1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
|
#!/usr/bin/env python
# coding: utf-8
# DO NOT EDIT
# Autogenerated from the notebook statespace_sarimax_faq.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT
# # SARIMAX and ARIMA: Frequently Asked Questions (FAQ)
#
# This notebook contains explanations for frequently asked questions.
#
# * Comparing trends and exogenous variables in `SARIMAX`, `ARIMA` and
# `AutoReg`
# * Reconstructing residuals, fitted values and forecasts in `SARIMAX` and
# `ARIMA`
# * Initial residuals in `SARIMAX` and `ARIMA`
# ## Comparing trends and exogenous variables in `SARIMAX`, `ARIMA` and
# `AutoReg`
#
# `ARIMA` are formally OLS with ARMA errors. A basic AR(1) in the OLS
# with ARMA errors is described as
#
# $$
# \begin{align}
# Y_t & = \delta + \epsilon_t \\
# \epsilon_t & = \rho \epsilon_{t-1} + \eta_t \\
# \eta_t & \sim WN(0,\sigma^2) \\
# \end{align}
# $$
#
# In large samples, $\hat{\delta}\stackrel{p}{\rightarrow} E[Y]$.
#
# `SARIMAX` uses a different representation, so that the model when
# estimated using `SARIMAX` is
#
# $$
# \begin{align}
# Y_t & = \phi + \rho Y_{t-1} + \eta_t \\
# \eta_t & \sim WN(0,\sigma^2) \\
# \end{align}
# $$
#
#
# This is the same representation that is used when the model is estimated
# using OLS (`AutoReg`). In large samples,
# $\hat{\phi}\stackrel{p}{\rightarrow} E[Y](1-\rho)$.
#
# In the next cell, we simulate a large sample and verify that these
# relationship hold in practice.
import numpy as np
import pandas as pd
rng = np.random.default_rng(20210819)
eta = rng.standard_normal(5200)
rho = 0.8
beta = 10
epsilon = eta.copy()
for i in range(1, eta.shape[0]):
epsilon[i] = rho * epsilon[i - 1] + eta[i]
y = beta + epsilon
y = y[200:]
from statsmodels.tsa.api import SARIMAX, AutoReg
from statsmodels.tsa.arima.model import ARIMA
# The three models are specified and estimated in the next cell. An AR(0)
# is included as a reference. The AR(0) is identical using all three
# estimators.
ar0_res = SARIMAX(y, order=(0, 0, 0), trend="c").fit()
sarimax_res = SARIMAX(y, order=(1, 0, 0), trend="c").fit()
arima_res = ARIMA(y, order=(1, 0, 0), trend="c").fit()
autoreg_res = AutoReg(y, 1, trend="c").fit()
# The table below contains the estimated parameter in the model, the
# estimated AR(1) coefficient, and the long-run mean which is either equal
# to the estimated parameters (AR(0) or `ARIMA`), or depends on the ratio of
# the intercept to 1 minus the AR(1) parameter.
intercept = [
ar0_res.params[0],
sarimax_res.params[0],
arima_res.params[0],
autoreg_res.params[0],
]
rho_hat = [0] + [r.params[1] for r in (sarimax_res, arima_res, autoreg_res)]
long_run = [
ar0_res.params[0],
sarimax_res.params[0] / (1 - sarimax_res.params[1]),
arima_res.params[0],
autoreg_res.params[0] / (1 - autoreg_res.params[1]),
]
cols = ["AR(0)", "SARIMAX", "ARIMA", "AutoReg"]
pd.DataFrame(
[intercept, rho_hat, long_run],
columns=cols,
index=["delta-or-phi", "rho", "long-run mean"],
)
