1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
Description: Fix random seeds for reproducibility
Author: Rebecca N. Palmer <rebecca_palmer@zoho.com>
Forwarded: no
--- a/examples/notebooks/copula.ipynb
+++ b/examples/notebooks/copula.ipynb
@@ -19,7 +19,8 @@
"from scipy import stats\n",
"\n",
"sns.set_style(\"darkgrid\")\n",
- "sns.mpl.rc(\"figure\", figsize=(8, 8))"
+ "sns.mpl.rc(\"figure\", figsize=(8, 8))\n",
+ "np.random.seed(1234) # for reproducibility"
]
},
{
--- a/examples/notebooks/ets.ipynb
+++ b/examples/notebooks/ets.ipynb
@@ -31,7 +31,8 @@
"import pandas as pd\n",
"\n",
"%matplotlib inline\n",
- "from statsmodels.tsa.exponential_smoothing.ets import ETSModel"
+ "from statsmodels.tsa.exponential_smoothing.ets import ETSModel\n",
+ "np.random.seed(1234) # for reproducibility"
]
},
{
--- a/examples/notebooks/exponential_smoothing.ipynb
+++ b/examples/notebooks/exponential_smoothing.ipynb
@@ -38,6 +38,7 @@
"import numpy as np\n",
"import pandas as pd\n",
"from statsmodels.tsa.api import ExponentialSmoothing, Holt, SimpleExpSmoothing\n",
+ "np.random.seed(1234) # for reproducibility\n",
"\n",
"%matplotlib inline\n",
"\n",
--- a/examples/notebooks/gee_nested_simulation.ipynb
+++ b/examples/notebooks/gee_nested_simulation.ipynb
@@ -19,7 +19,8 @@
"source": [
"import numpy as np\n",
"import pandas as pd\n",
- "import statsmodels.api as sm"
+ "import statsmodels.api as sm\n",
+ "np.random.seed(1234) # for reproducibility"
]
},
{
--- a/examples/notebooks/gee_score_test_simulation.ipynb
+++ b/examples/notebooks/gee_score_test_simulation.ipynb
@@ -23,7 +23,8 @@
"import numpy as np\n",
"from scipy.stats.distributions import norm, poisson\n",
"import statsmodels.api as sm\n",
- "import matplotlib.pyplot as plt"
+ "import matplotlib.pyplot as plt\n",
+ "np.random.seed(1234) # for reproducibility"
]
},
{
--- a/examples/notebooks/plots_boxplots.ipynb
+++ b/examples/notebooks/plots_boxplots.ipynb
@@ -24,7 +24,8 @@
"\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
- "import statsmodels.api as sm"
+ "import statsmodels.api as sm\n",
+ "np.random.seed(1234) # for reproducibility"
]
},
{
--- a/examples/notebooks/predict.ipynb
+++ b/examples/notebooks/predict.ipynb
@@ -28,7 +28,8 @@
"import statsmodels.api as sm\n",
"\n",
"plt.rc(\"figure\", figsize=(16, 8))\n",
- "plt.rc(\"font\", size=14)"
+ "plt.rc(\"font\", size=14)\n",
+ "np.random.seed(1234) # for reproducibility"
]
},
{
--- a/examples/notebooks/robust_models_0.ipynb
+++ b/examples/notebooks/robust_models_0.ipynb
@@ -24,7 +24,8 @@
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
- "import statsmodels.api as sm"
+ "import statsmodels.api as sm\n",
+ "np.random.seed(1234) # for reproducibility"
]
},
{
--- a/docs/source/emplike.rst
+++ b/docs/source/emplike.rst
@@ -43,6 +43,7 @@ Examples
import numpy as np
import statsmodels.api as sm
+ np.random.seed(50) # for reproducibility
# Generate Data
x = np.random.standard_normal(50)
|