1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
#!/usr/bin/env python
# coding: utf-8
# DO NOT EDIT
# Autogenerated from the notebook ets.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT
# # ETS models
#
# The ETS models are a family of time series models with an underlying
# state space model consisting of a level component, a trend component (T),
# a seasonal component (S), and an error term (E).
#
# This notebook shows how they can be used with `statsmodels`. For a more
# thorough treatment we refer to [1], chapter 8 (free online resource), on
# which the implementation in statsmodels and the examples used in this
# notebook are based.
#
# `statsmodels` implements all combinations of:
# - additive and multiplicative error model
# - additive and multiplicative trend, possibly dampened
# - additive and multiplicative seasonality
#
# However, not all of these methods are stable. Refer to [1] and
# references therein for more info about model stability.
#
# [1] Hyndman, Rob J., and Athanasopoulos, George. *Forecasting:
# principles and practice*, 3rd edition, OTexts, 2021.
# https://otexts.com/fpp3/expsmooth.html
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from statsmodels.tsa.exponential_smoothing.ets import ETSModel
plt.rcParams["figure.figsize"] = (12, 8)
# ## Simple exponential smoothing
#
# The simplest of the ETS models is also known as *simple exponential
# smoothing*. In ETS terms, it corresponds to the (A, N, N) model, that is,
# a model with additive errors, no trend, and no seasonality. The state
# space formulation of Holt's method is:
#
# \begin{align}
# y_{t} &= y_{t-1} + e_t\\
# l_{t} &= l_{t-1} + \alpha e_t\\
# \end{align}
#
# This state space formulation can be turned into a different formulation,
# a forecast and a smoothing equation (as can be done with all ETS models):
#
# \begin{align}
# \hat{y}_{t|t-1} &= l_{t-1}\\
# l_{t} &= \alpha y_{t-1} + (1 - \alpha) l_{t-1}
# \end{align}
#
# Here, $\hat{y}_{t|t-1}$ is the forecast/expectation of $y_t$ given the
# information of the previous step. In the simple exponential smoothing
# model, the forecast corresponds to the previous level. The second equation
# (smoothing equation) calculates the next level as weighted average of the
# previous level and the previous observation.
oildata = [
111.0091,
130.8284,
141.2871,
154.2278,
162.7409,
192.1665,
240.7997,
304.2174,
384.0046,
429.6622,
359.3169,
437.2519,
468.4008,
424.4353,
487.9794,
509.8284,
506.3473,
340.1842,
240.2589,
219.0328,
172.0747,
252.5901,
221.0711,
276.5188,
271.1480,
342.6186,
428.3558,
442.3946,
432.7851,
437.2497,
437.2092,
445.3641,
453.1950,
454.4096,
422.3789,
456.0371,
440.3866,
425.1944,
486.2052,
500.4291,
521.2759,
508.9476,
488.8889,
509.8706,
456.7229,
473.8166,
525.9509,
549.8338,
542.3405,
]
oil = pd.Series(oildata, index=pd.date_range("1965", "2013", freq="YS"))
oil.plot()
plt.ylabel("Annual oil production in Saudi Arabia (Mt)")
# The plot above shows annual oil production in Saudi Arabia in million
# tonnes. The data are taken from the R package `fpp2` (companion package to
# prior version [1]).
# Below you can see how to fit a simple exponential smoothing model using
# statsmodels's ETS implementation to this data. Additionally, the fit using
# `forecast` in R is shown as comparison.
model = ETSModel(oil)
fit = model.fit(maxiter=10000)
oil.plot(label="data")
fit.fittedvalues.plot(label="statsmodels fit")
plt.ylabel("Annual oil production in Saudi Arabia (Mt)")
# obtained from R
params_R = [
0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983
]
yhat = model.smooth(params_R).fittedvalues
yhat.plot(label="R fit", linestyle="--")
plt.legend()
# By default the initial states are considered to be fitting parameters
# and are estimated by maximizing log-likelihood. It is possible to only use
# a heuristic for the initial values:
model_heuristic = ETSModel(oil, initialization_method="heuristic")
fit_heuristic = model_heuristic.fit()
oil.plot(label="data")
fit.fittedvalues.plot(label="estimated")
fit_heuristic.fittedvalues.plot(label="heuristic", linestyle="--")
plt.ylabel("Annual oil production in Saudi Arabia (Mt)")
# obtained from R
params = [
0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983
]
yhat = model.smooth(params).fittedvalues
yhat.plot(label="with R params", linestyle=":")
plt.legend()