# ### Differences between trend and exog in `SARIMAX`
#
# When `SARIMAX` includes `exog` variables, then the `exog` are treated as
# OLS regressors, so that the model estimated is
#
# $$
# \begin{align}
# Y_t - X_t \beta & = \delta + \rho (Y_{t-1} - X_{t-1}\beta) + \eta_t \\
# \eta_t & \sim WN(0,\sigma^2) \\
# \end{align}
# $$
#
# In the next example, we omit the trend and instead include a column of
# 1, which produces a model that is equivalent, in large samples, to the
# case with no exogenous regressor and `trend="c"`. Here the estimated value
# of `const` matches the value estimated using `ARIMA`. This happens since
# both exog in `SARIMAX` and the trend in `ARIMA` are treated as linear
# regression models with ARMA errors.
sarimax_exog_res = SARIMAX(y, exog=np.ones_like(y), order=(1, 0, 0),
trend="n").fit()
print(sarimax_exog_res.summary())
# ### Using `exog` in `SARIMAX` and `ARIMA`
#
# While `exog` are treated the same in both models, the intercept
# continues to differ. Below we add an exogenous regressor to `y` and then
# fit the model using all three methods. The data generating process is now
#
# $$
# \begin{align}
# Y_t & = \delta + X_t \beta + \epsilon_t \\
# \epsilon_t & = \rho \epsilon_{t-1} + \eta_t \\
# \eta_t & \sim WN(0,\sigma^2) \\
# \end{align}
# $$
#
full_x = rng.standard_normal(eta.shape)
x = full_x[200:]
y += 3 * x
sarimax_exog_res = SARIMAX(y, exog=x, order=(1, 0, 0), trend="c").fit()
arima_exog_res = ARIMA(y, exog=x, order=(1, 0, 0), trend="c").fit()
# Examining the parameter tables, we see that the parameter estimates on
# `x1` are identical while the estimates of the `intercept` continue to
# differ due to the differences in the treatment of trends in these
# estimators.
# #### `SARIMAX`
def print_params(s):
from io import StringIO
return pd.read_csv(StringIO(s.tables[1].as_csv()), index_col=0)
print_params(sarimax_exog_res.summary())
# #### `ARIMA`
print_params(arima_exog_res.summary())
# ### `exog` in `AutoReg`
#
# When using `AutoReg` to estimate a model using OLS, the model differs
# from both `SARIMAX` and `ARIMA`. The `AutoReg` specification with
# exogenous variables is
#
# $$
# \begin{align}
# Y_t & = \phi + \rho Y_{t-1} + X_{t}\beta + \eta_t \\
# \eta_t & \sim WN(0,\sigma^2) \\
# \end{align}
# $$
#
# This specification is not equivalent to the specification estimated in
# `SARIMAX` and `ARIMA`. Here the difference is non-trivial, and naive
# estimation on the same time series results in different parameter values,
# even in large samples (and the limit). Estimating this model changes the
# parameter estimates on the AR(1) coefficient.
# #### `AutoReg`
autoreg_exog_res = AutoReg(y, 1, exog=x, trend="c").fit()
print_params(autoreg_exog_res.summary())
