1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
#!/usr/bin/env python
# coding: utf-8
# DO NOT EDIT
# Autogenerated from the notebook autoregressions.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT
# # Autoregressions
#
# This notebook introduces autoregression modeling using the `AutoReg`
# model. It also covers aspects of `ar_select_order` assists in selecting
# models that minimize an information criteria such as the AIC.
# An autoregressive model has dynamics given by
#
# $$ y_t = \delta + \phi_1 y_{t-1} + \ldots + \phi_p y_{t-p} + \epsilon_t.
# $$
#
# `AutoReg` also permits models with:
#
# * Deterministic terms (`trend`)
# * `n`: No deterministic term
# * `c`: Constant (default)
# * `ct`: Constant and time trend
# * `t`: Time trend only
# * Seasonal dummies (`seasonal`)
# * `True` includes $s-1$ dummies where $s$ is the period of the time
# series (e.g., 12 for monthly)
# * Custom deterministic terms (`deterministic`)
# * Accepts a `DeterministicProcess`
# * Exogenous variables (`exog`)
# * A `DataFrame` or `array` of exogenous variables to include in the
# model
# * Omission of selected lags (`lags`)
# * If `lags` is an iterable of integers, then only these are included
# in the model.
#
# The complete specification is
#
# $$ y_t = \delta_0 + \delta_1 t + \phi_1 y_{t-1} + \ldots + \phi_p
# y_{t-p} + \sum_{i=1}^{s-1} \gamma_i d_i + \sum_{j=1}^{m} \kappa_j x_{t,j}
# + \epsilon_t. $$
#
# where:
#
# * $d_i$ is a seasonal dummy that is 1 if $mod(t, period) = i$. Period 0
# is excluded if the model contains a constant (`c` is in `trend`).
# * $t$ is a time trend ($1,2,\ldots$) that starts with 1 in the first
# observation.
# * $x_{t,j}$ are exogenous regressors. **Note** these are time-aligned
# to the left-hand-side variable when defining a model.
# * $\epsilon_t$ is assumed to be a white noise process.
# This first cell imports standard packages and sets plots to appear
# inline.
import matplotlib.pyplot as plt
import pandas as pd
import pandas_datareader as pdr
import seaborn as sns
from statsmodels.tsa.api import acf, graphics, pacf
from statsmodels.tsa.ar_model import AutoReg, ar_select_order
# This cell sets the plotting style, registers pandas date converters for
# matplotlib, and sets the default figure size.
sns.set_style("darkgrid")
pd.plotting.register_matplotlib_converters()
# Default figure size
sns.mpl.rc("figure", figsize=(16, 6))
sns.mpl.rc("font", size=14)
# The first set of examples uses the month-over-month growth rate in U.S.
# Housing starts that has not been seasonally adjusted. The seasonality is
# evident by the regular pattern of peaks and troughs. We set the frequency
# for the time series to "MS" (month-start) to avoid warnings when using
# `AutoReg`.
data = pdr.get_data_fred("HOUSTNSA", "1959-01-01", "2019-06-01")
housing = data.HOUSTNSA.pct_change().dropna()
# Scale by 100 to get percentages
housing = 100 * housing.asfreq("MS")
fig, ax = plt.subplots()
ax = housing.plot(ax=ax)
# We can start with an AR(3). While this is not a good model for this
# data, it demonstrates the basic use of the API.
mod = AutoReg(housing, 3, old_names=False)
res = mod.fit()
print(res.summary())
# `AutoReg` supports the same covariance estimators as `OLS`. Below, we
# use `cov_type="HC0"`, which is White's covariance estimator. While the
# parameter estimates are the same, all of the quantities that depend on the
# standard error change.
res = mod.fit(cov_type="HC0")
print(res.summary())
sel = ar_select_order(housing, 13, old_names=False)
sel.ar_lags
res = sel.model.fit()
print(res.summary())
# `plot_predict` visualizes forecasts. Here we produce a large number of
# forecasts which show the string seasonality captured by the model.
fig = res.plot_predict(720, 840)
