1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
.. image:: docs/source/images/statsmodels-logo-v2-horizontal.svg
:alt: Statsmodels logo
|PyPI Version| |Conda Version| |License| |Azure CI Build Status|
|Codecov Coverage| |Coveralls Coverage| |PyPI downloads| |Conda downloads|
About statsmodels
=================
statsmodels is a Python package that provides a complement to scipy for
statistical computations including descriptive statistics and estimation
and inference for statistical models.
Documentation
=============
The documentation for the latest release is at
https://www.statsmodels.org/stable/
The documentation for the development version is at
https://www.statsmodels.org/dev/
Recent improvements are highlighted in the release notes
https://www.statsmodels.org/stable/release/
Backups of documentation are available at https://statsmodels.github.io/stable/
and https://statsmodels.github.io/dev/.
Main Features
=============
* Linear regression models:
- Ordinary least squares
- Generalized least squares
- Weighted least squares
- Least squares with autoregressive errors
- Quantile regression
- Recursive least squares
* Mixed Linear Model with mixed effects and variance components
* GLM: Generalized linear models with support for all of the one-parameter
exponential family distributions
* Bayesian Mixed GLM for Binomial and Poisson
* GEE: Generalized Estimating Equations for one-way clustered or longitudinal data
* Discrete models:
- Logit and Probit
- Multinomial logit (MNLogit)
- Poisson and Generalized Poisson regression
- Negative Binomial regression
- Zero-Inflated Count models
* RLM: Robust linear models with support for several M-estimators.
* Time Series Analysis: models for time series analysis
- Complete StateSpace modeling framework
- Seasonal ARIMA and ARIMAX models
- VARMA and VARMAX models
- Dynamic Factor models
- Unobserved Component models
- Markov switching models (MSAR), also known as Hidden Markov Models (HMM)
- Univariate time series analysis: AR, ARIMA
- Vector autoregressive models, VAR and structural VAR
- Vector error correction model, VECM
- exponential smoothing, Holt-Winters
- Hypothesis tests for time series: unit root, cointegration and others
- Descriptive statistics and process models for time series analysis
* Survival analysis:
- Proportional hazards regression (Cox models)
- Survivor function estimation (Kaplan-Meier)
- Cumulative incidence function estimation
* Multivariate:
- Principal Component Analysis with missing data
- Factor Analysis with rotation
- MANOVA
- Canonical Correlation
* Nonparametric statistics: Univariate and multivariate kernel density estimators
* Datasets: Datasets used for examples and in testing
* Statistics: a wide range of statistical tests
- diagnostics and specification tests
- goodness-of-fit and normality tests
- functions for multiple testing
- various additional statistical tests
* Imputation with MICE, regression on order statistic and Gaussian imputation
* Mediation analysis
* Graphics includes plot functions for visual analysis of data and model results
* I/O
- Tools for reading Stata .dta files, but pandas has a more recent version
- Table output to ascii, latex, and html
* Miscellaneous models
* Sandbox: statsmodels contains a sandbox folder with code in various stages of
development and testing which is not considered "production ready". This covers
among others
- Generalized method of moments (GMM) estimators
- Kernel regression
- Various extensions to scipy.stats.distributions
- Panel data models
- Information theoretic measures
How to get it
=============
The main branch on GitHub is the most up to date code
https://www.github.com/statsmodels/statsmodels
Source download of release tags are available on GitHub
https://github.com/statsmodels/statsmodels/tags
Binaries and source distributions are available from PyPi
https://pypi.org/project/statsmodels/
Binaries can be installed in Anaconda
conda install statsmodels
Getting the latest code
=======================
Installing the most recent nightly wheel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The most recent nightly wheel can be installed using pip.
.. code:: bash
python -m pip install -i https://pypi.anaconda.org/scientific-python-nightly-wheels/simple statsmodels --upgrade --use-deprecated=legacy-resolver
Installing from sources
~~~~~~~~~~~~~~~~~~~~~~~
See INSTALL.txt for requirements or see the documentation
https://statsmodels.github.io/dev/install.html
Contributing
============
Contributions in any form are welcome, including:
* Documentation improvements
* Additional tests
* New features to existing models
* New models
https://www.statsmodels.org/stable/dev/test_notes
for instructions on installing statsmodels in *editable* mode.
License
=======
Modified BSD (3-clause)
Discussion and Development
==========================
Discussions take place on the mailing list
https://groups.google.com/group/pystatsmodels
and in the issue tracker. We are very interested in feedback
about usability and suggestions for improvements.
Bug Reports
===========
Bug reports can be submitted to the issue tracker at
https://github.com/statsmodels/statsmodels/issues
.. |Azure CI Build Status| image:: https://dev.azure.com/statsmodels/statsmodels-testing/_apis/build/status/statsmodels.statsmodels?branchName=main
:target: https://dev.azure.com/statsmodels/statsmodels-testing/_build/latest?definitionId=1&branchName=main
.. |Codecov Coverage| image:: https://codecov.io/gh/statsmodels/statsmodels/branch/main/graph/badge.svg
:target: https://codecov.io/gh/statsmodels/statsmodels
.. |Coveralls Coverage| image:: https://coveralls.io/repos/github/statsmodels/statsmodels/badge.svg?branch=main
:target: https://coveralls.io/github/statsmodels/statsmodels?branch=main
.. |PyPI downloads| image:: https://img.shields.io/pypi/dm/statsmodels?label=PyPI%20Downloads
:alt: PyPI - Downloads
:target: https://pypi.org/project/statsmodels/
.. |Conda downloads| image:: https://img.shields.io/conda/dn/conda-forge/statsmodels.svg?label=Conda%20downloads
:target: https://anaconda.org/conda-forge/statsmodels/
.. |PyPI Version| image:: https://img.shields.io/pypi/v/statsmodels.svg
:target: https://pypi.org/project/statsmodels/
.. |Conda Version| image:: https://anaconda.org/conda-forge/statsmodels/badges/version.svg
:target: https://anaconda.org/conda-forge/statsmodels/
.. |License| image:: https://img.shields.io/pypi/l/statsmodels.svg
:target: https://github.com/statsmodels/statsmodels/blob/main/LICENSE.txt
|