1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
#!/usr/bin/env python
# DO NOT EDIT
# Autogenerated from the notebook markov_autoregression.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT
# ## Markov switching autoregression models
# This notebook provides an example of the use of Markov switching models
# in statsmodels to replicate a number of results presented in Kim and
# Nelson (1999). It applies the Hamilton (1989) filter the Kim (1994)
# smoother.
#
# This is tested against the Markov-switching models from E-views 8, which
# can be found at http://www.eviews.com/EViews8/ev8ecswitch_n.html#MarkovAR
# or the Markov-switching models of Stata 14 which can be found at
# http://www.stata.com/manuals14/tsmswitch.pdf.
from datetime import datetime
from io import BytesIO
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import requests
import statsmodels.api as sm
# NBER recessions
from pandas_datareader.data import DataReader
usrec = DataReader("USREC",
"fred",
start=datetime(1947, 1, 1),
end=datetime(2013, 4, 1))
# ### Hamilton (1989) switching model of GNP
#
# This replicates Hamilton's (1989) seminal paper introducing Markov-
# switching models. The model is an autoregressive model of order 4 in which
# the mean of the process switches between two regimes. It can be written:
#
# $$
# y_t = \mu_{S_t} + \phi_1 (y_{t-1} - \mu_{S_{t-1}}) + \phi_2 (y_{t-2} -
# \mu_{S_{t-2}}) + \phi_3 (y_{t-3} - \mu_{S_{t-3}}) + \phi_4 (y_{t-4} -
# \mu_{S_{t-4}}) + \varepsilon_t
# $$
#
# Each period, the regime transitions according to the following matrix of
# transition probabilities:
#
# $$ P(S_t = s_t | S_{t-1} = s_{t-1}) =
# \begin{bmatrix}
# p_{00} & p_{10} \\
# p_{01} & p_{11}
# \end{bmatrix}
# $$
#
# where $p_{ij}$ is the probability of transitioning *from* regime $i$,
# *to* regime $j$.
#
# The model class is `MarkovAutoregression` in the time-series part of
# `statsmodels`. In order to create the model, we must specify the number of
# regimes with `k_regimes=2`, and the order of the autoregression with
# `order=4`. The default model also includes switching autoregressive
# coefficients, so here we also need to specify `switching_ar=False` to
# avoid that.
#
# After creation, the model is `fit` via maximum likelihood estimation.
# Under the hood, good starting parameters are found using a number of steps
# of the expectation maximization (EM) algorithm, and a quasi-Newton (BFGS)
# algorithm is applied to quickly find the maximum.
# Get the RGNP data to replicate Hamilton
dta = pd.read_stata("https://www.stata-press.com/data/r14/rgnp.dta").iloc[1:]
dta.index = pd.DatetimeIndex(dta.date, freq="QS")
dta_hamilton = dta.rgnp
# Plot the data
dta_hamilton.plot(title="Growth rate of Real GNP", figsize=(12, 3))
# Fit the model
mod_hamilton = sm.tsa.MarkovAutoregression(dta_hamilton,
k_regimes=2,
order=4,
switching_ar=False)
res_hamilton = mod_hamilton.fit()
res_hamilton.summary()
# We plot the filtered and smoothed probabilities of a recession. Filtered
# refers to an estimate of the probability at time $t$ based on data up to
# and including time $t$ (but excluding time $t+1, ..., T$). Smoothed refers
# to an estimate of the probability at time $t$ using all the data in the
# sample.
#
# For reference, the shaded periods represent the NBER recessions.
fig, axes = plt.subplots(2, figsize=(7, 7))
ax = axes[0]
ax.plot(res_hamilton.filtered_marginal_probabilities[0])
ax.fill_between(usrec.index,
0,
1,
where=usrec["USREC"].values,
color="k",
alpha=0.1)
ax.set_xlim(dta_hamilton.index[4], dta_hamilton.index[-1])
ax.set(title="Filtered probability of recession")
ax = axes[1]
ax.plot(res_hamilton.smoothed_marginal_probabilities[0])
ax.fill_between(usrec.index,
0,
1,
where=usrec["USREC"].values,
color="k",
alpha=0.1)
ax.set_xlim(dta_hamilton.index[4], dta_hamilton.index[-1])
ax.set(title="Smoothed probability of recession")
fig.tight_layout()
# From the estimated transition matrix we can calculate the expected
# duration of a recession versus an expansion.
print(res_hamilton.expected_durations)