# The key difference can be seen by writing the model in lag operator
# notation.
#
# $$
# \begin{align}
# (1-\phi L ) Y_t & = X_{t}\beta + \eta_t \Rightarrow \\
# Y_t & = (1-\phi L )^{-1}\left(X_{t}\beta + \eta_t\right) \\
# Y_t & = \sum_{i=0}^{\infty} \phi^i \left(X_{t-i}\beta +
# \eta_{t-i}\right)
# \end{align}
# $$
#
# where it is is assumed that $|\phi|<1$. Here we see that $Y_t$ depends
# on all lagged values of $X_t$ and $\eta_t$. This differs from the
# specification estimated by `SARIMAX` and `ARIMA`, which can be seen to be
#
# $$
# \begin{align}
# Y_t - X_t \beta & = \delta + \rho (Y_{t-1} - X_{t-1}\beta) + \eta_t \\
# \left(1-\rho L \right)\left(Y_t - X_t \beta\right) & = \delta + \eta_t
# \\
# Y_t - X_t \beta & = \frac{\delta}{1-\rho} + \left(1-\rho L
# \right)^{-1}\eta_t \\
# Y_t - X_t \beta & = \frac{\delta}{1-\rho} + \sum_{i=0}^\infty \rho^i
# \eta_{t-i} \\
# Y_t & = \frac{\delta}{1-\rho} + X_t \beta + \sum_{i=0}^\infty \rho^i
# \eta_{t-i} \\
# \end{align}
# $$
#
# In this specification, $Y_t$ only depends on $X_t$ and no other lags.
# ### Using the correct DGP with `AutoReg`
#
# Simulating the process that is estimated in `AutoReg` shows that the
# parameters are recovered from the true model.
y = beta + eta
epsilon = eta.copy()
for i in range(1, eta.shape[0]):
y[i] = beta * (1 - rho) + rho * y[i - 1] + 3 * full_x[i] + eta[i]
y = y[200:]
# #### `AutoReg` with correct DGP
autoreg_alt_exog_res = AutoReg(y, 1, exog=x, trend="c").fit()
print_params(autoreg_alt_exog_res.summary())
# ## Reconstructing residuals, fitted values and forecasts in `SARIMAX`
# and `ARIMA`
#
# In models that contain only autoregressive terms, trends and exogenous
# variables, fitted values and forecasts can be easily reconstructed once
# the maximum lag length in the model has been reached. In practice, this
# means after $(P+D)s+p+d$ periods. Earlier predictions and residuals are
# harder to reconstruct since the model builds the best prediction for
# $Y_t|Y_{t-1},Y_{t-2},...$. When the number of lags of $Y$ is less than
# the autoregressive order, then the expression for the optimal prediction
# differs from the model. For example, when predicting the very first
# value, $Y_1$, there is no information available from the history of $Y$,
# and so the best prediction is the unconditional mean. In the case of an
# AR(1), the second prediction will follow the model, so that when using
# `ARIMA`, the prediction is
#
# $$
# Y_2 = \hat{\delta} + \hat{\rho} \left(Y_1 - \hat{\delta}\right)
# $$
#
# since `ARIMA` treats both exogenous and trend terms as regression with
# ARMA errors.
#
# This can be seen in the next set of cells.
arima_res = ARIMA(y, order=(1, 0, 0), trend="c").fit()
print_params(arima_res.summary())
arima_res.predict(0, 2)
delta_hat, rho_hat = arima_res.params[:2]
delta_hat + rho_hat * (y[0] - delta_hat)
# `SARIMAX` treats trend terms differently, and so the one-step forecast
# from a model estimated using `SARIMAX` is
#
# $$
# Y_2 = \hat\delta + \hat\rho Y_1
# $$
sarima_res = SARIMAX(y, order=(1, 0, 0), trend="c").fit()
print_params(sarima_res.summary())
sarima_res.predict(0, 2)
delta_hat, rho_hat = sarima_res.params[:2]
delta_hat + rho_hat * y[0]