# `plot_diagnositcs` indicates that the model captures the key features in
# the data.
fig = plt.figure(figsize=(16, 9))
fig = res.plot_diagnostics(fig=fig, lags=30)
# ## Seasonal Dummies
# `AutoReg` supports seasonal dummies which are an alternative way to
# model seasonality. Including the dummies shortens the dynamics to only an
# AR(2).
sel = ar_select_order(housing, 13, seasonal=True, old_names=False)
sel.ar_lags
res = sel.model.fit()
print(res.summary())
# The seasonal dummies are obvious in the forecasts which has a non-
# trivial seasonal component in all periods 10 years in to the future.
fig = res.plot_predict(720, 840)
fig = plt.figure(figsize=(16, 9))
fig = res.plot_diagnostics(lags=30, fig=fig)
# ## Seasonal Dynamics
# While `AutoReg` does not directly support Seasonal components since it
# uses OLS to estimate parameters, it is possible to capture seasonal
# dynamics using an over-parametrized Seasonal AR that does not impose the
# restrictions in the Seasonal AR.
yoy_housing = data.HOUSTNSA.pct_change(12).resample("MS").last().dropna()
_, ax = plt.subplots()
ax = yoy_housing.plot(ax=ax)
# We start by selecting a model using the simple method that only chooses
# the maximum lag. All lower lags are automatically included. The maximum
# lag to check is set to 13 since this allows the model to next a Seasonal
# AR that has both a short-run AR(1) component and a Seasonal AR(1)
# component, so that
#
# $$ (1-\phi_s L^{12})(1-\phi_1 L)y_t = \epsilon_t $$
# which becomes
# $$ y_t = \phi_1 y_{t-1} +\phi_s Y_{t-12} - \phi_1\phi_s Y_{t-13} +
# \epsilon_t $$
#
# when expanded. `AutoReg` does not enforce the structure, but can
# estimate the nesting model
#
# $$ y_t = \phi_1 y_{t-1} +\phi_{12} Y_{t-12} - \phi_{13} Y_{t-13} +
# \epsilon_t. $$
#
# We see that all 13 lags are selected.
sel = ar_select_order(yoy_housing, 13, old_names=False)
sel.ar_lags
# It seems unlikely that all 13 lags are required. We can set `glob=True`
# to search all $2^{13}$ models that include up to 13 lags.
#
# Here we see that the first three are selected, as is the 7th, and
# finally the 12th and 13th are selected. This is superficially similar to
# the structure described above.
#
# After fitting the model, we take a look at the diagnostic plots that
# indicate that this specification appears to be adequate to capture the
# dynamics in the data.
sel = ar_select_order(yoy_housing, 13, glob=True, old_names=False)
sel.ar_lags
res = sel.model.fit()
print(res.summary())
fig = plt.figure(figsize=(16, 9))
fig = res.plot_diagnostics(fig=fig, lags=30)
# We can also include seasonal dummies. These are all insignificant since
# the model is using year-over-year changes.
sel = ar_select_order(yoy_housing,
13,
glob=True,
seasonal=True,
old_names=False)
sel.ar_lags
res = sel.model.fit()
print(res.summary())
# ## Industrial Production
#
# We will use the industrial production index data to examine forecasting.
data = pdr.get_data_fred("INDPRO", "1959-01-01", "2019-06-01")
ind_prod = data.INDPRO.pct_change(12).dropna().asfreq("MS")
_, ax = plt.subplots(figsize=(16, 9))
ind_prod.plot(ax=ax)
# We will start by selecting a model using up to 12 lags. An AR(13)
# minimizes the BIC criteria even though many coefficients are
# insignificant.
sel = ar_select_order(ind_prod, 13, "bic", old_names=False)
res = sel.model.fit()
print(res.summary())