# In this case, it is expected that a recession will last about one year
# (4 quarters) and an expansion about two and a half years.
# ### Kim, Nelson, and Startz (1998) Three-state Variance Switching
#
# This model demonstrates estimation with regime heteroskedasticity
# (switching of variances) and no mean effect. The dataset can be reached at
# http://econ.korea.ac.kr/~cjkim/MARKOV/data/ew_excs.prn.
#
# The model in question is:
#
# $$
# \begin{align}
# y_t & = \varepsilon_t \\
# \varepsilon_t & \sim N(0, \sigma_{S_t}^2)
# \end{align}
# $$
#
# Since there is no autoregressive component, this model can be fit using
# the `MarkovRegression` class. Since there is no mean effect, we specify
# `trend='n'`. There are hypothesized to be three regimes for the switching
# variances, so we specify `k_regimes=3` and `switching_variance=True` (by
# default, the variance is assumed to be the same across regimes).
# Get the dataset
ew_excs = requests.get(
"http://econ.korea.ac.kr/~cjkim/MARKOV/data/ew_excs.prn").content
raw = pd.read_table(BytesIO(ew_excs),
header=None,
skipfooter=1,
engine="python")
raw.index = pd.date_range("1926-01-01", "1995-12-01", freq="MS")
dta_kns = raw.loc[:"1986"] - raw.loc[:"1986"].mean()
# Plot the dataset
dta_kns[0].plot(title="Excess returns", figsize=(12, 3))
# Fit the model
mod_kns = sm.tsa.MarkovRegression(dta_kns,
k_regimes=3,
trend="n",
switching_variance=True)
res_kns = mod_kns.fit()
res_kns.summary()
# Below we plot the probabilities of being in each of the regimes; only in
# a few periods is a high-variance regime probable.
fig, axes = plt.subplots(3, figsize=(10, 7))
ax = axes[0]
ax.plot(res_kns.smoothed_marginal_probabilities[0])
ax.set(title="Smoothed probability of a low-variance regime for stock returns")
ax = axes[1]
ax.plot(res_kns.smoothed_marginal_probabilities[1])
ax.set(
title="Smoothed probability of a medium-variance regime for stock returns")
ax = axes[2]
ax.plot(res_kns.smoothed_marginal_probabilities[2])
ax.set(
title="Smoothed probability of a high-variance regime for stock returns")
fig.tight_layout()
# ### Filardo (1994) Time-Varying Transition Probabilities
#
# This model demonstrates estimation with time-varying transition
# probabilities. The dataset can be reached at
# http://econ.korea.ac.kr/~cjkim/MARKOV/data/filardo.prn.
#
# In the above models we have assumed that the transition probabilities
# are constant across time. Here we allow the probabilities to change with
# the state of the economy. Otherwise, the model is the same Markov
# autoregression of Hamilton (1989).
#
# Each period, the regime now transitions according to the following
# matrix of time-varying transition probabilities:
#
# $$ P(S_t = s_t | S_{t-1} = s_{t-1}) =
# \begin{bmatrix}
# p_{00,t} & p_{10,t} \\
# p_{01,t} & p_{11,t}
# \end{bmatrix}
# $$
#
# where $p_{ij,t}$ is the probability of transitioning *from* regime $i$,
# *to* regime $j$ in period $t$, and is defined to be:
#
# $$
# p_{ij,t} = \frac{\exp\{ x_{t-1}' \beta_{ij} \}}{1 + \exp\{ x_{t-1}'
# \beta_{ij} \}}
# $$
#
# Instead of estimating the transition probabilities as part of maximum
# likelihood, the regression coefficients $\beta_{ij}$ are estimated. These
# coefficients relate the transition probabilities to a vector of pre-
# determined or exogenous regressors $x_{t-1}$.
# Get the dataset
filardo = requests.get(
"http://econ.korea.ac.kr/~cjkim/MARKOV/data/filardo.prn").content
dta_filardo = pd.read_table(BytesIO(filardo),
sep=" +",
header=None,
skipfooter=1,
engine="python")
dta_filardo.columns = ["month", "ip", "leading"]
dta_filardo.index = pd.date_range("1948-01-01", "1991-04-01", freq="MS")
dta_filardo["dlip"] = np.log(dta_filardo["ip"]).diff() * 100
# Deflated pre-1960 observations by ratio of std. devs.
# See hmt_tvp.opt or Filardo (1994) p. 302
std_ratio = (dta_filardo["dlip"]["1960-01-01":].std() /
dta_filardo["dlip"][:"1959-12-01"].std())
dta_filardo[
"dlip"][:"1959-12-01"] = dta_filardo["dlip"][:"1959-12-01"] * std_ratio
dta_filardo["dlleading"] = np.log(dta_filardo["leading"]).diff() * 100
dta_filardo["dmdlleading"] = dta_filardo["dlleading"] - dta_filardo[
"dlleading"].mean()
# Plot the data
dta_filardo["dlip"].plot(
title="Standardized growth rate of industrial production", figsize=(13, 3))
plt.figure()
dta_filardo["dmdlleading"].plot(title="Leading indicator", figsize=(13, 3))
# The time-varying transition probabilities are specified by the
# `exog_tvtp` parameter.
#
# Here we demonstrate another feature of model fitting - the use of a
# random search for MLE starting parameters. Because Markov switching models
# are often characterized by many local maxima of the likelihood function,
# performing an initial optimization step can be helpful to find the best
# parameters.
#
# Below, we specify that 20 random perturbations from the starting
# parameter vector are examined and the best one used as the actual starting
# parameters. Because of the random nature of the search, we seed the random
# number generator beforehand to allow replication of the result.
mod_filardo = sm.tsa.MarkovAutoregression(
dta_filardo.iloc[2:]["dlip"],
k_regimes=2,
order=4,
switching_ar=False,
exog_tvtp=sm.add_constant(dta_filardo.iloc[1:-1]["dmdlleading"]),
)
np.random.seed(12345)
res_filardo = mod_filardo.fit(search_reps=20)
res_filardo.summary()
# Below we plot the smoothed probability of the economy operating in a
# low-production state, and again include the NBER recessions for
# comparison.
fig, ax = plt.subplots(figsize=(12, 3))
ax.plot(res_filardo.smoothed_marginal_probabilities[0])
ax.fill_between(usrec.index,
0,
1,
where=usrec["USREC"].values,
color="gray",
alpha=0.2)
ax.set_xlim(dta_filardo.index[6], dta_filardo.index[-1])
ax.set(title="Smoothed probability of a low-production state")
# Using the time-varying transition probabilities, we can see how the
# expected duration of a low-production state changes over time:
#
res_filardo.expected_durations[0].plot(
title="Expected duration of a low-production state", figsize=(12, 3))
# During recessions, the expected duration of a low-production state is
# much higher than in an expansion.
|