File: ets.py

package info (click to toggle)
statsmodels 0.14.6%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 49,956 kB
  • sloc: python: 254,365; f90: 612; sh: 560; javascript: 337; asm: 156; makefile: 145; ansic: 32; xml: 9
file content (340 lines) | stat: -rw-r--r-- 9,092 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
#!/usr/bin/env python
# coding: utf-8

# DO NOT EDIT
# Autogenerated from the notebook ets.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT

# # ETS models
#
# The ETS models are a family of time series models with an underlying
# state space model consisting of a level component, a trend component (T),
# a seasonal component (S), and an error term (E).
#
# This notebook shows how they can be used with `statsmodels`. For a more
# thorough treatment we refer to [1], chapter 8 (free online resource), on
# which the implementation in statsmodels and the examples used in this
# notebook are based.
#
# `statsmodels` implements all combinations of:
# - additive and multiplicative error model
# - additive and multiplicative trend, possibly dampened
# - additive and multiplicative seasonality
#
# However, not all of these methods are stable. Refer to [1] and
# references therein for more info about model stability.
#
# [1] Hyndman, Rob J., and Athanasopoulos, George. *Forecasting:
# principles and practice*, 3rd edition, OTexts, 2021.
# https://otexts.com/fpp3/expsmooth.html

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

from statsmodels.tsa.exponential_smoothing.ets import ETSModel

plt.rcParams["figure.figsize"] = (12, 8)

# ## Simple exponential smoothing
#
# The simplest of the ETS models is also known as *simple exponential
# smoothing*. In ETS terms, it corresponds to the (A, N, N) model, that is,
# a model with additive errors, no trend, and no seasonality. The state
# space formulation of Holt's method is:
#
# \begin{align}
# y_{t} &= y_{t-1} + e_t\\
# l_{t} &= l_{t-1} + \alpha e_t\\
# \end{align}
#
# This state space formulation can be turned into a different formulation,
# a forecast and a smoothing equation (as can be done with all ETS models):
#
# \begin{align}
# \hat{y}_{t|t-1} &= l_{t-1}\\
# l_{t} &= \alpha y_{t-1} + (1 - \alpha) l_{t-1}
# \end{align}
#
# Here, $\hat{y}_{t|t-1}$ is the forecast/expectation of $y_t$ given the
# information of the previous step. In the simple exponential smoothing
# model, the forecast corresponds to the previous level. The second equation
# (smoothing equation) calculates the next level as weighted average of the
# previous level and the previous observation.

oildata = [
    111.0091,
    130.8284,
    141.2871,
    154.2278,
    162.7409,
    192.1665,
    240.7997,
    304.2174,
    384.0046,
    429.6622,
    359.3169,
    437.2519,
    468.4008,
    424.4353,
    487.9794,
    509.8284,
    506.3473,
    340.1842,
    240.2589,
    219.0328,
    172.0747,
    252.5901,
    221.0711,
    276.5188,
    271.1480,
    342.6186,
    428.3558,
    442.3946,
    432.7851,
    437.2497,
    437.2092,
    445.3641,
    453.1950,
    454.4096,
    422.3789,
    456.0371,
    440.3866,
    425.1944,
    486.2052,
    500.4291,
    521.2759,
    508.9476,
    488.8889,
    509.8706,
    456.7229,
    473.8166,
    525.9509,
    549.8338,
    542.3405,
]
oil = pd.Series(oildata, index=pd.date_range("1965", "2013", freq="YS"))
oil.plot()
plt.ylabel("Annual oil production in Saudi Arabia (Mt)")

# The plot above shows annual oil production in Saudi Arabia in million
# tonnes. The data are taken from the R package `fpp2` (companion package to
# prior version [1]).
# Below you can see how to fit a simple exponential smoothing model using
# statsmodels's ETS implementation to this data. Additionally, the fit using
# `forecast` in R is shown as comparison.

model = ETSModel(oil)
fit = model.fit(maxiter=10000)
oil.plot(label="data")
fit.fittedvalues.plot(label="statsmodels fit")
plt.ylabel("Annual oil production in Saudi Arabia (Mt)")

# obtained from R
params_R = [
    0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983
]
yhat = model.smooth(params_R).fittedvalues
yhat.plot(label="R fit", linestyle="--")

plt.legend()

# By default the initial states are considered to be fitting parameters
# and are estimated by maximizing log-likelihood. It is possible to only use
# a heuristic for the initial values:

model_heuristic = ETSModel(oil, initialization_method="heuristic")
fit_heuristic = model_heuristic.fit()
oil.plot(label="data")
fit.fittedvalues.plot(label="estimated")
fit_heuristic.fittedvalues.plot(label="heuristic", linestyle="--")
plt.ylabel("Annual oil production in Saudi Arabia (Mt)")

# obtained from R
params = [
    0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983
]
yhat = model.smooth(params).fittedvalues
yhat.plot(label="with R params", linestyle=":")

plt.legend()

