File: discrete_choice_example.py

package info (click to toggle)
statsmodels 0.14.6%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 49,956 kB
  • sloc: python: 254,365; f90: 612; sh: 560; javascript: 337; asm: 156; makefile: 145; ansic: 32; xml: 9
file content (241 lines) | stat: -rw-r--r-- 6,188 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#!/usr/bin/env python
# coding: utf-8

# DO NOT EDIT
# Autogenerated from the notebook discrete_choice_example.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT

# # Discrete Choice Models

# ## Fair's Affair data

# A survey of women only was conducted in 1974 by *Redbook* asking about
# extramarital affairs.

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import statsmodels.api as sm
from scipy import stats
from statsmodels.formula.api import logit

print(sm.datasets.fair.SOURCE)

print(sm.datasets.fair.NOTE)

dta = sm.datasets.fair.load_pandas().data

dta["affair"] = (dta["affairs"] > 0).astype(float)
print(dta.head(10))

print(dta.describe())

affair_mod = logit(
    "affair ~ occupation + educ + occupation_husb"
    "+ rate_marriage + age + yrs_married + children"
    " + religious",
    dta,
).fit()

print(affair_mod.summary())

# How well are we predicting?

affair_mod.pred_table()

# The coefficients of the discrete choice model do not tell us much. What
# we're after is marginal effects.

mfx = affair_mod.get_margeff()
print(mfx.summary())

respondent1000 = dta.iloc[1000]
print(respondent1000)

resp = dict(
    zip(
        range(1, 9),
        respondent1000[[
            "occupation",
            "educ",
            "occupation_husb",
            "rate_marriage",
            "age",
            "yrs_married",
            "children",
            "religious",
        ]].tolist(),
    ))
resp.update({0: 1})
print(resp)

mfx = affair_mod.get_margeff(atexog=resp)
print(mfx.summary())

# `predict` expects a `DataFrame` since `patsy` is used to select columns.

respondent1000 = dta.iloc[[1000]]
affair_mod.predict(respondent1000)

affair_mod.fittedvalues[1000]

affair_mod.model.cdf(affair_mod.fittedvalues[1000])

# The "correct" model here is likely the Tobit model. We have an work in
# progress branch "tobit-model" on github, if anyone is interested in
# censored regression models.

# ### Exercise: Logit vs Probit

fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111)
support = np.linspace(-6, 6, 1000)
ax.plot(support, stats.logistic.cdf(support), "r-", label="Logistic")
ax.plot(support, stats.norm.cdf(support), label="Probit")
ax.legend()

fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111)
support = np.linspace(-6, 6, 1000)
ax.plot(support, stats.logistic.pdf(support), "r-", label="Logistic")
ax.plot(support, stats.norm.pdf(support), label="Probit")
ax.legend()

# Compare the estimates of the Logit Fair model above to a Probit model.
# Does the prediction table look better? Much difference in marginal
# effects?

# ### Generalized Linear Model Example

print(sm.datasets.star98.SOURCE)

print(sm.datasets.star98.DESCRLONG)

print(sm.datasets.star98.NOTE)

dta = sm.datasets.star98.load_pandas().data
print(dta.columns)

print(dta[[
    "NABOVE", "NBELOW", "LOWINC", "PERASIAN", "PERBLACK", "PERHISP", "PERMINTE"
]].head(10))

print(dta[[
    "AVYRSEXP", "AVSALK", "PERSPENK", "PTRATIO", "PCTAF", "PCTCHRT", "PCTYRRND"
]].head(10))

formula = "NABOVE + NBELOW ~ LOWINC + PERASIAN + PERBLACK + PERHISP + PCTCHRT "
formula += "+ PCTYRRND + PERMINTE*AVYRSEXP*AVSALK + PERSPENK*PTRATIO*PCTAF"

# #### Aside: Binomial distribution

# Toss a six-sided die 5 times, what's the probability of exactly 2 fours?

stats.binom(5, 1.0 / 6).pmf(2)

from scipy.special import comb

comb(5, 2) * (1 / 6.0)**2 * (5 / 6.0)**3

from statsmodels.formula.api import glm

glm_mod = glm(formula, dta, family=sm.families.Binomial()).fit()

print(glm_mod.summary())

# The number of trials

glm_mod.model.data.orig_endog.sum(1)

glm_mod.fittedvalues * glm_mod.model.data.orig_endog.sum(1)

# First differences: We hold all explanatory variables constant at their
# means and manipulate the percentage of low income households to assess its
# impact
# on the response variables:

exog = glm_mod.model.data.orig_exog  # get the dataframe

means25 = exog.mean()
print(means25)

means25["LOWINC"] = exog["LOWINC"].quantile(0.25)
print(means25)

means75 = exog.mean()
means75["LOWINC"] = exog["LOWINC"].quantile(0.75)
print(means75)

# Again, `predict` expects a `DataFrame` since `patsy` is used to select
# columns.

resp25 = glm_mod.predict(pd.DataFrame(means25).T)
resp75 = glm_mod.predict(pd.DataFrame(means75).T)
diff = resp75 - resp25

# The interquartile first difference for the percentage of low income
# households in a school district is:

print("%2.4f%%" % (diff[0] * 100))

nobs = glm_mod.nobs
y = glm_mod.model.endog
yhat = glm_mod.mu

from statsmodels.graphics.api import abline_plot

fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111, ylabel="Observed Values", xlabel="Fitted Values")
ax.scatter(yhat, y)
y_vs_yhat = sm.OLS(y, sm.add_constant(yhat, prepend=True)).fit()
fig = abline_plot(model_results=y_vs_yhat, ax=ax)

# #### Plot fitted values vs Pearson residuals

# Pearson residuals are defined to be
#
# $$\frac{(y - \mu)}{\sqrt{(var(\mu))}}$$
#
# where var is typically determined by the family. E.g., binomial variance
# is $np(1 - p)$

fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(
    111,
    title="Residual Dependence Plot",
    xlabel="Fitted Values",
    ylabel="Pearson Residuals",
)
ax.scatter(yhat, stats.zscore(glm_mod.resid_pearson))
ax.axis("tight")
ax.plot([0.0, 1.0], [0.0, 0.0], "k-")

# #### Histogram of standardized deviance residuals with Kernel Density
# Estimate overlaid

# The definition of the deviance residuals depends on the family. For the
# Binomial distribution this is
#
# $$r_{dev} = sign\left(Y-\mu\right)*\sqrt{2n(Y\log\frac{Y}{\mu}+(1-
# Y)\log\frac{(1-Y)}{(1-\mu)}}$$
#
# They can be used to detect ill-fitting covariates

resid = glm_mod.resid_deviance
resid_std = stats.zscore(resid)
kde_resid = sm.nonparametric.KDEUnivariate(resid_std)
kde_resid.fit()

fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111, title="Standardized Deviance Residuals")
ax.hist(resid_std, bins=25, density=True)
ax.plot(kde_resid.support, kde_resid.density, "r")

# #### QQ-plot of deviance residuals

fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111)
fig = sm.graphics.qqplot(resid, line="r", ax=ax)