# ### Prediction with MA components
#
# When a model contains a MA component, the prediction is more complicated
# since errors are never directly observable. The prediction is still
# $Y_t|Y_{t-1},Y_{t-2},...$, and when the MA component is invertible, then
# the optimal prediction can be represented as a $t$-lag AR process. When
# $t$ is large, this should be very close to the prediction as if the errors
# were observable. For short lags, this can differ markedly.
#
# In the next cell we simulate an MA(1) process, and fit an MA model.
rho = 0.8
beta = 10
epsilon = eta.copy()
for i in range(1, eta.shape[0]):
epsilon[i] = rho * eta[i - 1] + eta[i]
y = beta + epsilon
y = y[200:]
ma_res = ARIMA(y, order=(0, 0, 1), trend="c").fit()
print_params(ma_res.summary())
# We start by looking at predictions near the beginning of the sample
# corresponding `y[1]`, ..., `y[5]`.
ma_res.predict(1, 5)
# and the corresponding residuals that are needed to produce the "direct"
# forecasts
ma_res.resid[:5]
# Using the model parameters, we can produce the "direct" forecasts using
# the MA(1) specification
#
# $$
# \hat Y_t = \hat\delta + \hat\rho \hat\epsilon_{t-1}
# $$
#
# We see that these are not especially close to the actual model
# predictions for the initial forecasts, but that the gap quickly reduces.
delta_hat, rho_hat = ma_res.params[:2]
direct = delta_hat + rho_hat * ma_res.resid[:5]
direct
# The difference is nearly a standard deviation for the first but declines
# as the index increases.
ma_res.predict(1, 5) - direct
# We next look at the end of the sample and the final three predictions.
t = y.shape[0]
ma_res.predict(t - 3, t - 1)
ma_res.resid[-4:-1]
direct = delta_hat + rho_hat * ma_res.resid[-4:-1]
