1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
#!/usr/bin/env python
# DO NOT EDIT
# Autogenerated from the notebook markov_regression.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT
# ## Markov switching dynamic regression models
# This notebook provides an example of the use of Markov switching models
# in statsmodels to estimate dynamic regression models with changes in
# regime. It follows the examples in the Stata Markov switching
# documentation, which can be found at
# http://www.stata.com/manuals14/tsmswitch.pdf.
import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
# NBER recessions
from pandas_datareader.data import DataReader
from datetime import datetime
usrec = DataReader("USREC",
"fred",
start=datetime(1947, 1, 1),
end=datetime(2013, 4, 1))
# ### Federal funds rate with switching intercept
#
# The first example models the federal funds rate as noise around a
# constant intercept, but where the intercept changes during different
# regimes. The model is simply:
#
# $$r_t = \mu_{S_t} + \varepsilon_t \qquad \varepsilon_t \sim N(0,
# \sigma^2)$$
#
# where $S_t \in \{0, 1\}$, and the regime transitions according to
#
# $$ P(S_t = s_t | S_{t-1} = s_{t-1}) =
# \begin{bmatrix}
# p_{00} & p_{10} \\
# 1 - p_{00} & 1 - p_{10}
# \end{bmatrix}
# $$
#
# We will estimate the parameters of this model by maximum likelihood:
# $p_{00}, p_{10}, \mu_0, \mu_1, \sigma^2$.
#
# The data used in this example can be found at https://www.stata-
# press.com/data/r14/usmacro.
# Get the federal funds rate data
from statsmodels.tsa.regime_switching.tests.test_markov_regression import fedfunds
dta_fedfunds = pd.Series(fedfunds,
index=pd.date_range("1954-07-01",
"2010-10-01",
freq="QS"))
# Plot the data
dta_fedfunds.plot(title="Federal funds rate", figsize=(12, 3))
# Fit the model
# (a switching mean is the default of the MarkovRegession model)
mod_fedfunds = sm.tsa.MarkovRegression(dta_fedfunds, k_regimes=2)
res_fedfunds = mod_fedfunds.fit()
res_fedfunds.summary()
# From the summary output, the mean federal funds rate in the first regime
# (the "low regime") is estimated to be $3.7$ whereas in the "high regime"
# it is $9.6$. Below we plot the smoothed probabilities of being in the high
# regime. The model suggests that the 1980's was a time-period in which a
# high federal funds rate existed.
res_fedfunds.smoothed_marginal_probabilities[1].plot(
title="Probability of being in the high regime", figsize=(12, 3))
# From the estimated transition matrix we can calculate the expected
# duration of a low regime versus a high regime.
print(res_fedfunds.expected_durations)
# A low regime is expected to persist for about fourteen years, whereas
# the high regime is expected to persist for only about five years.
# ### Federal funds rate with switching intercept and lagged dependent
# variable
#
# The second example augments the previous model to include the lagged
# value of the federal funds rate.
#
# $$r_t = \mu_{S_t} + r_{t-1} \beta_{S_t} + \varepsilon_t \qquad
# \varepsilon_t \sim N(0, \sigma^2)$$
#
# where $S_t \in \{0, 1\}$, and the regime transitions according to
#
# $$ P(S_t = s_t | S_{t-1} = s_{t-1}) =
# \begin{bmatrix}
# p_{00} & p_{10} \\
# 1 - p_{00} & 1 - p_{10}
# \end{bmatrix}
# $$
#
# We will estimate the parameters of this model by maximum likelihood:
# $p_{00}, p_{10}, \mu_0, \mu_1, \beta_0, \beta_1, \sigma^2$.
# Fit the model
mod_fedfunds2 = sm.tsa.MarkovRegression(dta_fedfunds.iloc[1:],
k_regimes=2,
exog=dta_fedfunds.iloc[:-1])
res_fedfunds2 = mod_fedfunds2.fit()
res_fedfunds2.summary()
