1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
#!/usr/bin/env python
# coding: utf-8
# DO NOT EDIT
# Autogenerated from the notebook chi2_fitting.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT
# # Least squares fitting of models to data
# This is a quick introduction to `statsmodels` for physical scientists
# (e.g. physicists, astronomers) or engineers.
#
# Why is this needed?
#
# Because most of `statsmodels` was written by statisticians and they use
# a different terminology and sometimes methods, making it hard to know
# which classes and functions are relevant and what their inputs and outputs
# mean.
import numpy as np
import pandas as pd
import statsmodels.api as sm
# ## Linear models
# Assume you have data points with measurements `y` at positions `x` as
# well as measurement errors `y_err`.
#
# How can you use `statsmodels` to fit a straight line model to this data?
#
# For an extensive discussion see [Hogg et al. (2010), "Data analysis
# recipes: Fitting a model to data"](https://arxiv.org/abs/1008.4686) ...
# we'll use the example data given by them in Table 1.
#
# So the model is `f(x) = a * x + b` and on Figure 1 they print the result
# we want to reproduce ... the best-fit parameter and the parameter errors
# for a "standard weighted least-squares fit" for this data are:
# * `a = 2.24 +- 0.11`
# * `b = 34 +- 18`
data = """
x y y_err
201 592 61
244 401 25
47 583 38
287 402 15
203 495 21
58 173 15
210 479 27
202 504 14
198 510 30
158 416 16
165 393 14
201 442 25
157 317 52
131 311 16
166 400 34
160 337 31
186 423 42
125 334 26
218 533 16
146 344 22
"""
try:
from StringIO import StringIO
except ImportError:
from io import StringIO
data = pd.read_csv(StringIO(data), delim_whitespace=True).astype(float)
# Note: for the results we compare with the paper here, they drop the
# first four points
data.head()
# To fit a straight line use the weighted least squares class [WLS](https:
# //www.statsmodels.org/devel/generated/statsmodels.regression.linear_model.
# WLS.html) ... the parameters are called:
# * `exog` = `sm.add_constant(x)`
# * `endog` = `y`
# * `weights` = `1 / sqrt(y_err)`
#
# Note that `exog` must be a 2-dimensional array with `x` as a column and
# an extra column of ones. Adding this column of ones means you want to fit
# the model `y = a * x + b`, leaving it off means you want to fit the model
# `y = a * x`.
#
# And you have to use the option `cov_type='fixed scale'` to tell
# `statsmodels` that you really have measurement errors with an absolute
# scale. If you do not, `statsmodels` will treat the weights as relative
# weights between the data points and internally re-scale them so that the
# best-fit model will have `chi**2 / ndf = 1`.
exog = sm.add_constant(data["x"])
endog = data["y"]
weights = 1.0 / (data["y_err"]**2)
wls = sm.WLS(endog, exog, weights)
results = wls.fit(cov_type="fixed scale")
print(results.summary())
# ### Check against scipy.optimize.curve_fit
# You can use `scipy.optimize.curve_fit` to get the best-fit parameters
# and parameter errors.
from scipy.optimize import curve_fit
def f(x, a, b):
return a * x + b
xdata = data["x"]
ydata = data["y"]
p0 = [0, 0] # initial parameter estimate
sigma = data["y_err"]
popt, pcov = curve_fit(f, xdata, ydata, p0, sigma, absolute_sigma=True)
perr = np.sqrt(np.diag(pcov))
print("a = {0:10.3f} +- {1:10.3f}".format(popt[0], perr[0]))
print("b = {0:10.3f} +- {1:10.3f}".format(popt[1], perr[1]))
# ### Check against self-written cost function
# You can also use `scipy.optimize.minimize` and write your own cost
# function.
# This does not give you the parameter errors though ... you'd have
# to estimate the HESSE matrix separately ...
from scipy.optimize import minimize
def chi2(pars):
"""Cost function."""
y_model = pars[0] * data["x"] + pars[1]
chi = (data["y"] - y_model) / data["y_err"]
return np.sum(chi**2)
result = minimize(fun=chi2, x0=[0, 0])
popt = result.x
print("a = {0:10.3f}".format(popt[0]))
print("b = {0:10.3f}".format(popt[1]))
# ## Non-linear models
# TODO: we could use the examples from here:
# http://probfit.readthedocs.org/en/latest/api.html#probfit.costfunc.Chi2R
# egression
|