# The fitted parameters and some other measures are shown using
# `fit.summary()`. Here we can see that the log-likelihood of the model
# using fitted initial states is fractionally lower than the one using a
# heuristic for the initial states.

print(fit.summary())

print(fit_heuristic.summary())

# ## Holt-Winters' seasonal method
#
# The exponential smoothing method can be modified to incorporate a trend
# and a seasonal component. In the additive Holt-Winters' method, the
# seasonal component is added to the rest. This model corresponds to the
# ETS(A, A, A) model, and has the following state space formulation:
#
# \begin{align}
# y_t &= l_{t-1} + b_{t-1} + s_{t-m} + e_t\\
# l_{t} &= l_{t-1} + b_{t-1} + \alpha e_t\\
# b_{t} &= b_{t-1} + \beta e_t\\
# s_{t} &= s_{t-m} + \gamma e_t
# \end{align}
#
#

austourists_data = [
    30.05251300,
    19.14849600,
    25.31769200,
    27.59143700,
    32.07645600,
    23.48796100,
    28.47594000,
    35.12375300,
    36.83848500,
    25.00701700,
    30.72223000,
    28.69375900,
    36.64098600,
    23.82460900,
    29.31168300,
    31.77030900,
    35.17787700,
    19.77524400,
    29.60175000,
    34.53884200,
    41.27359900,
    26.65586200,
    28.27985900,
    35.19115300,
    42.20566386,
    24.64917133,
    32.66733514,
    37.25735401,
    45.24246027,
    29.35048127,
    36.34420728,
    41.78208136,
    49.27659843,
    31.27540139,
    37.85062549,
    38.83704413,
    51.23690034,
    31.83855162,
    41.32342126,
    42.79900337,
    55.70835836,
    33.40714492,
    42.31663797,
    45.15712257,
    59.57607996,
    34.83733016,
    44.84168072,
    46.97124960,
    60.01903094,
    38.37117851,
    46.97586413,
    50.73379646,
    61.64687319,
    39.29956937,
    52.67120908,
    54.33231689,
    66.83435838,
    40.87118847,
    51.82853579,
    57.49190993,
    65.25146985,
    43.06120822,
    54.76075713,
    59.83447494,
    73.25702747,
    47.69662373,
    61.09776802,
    66.05576122,
]
index = pd.date_range("1999-03-01", "2015-12-01", freq="3MS")
austourists = pd.Series(austourists_data, index=index)
austourists.plot()
plt.ylabel("Australian Tourists")

# fit in statsmodels
model = ETSModel(
    austourists,
    error="add",
    trend="add",
    seasonal="add",
    damped_trend=True,
    seasonal_periods=4,
)
fit = model.fit()

# fit with R params
params_R = [
    0.35445427,
    0.03200749,
    0.39993387,
    0.97999997,
    24.01278357,
    0.97770147,
    1.76951063,
    -0.50735902,
    -6.61171798,
    5.34956637,
]
fit_R = model.smooth(params_R)

austourists.plot(label="data")
plt.ylabel("Australian Tourists")

fit.fittedvalues.plot(label="statsmodels fit")
fit_R.fittedvalues.plot(label="R fit", linestyle="--")
plt.legend()

print(fit.summary())

# ## Predictions
#
# The ETS model can also be used for predicting. There are several
# different methods available:
# - `forecast`: makes out of sample predictions
# - `predict`: in sample and out of sample predictions
# - `simulate`: runs simulations of the statespace model
# - `get_prediction`: in sample and out of sample predictions, as well as
# prediction intervals
#
# We can use them on our previously fitted model to predict from 2014 to
# 2020.

pred = fit.get_prediction(start="2014", end="2020")

df = pred.summary_frame(alpha=0.05)
df

# In this case the prediction intervals were calculated using an
# analytical formula. This is not available for all models. For these other
# models, prediction intervals are calculated by performing multiple
# simulations (1000 by default) and using the percentiles of the simulation
# results. This is done internally by the `get_prediction` method.
#
# We can also manually run simulations, e.g. to plot them. Since the data
# ranges until end of 2015, we have to simulate from the first quarter of
# 2016 to the first quarter of 2020, which means 17 steps.

simulated = fit.simulate(anchor="end", nsimulations=17, repetitions=100)

for i in range(simulated.shape[1]):
    simulated.iloc[:, i].plot(label="_", color="gray", alpha=0.1)
df["mean"].plot(label="mean prediction")
df["pi_lower"].plot(linestyle="--", color="tab:blue", label="95% interval")
df["pi_upper"].plot(linestyle="--", color="tab:blue", label="_")
pred.endog.plot(label="data")
plt.legend()

# In this case, we chose "end" as simulation anchor, which means that the
# first simulated value will be the first out of sample value. It is also
# possible to choose other anchor inside the sample.