direct
# The "direct" forecasts are identical. This happens since the effect of
# the short sample has disappeared by the end of the sample (In practice it
# is negligible by observations 100 or so, and numerically absent by around
# observation 160).
ma_res.predict(t - 3, t - 1) - direct
# The same principle applies in more complicated model that include
# multiple lags or seasonal term - predictions in AR models are simple once
# the effective lag length has been reached, while predictions in models
# that contains MA components are only simple once the maximum root of the
# MA lag polynomial is sufficiently small so that the residuals are close to
# the true residuals.
# ### Prediction differences in `SARIMAX` and `ARIMA`
#
# The formulas used to make predictions from `SARIMAX` and `ARIMA` models
# differ in one key aspect - `ARIMA` treats all trend terms, e.g, the
# intercept or time trend, as part of the exogenous regressors. For
# example, an AR(1) model with an intercept and linear time trend estimated
# using `ARIMA` has the specification
#
# $$
# \begin{align*}
# Y_t - \delta_0 - \delta_1 t & = \epsilon_t \\
# \epsilon_t & = \rho \epsilon_{t-1} + \eta_t
# \end{align*}
# $$
#
# When the same model is estimated using `SARIMAX`, the specification is
#
# $$
# \begin{align*}
# Y_t & = \epsilon_t \\
# \epsilon_t & = \delta_0 + \delta_1 t + \rho \epsilon_{t-1} + \eta_t
# \end{align*}
# $$
#
# The differences are more apparent when the model contains exogenous
# regressors, $X_t$. The `ARIMA` specification is
#
# $$
# \begin{align*}
# Y_t - \delta_0 - \delta_1 t - X_t \beta & = \epsilon_t \\
# \epsilon_t & = \rho \epsilon_{t-1} + \eta_t \\
# & = \rho \left(Y_{t-1} - \delta_0 - \delta_1 (t-1) - X_{t-1}
# \beta\right) + \eta_t
# \end{align*}
# $$
#
# while the `SARIMAX` specification is
#
# $$
# \begin{align*}
# Y_t & = X_t \beta + \epsilon_t \\
# \epsilon_t & = \delta_0 + \delta_1 t + \rho \epsilon_{t-1} + \eta_t \\
# & = \delta_0 + \delta_1 t + \rho \left(Y_{t-1} -
# X_{t-1}\beta\right) + \eta_t
# \end{align*}
# $$
#
# The key difference between these two is that the intercept and the trend
# are effectively equivalent to exogenous regressions in `ARIMA` while they
# are more like standard ARMA terms in `SARIMAX`.
#
# The next cell simulates an ARX with a time trend using the specification
# in `ARIMA` and estimates the parameters using both estimators.
rho = 0.8
beta = 2
delta0 = 10
delta1 = 0.5
epsilon = eta.copy()
for i in range(1, eta.shape[0]):
epsilon[i] = rho * epsilon[i - 1] + eta[i]
t = np.arange(epsilon.shape[0])
y = delta0 + delta1 * t + beta * full_x + epsilon
y = y[200:]
start = np.array([110, delta1, beta, rho, 1])
arx_res = ARIMA(y, exog=x, order=(1, 0, 0), trend="ct").fit()
mod = SARIMAX(y, exog=x, order=(1, 0, 0), trend="ct")
start[:2] *= 1 - rho
sarimax_res = mod.fit(start_params=start, method="bfgs")
# The two estimators fit similarly, although there is a small difference
# in the log-likelihood. This is a numerical issue and should not
# materially affect the predictions. Importantly the two trend parameters,
# `const` and `x1` (unfortunately named for the time trend), differ between
# the two. The other parameters are effectively identical.
print(arx_res.summary())
print(sarimax_res.summary())
# ## Initial residuals `SARIMAX` and `ARIMA`
#
# Residuals for observations before the maximal model order, which depends
# on the AR, MA, Seasonal AR, Seasonal MA and differencing parameters, are
# not reliable and should not be used for performance assessment. In
# general, in an ARIMA with orders $(p,d,q)\times(P,D,Q,s)$, the formula for
# residuals that are less well behaved is:
#
# $$
# \max((P+D)s+p+d,Qs+q)
# $$
#
# We can simulate some data from an ARIMA(1,0,0)(1,0,0,12) and examine the
# residuals.
import numpy as np
import pandas as pd
rho = 0.8
psi = -0.6
beta = 20
epsilon = eta.copy()
for i in range(13, eta.shape[0]):
epsilon[i] = (rho * epsilon[i - 1] + psi * epsilon[i - 12] -
(rho * psi) * epsilon[i - 13] + eta[i])
y = beta + epsilon
y = y[200:]
# With a large sample, the parameter estimates are very close to the DGP
# parameters.
res = ARIMA(y, order=(1, 0, 0), trend="c", seasonal_order=(1, 0, 0, 12)).fit()
print(res.summary())
# We can first examine the initial 13 residuals by plotting against the
# actual shocks in the model. While there is a correspondence, it is fairly
# weak and the correlation is much less than 1.
import matplotlib.pyplot as plt
plt.rc("figure", figsize=(10, 10))
plt.rc("font", size=14)
_ = plt.scatter(res.resid[:13], eta[200:200 + 13])
# Looking at the next 24 residuals and shocks, we see there is nearly
# perfect correlation. This is expected in large samples once the less
# accurate residuals are ignored.
_ = plt.scatter(res.resid[13:37], eta[200 + 13:200 + 37])
# Next, we simulate an ARIMA(1,1,0), and include a time trend.
rng = np.random.default_rng(20210819)
eta = rng.standard_normal(5200)
rho = 0.8
beta = 20
epsilon = eta.copy()
for i in range(2, eta.shape[0]):
epsilon[i] = (1 + rho) * epsilon[i - 1] - rho * epsilon[i - 2] + eta[i]
t = np.arange(epsilon.shape[0])
y = beta + 2 * t + epsilon
y = y[200:]
# Again the parameter estimates are very close to the DGP parameters.
res = ARIMA(y, order=(1, 1, 0), trend="t").fit()
print(res.summary())
# The residuals are not accurate, and the first residual is approximately
# 500. The others are closer, although in this model the first 2 should
# usually be ignored.
res.resid[:5]
# The reason why the first residual is so large is that the optimal
# prediction of this value is the mean of the difference, which is 1.77.
# Once the first value is known, the second value makes use of the first
# value in its prediction and the prediction is substantially closer to the
# truth.
res.predict(0, 5)
# It is worth noting that the results class contains two parameters than
# can be helpful in understanding which residuals are problematic,
# `loglikelihood_burn` and `nobs_diffuse`.
res.loglikelihood_burn, res.nobs_diffuse
|