File: markov_regression.py

package info (click to toggle)
statsmodels 0.14.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 49,848 kB
  • sloc: python: 253,316; f90: 612; sh: 560; javascript: 337; asm: 156; makefile: 132; ansic: 16; xml: 9
file content (241 lines) | stat: -rw-r--r-- 8,286 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#!/usr/bin/env python

# DO NOT EDIT
# Autogenerated from the notebook markov_regression.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT

# ## Markov switching dynamic regression models

# This notebook provides an example of the use of Markov switching models
# in statsmodels to estimate dynamic regression models with changes in
# regime. It follows the examples in the Stata Markov switching
# documentation, which can be found at
# http://www.stata.com/manuals14/tsmswitch.pdf.

import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt

# NBER recessions
from pandas_datareader.data import DataReader
from datetime import datetime

usrec = DataReader("USREC",
                   "fred",
                   start=datetime(1947, 1, 1),
                   end=datetime(2013, 4, 1))

# ### Federal funds rate with switching intercept
#
# The first example models the federal funds rate as noise around a
# constant intercept, but where the intercept changes during different
# regimes. The model is simply:
#
# $$r_t = \mu_{S_t} + \varepsilon_t \qquad \varepsilon_t \sim N(0,
# \sigma^2)$$
#
# where $S_t \in \{0, 1\}$, and the regime transitions according to
#
# $$ P(S_t = s_t | S_{t-1} = s_{t-1}) =
# \begin{bmatrix}
# p_{00} & p_{10} \\
# 1 - p_{00} & 1 - p_{10}
# \end{bmatrix}
# $$
#
# We will estimate the parameters of this model by maximum likelihood:
# $p_{00}, p_{10}, \mu_0, \mu_1, \sigma^2$.
#
# The data used in this example can be found at https://www.stata-
# press.com/data/r14/usmacro.

# Get the federal funds rate data
from statsmodels.tsa.regime_switching.tests.test_markov_regression import fedfunds

dta_fedfunds = pd.Series(fedfunds,
                         index=pd.date_range("1954-07-01",
                                             "2010-10-01",
                                             freq="QS"))

# Plot the data
dta_fedfunds.plot(title="Federal funds rate", figsize=(12, 3))

# Fit the model
# (a switching mean is the default of the MarkovRegession model)
mod_fedfunds = sm.tsa.MarkovRegression(dta_fedfunds, k_regimes=2)
res_fedfunds = mod_fedfunds.fit()

res_fedfunds.summary()

# From the summary output, the mean federal funds rate in the first regime
# (the "low regime") is estimated to be $3.7$ whereas in the "high regime"
# it is $9.6$. Below we plot the smoothed probabilities of being in the high
# regime. The model suggests that the 1980's was a time-period in which a
# high federal funds rate existed.

res_fedfunds.smoothed_marginal_probabilities[1].plot(
    title="Probability of being in the high regime", figsize=(12, 3))

# From the estimated transition matrix we can calculate the expected
# duration of a low regime versus a high regime.

print(res_fedfunds.expected_durations)

# A low regime is expected to persist for about fourteen years, whereas
# the high regime is expected to persist for only about five years.

# ### Federal funds rate with switching intercept and lagged dependent
# variable
#
# The second example augments the previous model to include the lagged
# value of the federal funds rate.
#
# $$r_t = \mu_{S_t} + r_{t-1} \beta_{S_t} + \varepsilon_t \qquad
# \varepsilon_t \sim N(0, \sigma^2)$$
#
# where $S_t \in \{0, 1\}$, and the regime transitions according to
#
# $$ P(S_t = s_t | S_{t-1} = s_{t-1}) =
# \begin{bmatrix}
# p_{00} & p_{10} \\
# 1 - p_{00} & 1 - p_{10}
# \end{bmatrix}
# $$
#
# We will estimate the parameters of this model by maximum likelihood:
# $p_{00}, p_{10}, \mu_0, \mu_1, \beta_0, \beta_1, \sigma^2$.

