1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
#!/usr/bin/env python
# coding: utf-8
# DO NOT EDIT
# Autogenerated from the notebook statespace_seasonal.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT
# # Seasonality in time series data
#
# Consider the problem of modeling time series data with multiple seasonal
# components with different periodicities. Let us take the time series
# $y_t$ and decompose it explicitly to have a level component and two
# seasonal components.
#
# $$
# y_t = \mu_t + \gamma^{(1)}_t + \gamma^{(2)}_t
# $$
#
# where $\mu_t$ represents the trend or level, $\gamma^{(1)}_t$ represents
# a seasonal component with a relatively short period, and $\gamma^{(2)}_t$
# represents another seasonal component of longer period. We will have a
# fixed intercept term for our level and consider both $\gamma^{(2)}_t$ and
# $\gamma^{(2)}_t$ to be stochastic so that the seasonal patterns can vary
# over time.
#
# In this notebook, we will generate synthetic data conforming to this
# model and showcase modeling of the seasonal terms in a few different ways
# under the unobserved components modeling framework.
import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
plt.rc("figure", figsize=(16, 8))
plt.rc("font", size=14)
# ### Synthetic data creation
#
# We will create data with multiple seasonal patterns by following
# equations (3.7) and (3.8) in Durbin and Koopman (2012). We will simulate
# 300 periods and two seasonal terms parametrized in the frequency domain
# having periods 10 and 100, respectively, and 3 and 2 number of harmonics,
# respectively. Further, the variances of their stochastic parts are 4 and
# 9, respectively.
# First we'll simulate the synthetic data
def simulate_seasonal_term(periodicity,
total_cycles,
noise_std=1.,
harmonics=None):
duration = periodicity * total_cycles
assert duration == int(duration)
duration = int(duration)
harmonics = harmonics if harmonics else int(np.floor(periodicity / 2))
lambda_p = 2 * np.pi / float(periodicity)
gamma_jt = noise_std * np.random.randn((harmonics))
gamma_star_jt = noise_std * np.random.randn((harmonics))
total_timesteps = 100 * duration # Pad for burn in
series = np.zeros(total_timesteps)
for t in range(total_timesteps):
gamma_jtp1 = np.zeros_like(gamma_jt)
gamma_star_jtp1 = np.zeros_like(gamma_star_jt)
for j in range(1, harmonics + 1):
cos_j = np.cos(lambda_p * j)
sin_j = np.sin(lambda_p * j)
gamma_jtp1[j - 1] = (gamma_jt[j - 1] * cos_j +
gamma_star_jt[j - 1] * sin_j +
noise_std * np.random.randn())
gamma_star_jtp1[j - 1] = (-gamma_jt[j - 1] * sin_j +
gamma_star_jt[j - 1] * cos_j +
noise_std * np.random.randn())
series[t] = np.sum(gamma_jtp1)
gamma_jt = gamma_jtp1
gamma_star_jt = gamma_star_jtp1
wanted_series = series[-duration:] # Discard burn in
return wanted_series
duration = 100 * 3
periodicities = [10, 100]
num_harmonics = [3, 2]
std = np.array([2, 3])
np.random.seed(8678309)
terms = []
for ix, _ in enumerate(periodicities):
s = simulate_seasonal_term(periodicities[ix],
duration / periodicities[ix],
harmonics=num_harmonics[ix],
noise_std=std[ix])
terms.append(s)
terms.append(np.ones_like(terms[0]) * 10.)
