
# is important to note at the outset that none of the methods defined below
# could have been omitted. In fact, the methods `__init__`, `start_params`,
# `param_names`, `transform_params`, `untransform_params`, and `update` form
# the core of all state space models in statsmodels, not just the
# `DynamicFactor` class.

from statsmodels.tsa.statespace import tools


class ExtendedDFM(sm.tsa.DynamicFactor):
    def __init__(self, endog, **kwargs):
        # Setup the model as if we had a factor order of 4
        super(ExtendedDFM, self).__init__(endog,
                                          k_factors=1,
                                          factor_order=4,
                                          error_order=2,
                                          **kwargs)

        # Note: `self.parameters` is an ordered dict with the
        # keys corresponding to parameter types, and the values
        # the number of parameters of that type.
        # Add the new parameters
        self.parameters['new_loadings'] = 3

        # Cache a slice for the location of the 4 factor AR
        # parameters (a_1, ..., a_4) in the full parameter vector
        offset = (self.parameters['factor_loadings'] +
                  self.parameters['exog'] + self.parameters['error_cov'])
        self._params_factor_ar = np.s_[offset:offset + 2]
        self._params_factor_zero = np.s_[offset + 2:offset + 4]

    @property
    def start_params(self):
        # Add three new loading parameters to the end of the parameter
        # vector, initialized to zeros (for simplicity; they could
        # be initialized any way you like)
        return np.r_[super(ExtendedDFM, self).start_params, 0, 0, 0]

    @property
    def param_names(self):
        # Add the corresponding names for the new loading parameters
        #  (the name can be anything you like)
        return super(ExtendedDFM, self).param_names + [
            'loading.L%d.f1.%s' % (i, self.endog_names[3])
            for i in range(1, 4)
        ]

    def transform_params(self, unconstrained):
        # Perform the typical DFM transformation (w/o the new parameters)
        constrained = super(ExtendedDFM,
                            self).transform_params(unconstrained[:-3])

        # Redo the factor AR constraint, since we only want an AR(2),
        # and the previous constraint was for an AR(4)
        ar_params = unconstrained[self._params_factor_ar]
        constrained[self._params_factor_ar] = (
            tools.constrain_stationary_univariate(ar_params))

        # Return all the parameters
        return np.r_[constrained, unconstrained[-3:]]

    def untransform_params(self, constrained):
        # Perform the typical DFM untransformation (w/o the new parameters)
        unconstrained = super(ExtendedDFM,
                              self).untransform_params(constrained[:-3])

        # Redo the factor AR unconstrained, since we only want an AR(2),
        # and the previous unconstrained was for an AR(4)
        ar_params = constrained[self._params_factor_ar]
        unconstrained[self._params_factor_ar] = (
            tools.unconstrain_stationary_univariate(ar_params))

        # Return all the parameters
        return np.r_[unconstrained, constrained[-3:]]

    def update(self, params, transformed=True, **kwargs):
        # Peform the transformation, if required
        if not transformed:
            params = self.transform_params(params)
        params[self._params_factor_zero] = 0

        # Now perform the usual DFM update, but exclude our new parameters
        super(ExtendedDFM, self).update(params[:-3],
                                        transformed=True,
                                        **kwargs)

        # Finally, set our new parameters in the design matrix
        self.ssm['design', 3, 1:4] = params[-3:]


# So what did we just do?
#
# **`__init__`**
#
# The important step here was specifying the base dynamic factor model
# which we were operating with. In particular, as described above, we
# initialize with `factor_order=4`, even though we will only end up with an
# AR(2) model for the factor. We also performed some general setup-related
# tasks.
#
# **`start_params`**
#
# `start_params` are used as initial values in the optimizer. Since we are
# adding three new parameters, we need to pass those in. If we had not done
# this, the optimizer would use the default starting values, which would be
# three elements short.
#
# **`param_names`**
#
# `param_names` are used in a variety of places, but especially in the
# results class. Below we get a full result summary, which is only possible
# when all the parameters have associated names.
#
# **`transform_params`** and **`untransform_params`**
#
# The optimizer selects possibly parameter values in an unconstrained way.
# That's not usually desired (since variances cannot be negative, for
# example), and `transform_params` is used to transform the unconstrained
# values used by the optimizer to constrained values appropriate to the
# model. Variances terms are typically squared (to force them to be
# positive), and AR lag coefficients are often constrained to lead to a
# stationary model. `untransform_params` is used for the reverse operation
# (and is important because starting parameters are usually specified in
# terms of values appropriate to the model, and we need to convert them to
# parameters appropriate to the optimizer before we can begin the
# optimization routine).
#
# Even though we do not need to transform or untransform our new
# parameters (the loadings can in theory take on any values), we still need
# to modify this function for two reasons:
#
# 1. The version in the `DynamicFactor` class is expecting 3 fewer
# parameters than we have now. At a minimum, we need to handle the three new
# parameters.
# 2. The version in the `DynamicFactor` class constrains the factor lag
# coefficients to be stationary as though it was an AR(4) model. Since we
# actually have an AR(2) model, we need to re-do the constraint. We also set
# the last two autoregressive coefficients to be zero here.
#
# **`update`**
#
# The most important reason we need to specify a new `update` method is
# because we have three new parameters that we need to place into the state
# space formulation. In particular we let the parent `DynamicFactor.update`
# class handle placing all the parameters except the three new ones in to
# the state space representation, and then we put the last three in
# manually.

# Create the model
extended_mod = ExtendedDFM(endog)
initial_extended_res = extended_mod.fit(maxiter=1000, disp=False)
extended_res = extended_mod.fit(initial_extended_res.params,
                                method='nm',
                                maxiter=1000)
print(extended_res.summary(separate_params=False))

# Although this model increases the likelihood, it is not preferred by the
# AIC and BIC measures which penalize the additional three parameters.
#
# Furthermore, the qualitative results are unchanged, as we can see from
# the updated $R^2$ chart and the new coincident index, both of which are
# practically identical to the previous results.

extended_res.plot_coefficients_of_determination(figsize=(8, 2))

fig, ax = plt.subplots(figsize=(13, 3))

# Compute the index
extended_coincident_index = compute_coincident_index(extended_mod,
                                                     extended_res)

# Plot the factor
dates = endog.index._mpl_repr()
ax.plot(dates, coincident_index, '-', linewidth=1, label='Basic model')
ax.plot(dates,
        extended_coincident_index,
        '--',
        linewidth=3,
        label='Extended model')
ax.plot(usphci.index._mpl_repr(), usphci, label='USPHCI')
ax.legend(loc='lower right')
ax.set(title='Coincident indices, comparison')

# Retrieve and also plot the NBER recession indicators
ylim = ax.get_ylim()
ax.fill_between(dates[:-3],
                ylim[0],
                ylim[1],
                rec.values[:-4, 0],
                facecolor='k',
                alpha=0.1)