# There are several things to notice from the summary output:
#
# 1. The information criteria have decreased substantially, indicating
# that this model has a better fit than the previous model.
# 2. The interpretation of the regimes, in terms of the intercept, have
# switched. Now the first regime has the higher intercept and the second
# regime has a lower intercept.
#
# Examining the smoothed probabilities of the high regime state, we now
# see quite a bit more variability.
res_fedfunds2.smoothed_marginal_probabilities[0].plot(
title="Probability of being in the high regime", figsize=(12, 3))
# Finally, the expected durations of each regime have decreased quite a
# bit.
print(res_fedfunds2.expected_durations)
# ### Taylor rule with 2 or 3 regimes
#
# We now include two additional exogenous variables - a measure of the
# output gap and a measure of inflation - to estimate a switching Taylor-
# type rule with both 2 and 3 regimes to see which fits the data better.
#
# Because the models can be often difficult to estimate, for the 3-regime
# model we employ a search over starting parameters to improve results,
# specifying 20 random search repetitions.
# Get the additional data
from statsmodels.tsa.regime_switching.tests.test_markov_regression import ogap, inf
dta_ogap = pd.Series(ogap,
index=pd.date_range("1954-07-01", "2010-10-01",
freq="QS"))
dta_inf = pd.Series(inf,
index=pd.date_range("1954-07-01", "2010-10-01", freq="QS"))
exog = pd.concat((dta_fedfunds.shift(), dta_ogap, dta_inf), axis=1).iloc[4:]
# Fit the 2-regime model
mod_fedfunds3 = sm.tsa.MarkovRegression(dta_fedfunds.iloc[4:],
k_regimes=2,
exog=exog)
res_fedfunds3 = mod_fedfunds3.fit()
# Fit the 3-regime model
np.random.seed(12345)
mod_fedfunds4 = sm.tsa.MarkovRegression(dta_fedfunds.iloc[4:],
k_regimes=3,
exog=exog)
res_fedfunds4 = mod_fedfunds4.fit(search_reps=20)
res_fedfunds3.summary()
res_fedfunds4.summary()
# Due to lower information criteria, we might prefer the 3-state model,
# with an interpretation of low-, medium-, and high-interest rate regimes.
# The smoothed probabilities of each regime are plotted below.
fig, axes = plt.subplots(3, figsize=(10, 7))
ax = axes[0]
ax.plot(res_fedfunds4.smoothed_marginal_probabilities[0])
ax.set(title="Smoothed probability of a low-interest rate regime")
ax = axes[1]
ax.plot(res_fedfunds4.smoothed_marginal_probabilities[1])
ax.set(title="Smoothed probability of a medium-interest rate regime")
ax = axes[2]
ax.plot(res_fedfunds4.smoothed_marginal_probabilities[2])
ax.set(title="Smoothed probability of a high-interest rate regime")
fig.tight_layout()
# ### Switching variances
#
# We can also accommodate switching variances. In particular, we consider
# the model
#
# $$
# y_t = \mu_{S_t} + y_{t-1} \beta_{S_t} + \varepsilon_t \quad
# \varepsilon_t \sim N(0, \sigma_{S_t}^2)
# $$
#
# We use maximum likelihood to estimate the parameters of this model:
# $p_{00}, p_{10}, \mu_0, \mu_1, \beta_0, \beta_1, \sigma_0^2, \sigma_1^2$.
#
# The application is to absolute returns on stocks, where the data can be
# found at https://www.stata-press.com/data/r14/snp500.
# Get the federal funds rate data
from statsmodels.tsa.regime_switching.tests.test_markov_regression import areturns
dta_areturns = pd.Series(areturns,
index=pd.date_range("2004-05-04",
"2014-5-03",
freq="W"))
# Plot the data
dta_areturns.plot(title="Absolute returns, S&P500", figsize=(12, 3))
# Fit the model
mod_areturns = sm.tsa.MarkovRegression(
dta_areturns.iloc[1:],
k_regimes=2,
exog=dta_areturns.iloc[:-1],
switching_variance=True,
)
res_areturns = mod_areturns.fit()
res_areturns.summary()
# The first regime is a low-variance regime and the second regime is a
# high-variance regime. Below we plot the probabilities of being in the low-
# variance regime. Between 2008 and 2012 there does not appear to be a clear
# indication of one regime guiding the economy.
res_areturns.smoothed_marginal_probabilities[0].plot(
title="Probability of being in a low-variance regime", figsize=(12, 3))
|