# Fit the model
mod_fedfunds2 = sm.tsa.MarkovRegression(dta_fedfunds.iloc[1:],
                                        k_regimes=2,
                                        exog=dta_fedfunds.iloc[:-1])
res_fedfunds2 = mod_fedfunds2.fit()

res_fedfunds2.summary()

# There are several things to notice from the summary output:
#
# 1. The information criteria have decreased substantially, indicating
# that this model has a better fit than the previous model.
# 2. The interpretation of the regimes, in terms of the intercept, have
# switched. Now the first regime has the higher intercept and the second
# regime has a lower intercept.
#
# Examining the smoothed probabilities of the high regime state, we now
# see quite a bit more variability.

res_fedfunds2.smoothed_marginal_probabilities[0].plot(
    title="Probability of being in the high regime", figsize=(12, 3))

# Finally, the expected durations of each regime have decreased quite a
# bit.

print(res_fedfunds2.expected_durations)

# ### Taylor rule with 2 or 3 regimes
#
# We now include two additional exogenous variables - a measure of the
# output gap and a measure of inflation - to estimate a switching Taylor-
# type rule with both 2 and 3 regimes to see which fits the data better.
#
# Because the models can be often difficult to estimate, for the 3-regime
# model we employ a search over starting parameters to improve results,
# specifying 20 random search repetitions.

# Get the additional data
from statsmodels.tsa.regime_switching.tests.test_markov_regression import ogap, inf

dta_ogap = pd.Series(ogap,
                     index=pd.date_range("1954-07-01", "2010-10-01",
                                         freq="QS"))
dta_inf = pd.Series(inf,
                    index=pd.date_range("1954-07-01", "2010-10-01", freq="QS"))

exog = pd.concat((dta_fedfunds.shift(), dta_ogap, dta_inf), axis=1).iloc[4:]

# Fit the 2-regime model
mod_fedfunds3 = sm.tsa.MarkovRegression(dta_fedfunds.iloc[4:],
                                        k_regimes=2,
                                        exog=exog)
res_fedfunds3 = mod_fedfunds3.fit()

# Fit the 3-regime model
np.random.seed(12345)
mod_fedfunds4 = sm.tsa.MarkovRegression(dta_fedfunds.iloc[4:],
                                        k_regimes=3,
                                        exog=exog)
res_fedfunds4 = mod_fedfunds4.fit(search_reps=20)

res_fedfunds3.summary()

res_fedfunds4.summary()

# Due to lower information criteria, we might prefer the 3-state model,
# with an interpretation of low-, medium-, and high-interest rate regimes.
# The smoothed probabilities of each regime are plotted below.

fig, axes = plt.subplots(3, figsize=(10, 7))

ax = axes[0]
ax.plot(res_fedfunds4.smoothed_marginal_probabilities[0])
ax.set(title="Smoothed probability of a low-interest rate regime")

ax = axes[1]
ax.plot(res_fedfunds4.smoothed_marginal_probabilities[1])
ax.set(title="Smoothed probability of a medium-interest rate regime")

ax = axes[2]
ax.plot(res_fedfunds4.smoothed_marginal_probabilities[2])
ax.set(title="Smoothed probability of a high-interest rate regime")

fig.tight_layout()

# ### Switching variances
#
# We can also accommodate switching variances. In particular, we consider
# the model
#
# $$
# y_t = \mu_{S_t} + y_{t-1} \beta_{S_t} + \varepsilon_t \quad
# \varepsilon_t \sim N(0, \sigma_{S_t}^2)
# $$
#
# We use maximum likelihood to estimate the parameters of this model:
# $p_{00}, p_{10}, \mu_0, \mu_1, \beta_0, \beta_1, \sigma_0^2, \sigma_1^2$.
#
# The application is to absolute returns on stocks, where the data can be
# found at https://www.stata-press.com/data/r14/snp500.

# Get the federal funds rate data
from statsmodels.tsa.regime_switching.tests.test_markov_regression import areturns

dta_areturns = pd.Series(areturns,
                         index=pd.date_range("2004-05-04",
                                             "2014-5-03",
                                             freq="W"))

# Plot the data
dta_areturns.plot(title="Absolute returns, S&P500", figsize=(12, 3))

# Fit the model
mod_areturns = sm.tsa.MarkovRegression(
    dta_areturns.iloc[1:],
    k_regimes=2,
    exog=dta_areturns.iloc[:-1],
    switching_variance=True,
)
res_areturns = mod_areturns.fit()

res_areturns.summary()

# The first regime is a low-variance regime and the second regime is a
# high-variance regime. Below we plot the probabilities of being in the low-
# variance regime. Between 2008 and 2012 there does not appear to be a clear
# indication of one regime guiding the economy.

res_areturns.smoothed_marginal_probabilities[0].plot(
    title="Probability of being in a low-variance regime", figsize=(12, 3))