# We can also use a global search which allows longer lags to enter if
# needed without requiring the shorter lags. Here we see many lags dropped.
# The model indicates there may be some seasonality in the data.
sel = ar_select_order(ind_prod, 13, "bic", glob=True, old_names=False)
sel.ar_lags
res_glob = sel.model.fit()
print(res.summary())
# `plot_predict` can be used to produce forecast plots along with
# confidence intervals. Here we produce forecasts starting at the last
# observation and continuing for 18 months.
ind_prod.shape
fig = res_glob.plot_predict(start=714, end=732)
# The forecasts from the full model and the restricted model are very
# similar. I also include an AR(5) which has very different dynamics
res_ar5 = AutoReg(ind_prod, 5, old_names=False).fit()
predictions = pd.DataFrame({
"AR(5)":
res_ar5.predict(start=714, end=726),
"AR(13)":
res.predict(start=714, end=726),
"Restr. AR(13)":
res_glob.predict(start=714, end=726),
})
_, ax = plt.subplots()
ax = predictions.plot(ax=ax)
# The diagnostics indicate the model captures most of the the dynamics in
# the data. The ACF shows a patters at the seasonal frequency and so a more
# complete seasonal model (`SARIMAX`) may be needed.
fig = plt.figure(figsize=(16, 9))
fig = res_glob.plot_diagnostics(fig=fig, lags=30)
# # Forecasting
#
# Forecasts are produced using the `predict` method from a results
# instance. The default produces static forecasts which are one-step
# forecasts. Producing multi-step forecasts requires using `dynamic=True`.
#
# In this next cell, we produce 12-step-heard forecasts for the final 24
# periods in the sample. This requires a loop.
#
# **Note**: These are technically in-sample since the data we are
# forecasting was used to estimate parameters. Producing OOS forecasts
# requires two models. The first must exclude the OOS period. The second
# uses the `predict` method from the full-sample model with the parameters
# from the shorter sample model that excluded the OOS period.
import numpy as np
start = ind_prod.index[-24]
forecast_index = pd.date_range(start, freq=ind_prod.index.freq, periods=36)
cols = [
"-".join(str(val) for val in (idx.year, idx.month))
for idx in forecast_index
]
forecasts = pd.DataFrame(index=forecast_index, columns=cols)
for i in range(1, 24):
fcast = res_glob.predict(start=forecast_index[i],
end=forecast_index[i + 12],
dynamic=True)
forecasts.loc[fcast.index, cols[i]] = fcast
_, ax = plt.subplots(figsize=(16, 10))
ind_prod.iloc[-24:].plot(ax=ax, color="black", linestyle="--")
ax = forecasts.plot(ax=ax)
# ## Comparing to SARIMAX
#
# `SARIMAX` is an implementation of a Seasonal Autoregressive Integrated
# Moving Average with eXogenous regressors model. It supports:
#
# * Specification of seasonal and nonseasonal AR and MA components
# * Inclusion of Exogenous variables
# * Full maximum-likelihood estimation using the Kalman Filter
#
# This model is more feature rich than `AutoReg`. Unlike `SARIMAX`,
# `AutoReg` estimates parameters using OLS. This is faster and the problem
# is globally convex, and so there are no issues with local minima. The
# closed-form estimator and its performance are the key advantages of
# `AutoReg` over `SARIMAX` when comparing AR(P) models. `AutoReg` also
# support seasonal dummies, which can be used with `SARIMAX` if the user
# includes them as exogenous regressors.
from statsmodels.tsa.api import SARIMAX
sarimax_mod = SARIMAX(ind_prod, order=((1, 5, 12, 13), 0, 0), trend="c")
sarimax_res = sarimax_mod.fit()
print(sarimax_res.summary())
sarimax_params = sarimax_res.params.iloc[:-1].copy()
sarimax_params.index = res_glob.params.index
params = pd.concat([res_glob.params, sarimax_params], axis=1, sort=False)
params.columns = ["AutoReg", "SARIMAX"]
params
# ## Custom Deterministic Processes
#
# The `deterministic` parameter allows a custom `DeterministicProcess` to
# be used. This allows for more complex deterministic terms to be
# constructed, for example one that includes seasonal components with two
# periods, or, as the next example shows, one that uses a Fourier series
# rather than seasonal dummies.
from statsmodels.tsa.deterministic import DeterministicProcess
dp = DeterministicProcess(housing.index, constant=True, period=12, fourier=2)
mod = AutoReg(housing, 2, trend="n", seasonal=False, deterministic=dp)
res = mod.fit()
print(res.summary())
fig = res.plot_predict(720, 840)
|