series = pd.Series(np.sum(terms, axis=0))
df = pd.DataFrame(data={
'total': series,
'10(3)': terms[0],
'100(2)': terms[1],
'level': terms[2]
})
h1, = plt.plot(df['total'])
h2, = plt.plot(df['10(3)'])
h3, = plt.plot(df['100(2)'])
h4, = plt.plot(df['level'])
plt.legend(['total', '10(3)', '100(2)', 'level'])
plt.show()
# ### Unobserved components (frequency domain modeling)
#
# The next method is an unobserved components model, where the trend is
# modeled as a fixed intercept and the seasonal components are modeled using
# trigonometric functions with primary periodicities of 10 and 100,
# respectively, and number of harmonics 3 and 2, respectively. Note that
# this is the correct, generating model. The process for the time series can
# be written as:
#
# $$
# \begin{align}
# y_t & = \mu_t + \gamma^{(1)}_t + \gamma^{(2)}_t + \epsilon_t\\
# \mu_{t+1} & = \mu_t \\
# \gamma^{(1)}_{t} &= \sum_{j=1}^2 \gamma^{(1)}_{j, t} \\
# \gamma^{(2)}_{t} &= \sum_{j=1}^3 \gamma^{(2)}_{j, t}\\
# \gamma^{(1)}_{j, t+1} &= \gamma^{(1)}_{j, t}\cos(\lambda_j) + \gamma^{*,
# (1)}_{j, t}\sin(\lambda_j) + \omega^{(1)}_{j,t}, ~j = 1, 2, 3\\
# \gamma^{*, (1)}_{j, t+1} &= -\gamma^{(1)}_{j, t}\sin(\lambda_j) +
# \gamma^{*, (1)}_{j, t}\cos(\lambda_j) + \omega^{*, (1)}_{j, t}, ~j = 1, 2,
# 3\\
# \gamma^{(2)}_{j, t+1} &= \gamma^{(2)}_{j, t}\cos(\lambda_j) + \gamma^{*,
# (2)}_{j, t}\sin(\lambda_j) + \omega^{(2)}_{j,t}, ~j = 1, 2\\
# \gamma^{*, (2)}_{j, t+1} &= -\gamma^{(2)}_{j, t}\sin(\lambda_j) +
# \gamma^{*, (2)}_{j, t}\cos(\lambda_j) + \omega^{*, (2)}_{j, t}, ~j = 1,
# 2\\
# \end{align}
# $$
#
#
# where $\epsilon_t$ is white noise, $\omega^{(1)}_{j,t}$ are i.i.d. $N(0,
# \sigma^2_1)$, and $\omega^{(2)}_{j,t}$ are i.i.d. $N(0, \sigma^2_2)$,
# where $\sigma_1 = 2.$
model = sm.tsa.UnobservedComponents(series.values,
level='fixed intercept',
freq_seasonal=[{
'period': 10,
'harmonics': 3
}, {
'period': 100,
'harmonics': 2
}])
res_f = model.fit(disp=False)
print(res_f.summary())
# The first state variable holds our estimate of the intercept
print("fixed intercept estimated as {0:.3f}".format(
res_f.smoother_results.smoothed_state[0, -1:][0]))
res_f.plot_components()
plt.show()
model.ssm.transition[:, :, 0]