# The fitted parameters and some other measures are shown using
# `fit.summary()`. Here we can see that the log-likelihood of the model
# using fitted initial states is fractionally lower than the one using a
# heuristic for the initial states.
print(fit.summary())
print(fit_heuristic.summary())
# ## Holt-Winters' seasonal method
#
# The exponential smoothing method can be modified to incorporate a trend
# and a seasonal component. In the additive Holt-Winters' method, the
# seasonal component is added to the rest. This model corresponds to the
# ETS(A, A, A) model, and has the following state space formulation:
#
# \begin{align}
# y_t &= l_{t-1} + b_{t-1} + s_{t-m} + e_t\\
# l_{t} &= l_{t-1} + b_{t-1} + \alpha e_t\\
# b_{t} &= b_{t-1} + \beta e_t\\
# s_{t} &= s_{t-m} + \gamma e_t
# \end{align}
#
#
austourists_data = [
30.05251300,
19.14849600,
25.31769200,
27.59143700,
32.07645600,
23.48796100,
28.47594000,
35.12375300,
36.83848500,
25.00701700,
30.72223000,
28.69375900,
36.64098600,
23.82460900,
29.31168300,
31.77030900,
35.17787700,
19.77524400,
29.60175000,
34.53884200,
41.27359900,
26.65586200,
28.27985900,
35.19115300,
42.20566386,
24.64917133,
32.66733514,
37.25735401,
45.24246027,
29.35048127,
36.34420728,
41.78208136,
49.27659843,
31.27540139,
37.85062549,
38.83704413,
51.23690034,
31.83855162,
41.32342126,
42.79900337,
55.70835836,
33.40714492,
42.31663797,
45.15712257,
59.57607996,
34.83733016,
44.84168072,
46.97124960,
60.01903094,
38.37117851,
46.97586413,
50.73379646,
61.64687319,
39.29956937,
52.67120908,
54.33231689,
66.83435838,
40.87118847,
51.82853579,
57.49190993,
65.25146985,
43.06120822,
54.76075713,
59.83447494,
73.25702747,
47.69662373,
61.09776802,
66.05576122,
]
index = pd.date_range("1999-03-01", "2015-12-01", freq="3MS")
austourists = pd.Series(austourists_data, index=index)
austourists.plot()
plt.ylabel("Australian Tourists")
# fit in statsmodels
model = ETSModel(
austourists,
error="add",
trend="add",
seasonal="add",
damped_trend=True,
seasonal_periods=4,
)
fit = model.fit()
# fit with R params
params_R = [
0.35445427,
0.03200749,
0.39993387,
0.97999997,
24.01278357,
0.97770147,
1.76951063,
-0.50735902,
-6.61171798,
5.34956637,
]
fit_R = model.smooth(params_R)
austourists.plot(label="data")
plt.ylabel("Australian Tourists")
fit.fittedvalues.plot(label="statsmodels fit")
fit_R.fittedvalues.plot(label="R fit", linestyle="--")
plt.legend()
print(fit.summary())
# ## Predictions
#
# The ETS model can also be used for predicting. There are several
# different methods available:
# - `forecast`: makes out of sample predictions
# - `predict`: in sample and out of sample predictions
# - `simulate`: runs simulations of the statespace model
# - `get_prediction`: in sample and out of sample predictions, as well as
# prediction intervals
#
# We can use them on our previously fitted model to predict from 2014 to
# 2020.
pred = fit.get_prediction(start="2014", end="2020")
df = pred.summary_frame(alpha=0.05)
df
# In this case the prediction intervals were calculated using an
# analytical formula. This is not available for all models. For these other
# models, prediction intervals are calculated by performing multiple
# simulations (1000 by default) and using the percentiles of the simulation
# results. This is done internally by the `get_prediction` method.
#
# We can also manually run simulations, e.g. to plot them. Since the data
# ranges until end of 2015, we have to simulate from the first quarter of
# 2016 to the first quarter of 2020, which means 17 steps.
simulated = fit.simulate(anchor="end", nsimulations=17, repetitions=100)
for i in range(simulated.shape[1]):
simulated.iloc[:, i].plot(label="_", color="gray", alpha=0.1)
df["mean"].plot(label="mean prediction")
df["pi_lower"].plot(linestyle="--", color="tab:blue", label="95% interval")
df["pi_upper"].plot(linestyle="--", color="tab:blue", label="_")
pred.endog.plot(label="data")
plt.legend()
# In this case, we chose "end" as simulation anchor, which means that the
# first simulated value will be the first out of sample value. It is also
# possible to choose other anchor inside the sample.
|