# Observe that the fitted variances are pretty close to the true variances
# of 4 and 9. Further, the individual seasonal components look pretty close
# to the true seasonal components. The smoothed level term is kind of close
# to the true level of 10. Finally, our diagnostics look solid; the test
# statistics are small enough to fail to reject our three tests.
# ### Unobserved components (mixed time and frequency domain modeling)
#
# The second method is an unobserved components model, where the trend is
# modeled as a fixed intercept and the seasonal components are modeled using
# 10 constants summing to 0 and trigonometric functions with a primary
# periodicities of 100 with 2 harmonics total. Note that this is not the
# generating model, as it presupposes that there are more state errors for
# the shorter seasonal component than in reality. The process for the time
# series can be written as:
#
# $$
# \begin{align}
# y_t & = \mu_t + \gamma^{(1)}_t + \gamma^{(2)}_t + \epsilon_t\\
# \mu_{t+1} & = \mu_t \\
# \gamma^{(1)}_{t + 1} &= - \sum_{j=1}^9 \gamma^{(1)}_{t + 1 - j} +
# \omega^{(1)}_t\\
# \gamma^{(2)}_{j, t+1} &= \gamma^{(2)}_{j, t}\cos(\lambda_j) + \gamma^{*,
# (2)}_{j, t}\sin(\lambda_j) + \omega^{(2)}_{j,t}, ~j = 1, 2\\
# \gamma^{*, (2)}_{j, t+1} &= -\gamma^{(2)}_{j, t}\sin(\lambda_j) +
# \gamma^{*, (2)}_{j, t}\cos(\lambda_j) + \omega^{*, (2)}_{j, t}, ~j = 1,
# 2\\
# \end{align}
# $$
#
# where $\epsilon_t$ is white noise, $\omega^{(1)}_{t}$ are i.i.d. $N(0,
# \sigma^2_1)$, and $\omega^{(2)}_{j,t}$ are i.i.d. $N(0, \sigma^2_2)$.
model = sm.tsa.UnobservedComponents(series,
level='fixed intercept',
seasonal=10,
freq_seasonal=[{
'period': 100,
'harmonics': 2
}])
res_tf = model.fit(disp=False)
print(res_tf.summary())
# The first state variable holds our estimate of the intercept
print("fixed intercept estimated as {0:.3f}".format(
res_tf.smoother_results.smoothed_state[0, -1:][0]))
fig = res_tf.plot_components()
fig.tight_layout(pad=1.0)
# The plotted components look good. However, the estimated variance of
# the second seasonal term is inflated from reality. Additionally, we
# reject the Ljung-Box statistic, indicating we may have remaining
# autocorrelation after accounting for our components.
# ### Unobserved components (lazy frequency domain modeling)
#
# The third method is an unobserved components model with a fixed
# intercept and one seasonal component, which is modeled using trigonometric
# functions with primary periodicity 100 and 50 harmonics. Note that this is
# not the generating model, as it presupposes that there are more harmonics
# then in reality. Because the variances are tied together, we are not able
# to drive the estimated covariance of the non-existent harmonics to 0.
# What is lazy about this model specification is that we have not bothered
# to specify the two different seasonal components and instead chosen to
# model them using a single component with enough harmonics to cover both.
# We will not be able to capture any differences in variances between the
# two true components. The process for the time series can be written as:
#
# $$
# \begin{align}
# y_t & = \mu_t + \gamma^{(1)}_t + \epsilon_t\\
# \mu_{t+1} &= \mu_t\\
# \gamma^{(1)}_{t} &= \sum_{j=1}^{50}\gamma^{(1)}_{j, t}\\
# \gamma^{(1)}_{j, t+1} &= \gamma^{(1)}_{j, t}\cos(\lambda_j) + \gamma^{*,
# (1)}_{j, t}\sin(\lambda_j) + \omega^{(1}_{j,t}, ~j = 1, 2, \dots, 50\\
# \gamma^{*, (1)}_{j, t+1} &= -\gamma^{(1)}_{j, t}\sin(\lambda_j) +
# \gamma^{*, (1)}_{j, t}\cos(\lambda_j) + \omega^{*, (1)}_{j, t}, ~j = 1, 2,
# \dots, 50\\
# \end{align}
# $$
#
# where $\epsilon_t$ is white noise, $\omega^{(1)}_{t}$ are i.i.d. $N(0,
# \sigma^2_1)$.
model = sm.tsa.UnobservedComponents(series,
level='fixed intercept',
freq_seasonal=[{
'period': 100
}])
res_lf = model.fit(disp=False)
print(res_lf.summary())
# The first state variable holds our estimate of the intercept
print("fixed intercept estimated as {0:.3f}".format(
res_lf.smoother_results.smoothed_state[0, -1:][0]))
fig = res_lf.plot_components()
fig.tight_layout(pad=1.0)
# Note that one of our diagnostic tests would be rejected at the .05
# level.
# ### Unobserved components (lazy time domain seasonal modeling)
#
# The fourth method is an unobserved components model with a fixed
# intercept and a single seasonal component modeled using a time-domain
# seasonal model of 100 constants. The process for the time series can be
# written as:
#
# $$
# \begin{align}
# y_t & =\mu_t + \gamma^{(1)}_t + \epsilon_t\\
# \mu_{t+1} &= \mu_{t} \\
# \gamma^{(1)}_{t + 1} &= - \sum_{j=1}^{99} \gamma^{(1)}_{t + 1 - j} +
# \omega^{(1)}_t\\
# \end{align}
# $$
#
# where $\epsilon_t$ is white noise, $\omega^{(1)}_{t}$ are i.i.d. $N(0,
# \sigma^2_1)$.
model = sm.tsa.UnobservedComponents(series,
level='fixed intercept',
seasonal=100)
res_lt = model.fit(disp=False)
print(res_lt.summary())
# The first state variable holds our estimate of the intercept
print("fixed intercept estimated as {0:.3f}".format(
res_lt.smoother_results.smoothed_state[0, -1:][0]))
fig = res_lt.plot_components()
fig.tight_layout(pad=1.0)
# The seasonal component itself looks good--it is the primary signal. The
# estimated variance of the seasonal term is very high ($>10^5$), leading to
# a lot of uncertainty in our one-step-ahead predictions and slow
# responsiveness to new data, as evidenced by large errors in one-step ahead
# predictions and observations. Finally, all three of our diagnostic tests
# were rejected.
# ### Comparison of filtered estimates
#
# The plots below show that explicitly modeling the individual components
# results in the filtered state being close to the true state within roughly
# half a period. The lazy models took longer (almost a full period) to do
# the same on the combined true state.
# Assign better names for our seasonal terms
true_seasonal_10_3 = terms[0]
true_seasonal_100_2 = terms[1]
true_sum = true_seasonal_10_3 + true_seasonal_100_2
time_s = np.s_[:50] # After this they basically agree
fig1 = plt.figure()
ax1 = fig1.add_subplot(111)
idx = np.asarray(series.index)
h1, = ax1.plot(idx[time_s],
res_f.freq_seasonal[0].filtered[time_s],
label='Double Freq. Seas')
h2, = ax1.plot(idx[time_s],
res_tf.seasonal.filtered[time_s],
label='Mixed Domain Seas')
h3, = ax1.plot(idx[time_s],
true_seasonal_10_3[time_s],
label='True Seasonal 10(3)')
plt.legend([h1, h2, h3],
['Double Freq. Seasonal', 'Mixed Domain Seasonal', 'Truth'],
loc=2)
plt.title('Seasonal 10(3) component')
plt.show()
time_s = np.s_[:50] # After this they basically agree
fig2 = plt.figure()
ax2 = fig2.add_subplot(111)
h21, = ax2.plot(idx[time_s],
res_f.freq_seasonal[1].filtered[time_s],
label='Double Freq. Seas')
h22, = ax2.plot(idx[time_s],
res_tf.freq_seasonal[0].filtered[time_s],
label='Mixed Domain Seas')
h23, = ax2.plot(idx[time_s],
true_seasonal_100_2[time_s],
label='True Seasonal 100(2)')
plt.legend([h21, h22, h23],
['Double Freq. Seasonal', 'Mixed Domain Seasonal', 'Truth'],
loc=2)
plt.title('Seasonal 100(2) component')
plt.show()
time_s = np.s_[:100]
fig3 = plt.figure()
ax3 = fig3.add_subplot(111)
h31, = ax3.plot(idx[time_s],
res_f.freq_seasonal[1].filtered[time_s] +
res_f.freq_seasonal[0].filtered[time_s],
label='Double Freq. Seas')
h32, = ax3.plot(idx[time_s],
res_tf.freq_seasonal[0].filtered[time_s] +
res_tf.seasonal.filtered[time_s],
label='Mixed Domain Seas')
h33, = ax3.plot(idx[time_s], true_sum[time_s], label='True Seasonal 100(2)')
h34, = ax3.plot(idx[time_s],
res_lf.freq_seasonal[0].filtered[time_s],
label='Lazy Freq. Seas')
h35, = ax3.plot(idx[time_s],
res_lt.seasonal.filtered[time_s],
label='Lazy Time Seas')
plt.legend([h31, h32, h33, h34, h35], [
'Double Freq. Seasonal', 'Mixed Domain Seasonal', 'Truth',
'Lazy Freq. Seas', 'Lazy Time Seas'
],
loc=1)
plt.title('Seasonal components combined')
plt.tight_layout(pad=1.0)
# ##### Conclusions
#
# In this notebook, we simulated a time series with two seasonal
# components of different periods. We modeled them using structural time
# series models with (a) two frequency domain components of correct periods
# and numbers of harmonics, (b) time domain seasonal component for the
# shorter term and a frequency domain term with correct period and number of
# harmonics, (c) a single frequency domain term with the longer period and
# full number of harmonics, and (d) a single time domain term with the
# longer period. We saw a variety of diagnostic results, with only the
# correct generating model, (a), failing to reject any of the tests. Thus,
# more flexible seasonal modeling allowing for multiple components with
# specifiable harmonics can be a useful tool for time series modeling.
# Finally, we can represent seasonal components with fewer total states in
# this way, allowing for the user to attempt to make the bias-variance
# trade-off themselves instead of being forced to choose "lazy" models,
# which use a large number of states and incur additional variance as a
# result.
|