1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
#!/usr/bin/env python
# coding: utf-8
# DO NOT EDIT
# Autogenerated from the notebook glm_weights.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT
# # Weighted Generalized Linear Models
import numpy as np
import pandas as pd
import statsmodels.formula.api as smf
import statsmodels.api as sm
# ## Weighted GLM: Poisson response data
#
# ### Load data
#
# In this example, we'll use the affair dataset using a handful of
# exogenous variables to predict the extra-marital affair rate.
#
# Weights will be generated to show that `freq_weights` are equivalent to
# repeating records of data. On the other hand, `var_weights` is equivalent
# to aggregating data.
print(sm.datasets.fair.NOTE)
# Load the data into a pandas dataframe.
data = sm.datasets.fair.load_pandas().data
# The dependent (endogenous) variable is ``affairs``
data.describe()
data[:3]
# In the following we will work mostly with Poisson. While using decimal
# affairs works, we convert them to integers to have a count distribution.
data["affairs"] = np.ceil(data["affairs"])
data[:3]
(data["affairs"] == 0).mean()
np.bincount(data["affairs"].astype(int))
# ## Condensing and Aggregating observations
#
# We have 6366 observations in our original dataset. When we consider only
# some selected variables, then we have fewer unique observations. In the
# following we combine observations in two ways, first we combine
# observations that have values for all variables identical, and secondly we
# combine observations that have the same explanatory variables.
# ### Dataset with unique observations
#
# We use pandas's groupby to combine identical observations and create a
# new variable `freq` that count how many observation have the values in the
# corresponding row.
data2 = data.copy()
data2["const"] = 1
dc = (data2["affairs rate_marriage age yrs_married const".split()].groupby(
"affairs rate_marriage age yrs_married".split()).count())
dc.reset_index(inplace=True)
dc.rename(columns={"const": "freq"}, inplace=True)
print(dc.shape)
dc.head()
# ### Dataset with unique explanatory variables (exog)
#
# For the next dataset we combine observations that have the same values
# of the explanatory variables. However, because the response variable can
# differ among combined observations, we compute the mean and the sum of the
# response variable for all combined observations.
#
# We use again pandas ``groupby`` to combine observations and to create
# the new variables. We also flatten the ``MultiIndex`` into a simple index.
gr = data["affairs rate_marriage age yrs_married".split()].groupby(
"rate_marriage age yrs_married".split())
df_a = gr.agg(["mean", "sum", "count"])
def merge_tuple(tpl):
if isinstance(tpl, tuple) and len(tpl) > 1:
return "_".join(map(str, tpl))
else:
return tpl
df_a.columns = df_a.columns.map(merge_tuple)
df_a.reset_index(inplace=True)
print(df_a.shape)
df_a.head()
# After combining observations with have a dataframe `dc` with 467 unique
# observations, and a dataframe `df_a` with 130 observations with unique
# values of the explanatory variables.
print("number of rows: \noriginal, with unique observations, with unique exog")
data.shape[0], dc.shape[0], df_a.shape[0]
# ## Analysis
#
# In the following, we compare the GLM-Poisson results of the original
# data with models of the combined observations where the multiplicity or
# aggregation is given by weights or exposure.
#
#
# ### original data
glm = smf.glm(
"affairs ~ rate_marriage + age + yrs_married",
data=data,
family=sm.families.Poisson(),
)
res_o = glm.fit()
print(res_o.summary())
res_o.pearson_chi2 / res_o.df_resid
# ### condensed data (unique observations with frequencies)
#
# Combining identical observations and using frequency weights to take
# into account the multiplicity of observations produces exactly the same
# results. Some results attribute will differ when we want to have
# information about the observation and not about the aggregate of all
# identical observations. For example, residuals do not take
# ``freq_weights`` into account.
glm = smf.glm(
"affairs ~ rate_marriage + age + yrs_married",
data=dc,
family=sm.families.Poisson(),
freq_weights=np.asarray(dc["freq"]),
)
res_f = glm.fit()
print(res_f.summary())
res_f.pearson_chi2 / res_f.df_resid
# ### condensed using ``var_weights`` instead of ``freq_weights``
#
# Next, we compare ``var_weights`` to ``freq_weights``. It is a common
# practice to incorporate ``var_weights`` when the endogenous variable
# reflects averages and not identical observations.
# I do not see a theoretical reason why it produces the same results (in
# general).
#
# This produces the same results but ``df_resid`` differs the
# ``freq_weights`` example because ``var_weights`` do not change the number
# of effective observations.
#
glm = smf.glm(
"affairs ~ rate_marriage + age + yrs_married",
data=dc,
family=sm.families.Poisson(),
var_weights=np.asarray(dc["freq"]),
)
res_fv = glm.fit()
print(res_fv.summary())
# Dispersion computed from the results is incorrect because of wrong
# ``df_resid``.
# It is correct if we use the original ``df_resid``.
res_fv.pearson_chi2 / res_fv.df_resid, res_f.pearson_chi2 / res_f.df_resid
# ### aggregated or averaged data (unique values of explanatory variables)
#
# For these cases we combine observations that have the same values of the
# explanatory variables. The corresponding response variable is either a sum
# or an average.
#
# #### using ``exposure``
#
# If our dependent variable is the sum of the responses of all combined
# observations, then under the Poisson assumption the distribution remains
# the same but we have varying `exposure` given by the number of individuals
# that are represented by one aggregated observation.
#
# The parameter estimates and covariance of parameters are the same with
# the original data, but log-likelihood, deviance and Pearson chi-squared
# differ
glm = smf.glm(
"affairs_sum ~ rate_marriage + age + yrs_married",
data=df_a,
family=sm.families.Poisson(),
exposure=np.asarray(df_a["affairs_count"]),
)
res_e = glm.fit()
print(res_e.summary())
res_e.pearson_chi2 / res_e.df_resid
# #### using var_weights
#
# We can also use the mean of all combined values of the dependent
# variable. In this case the variance will be related to the inverse of the
# total exposure reflected by one combined observation.
glm = smf.glm(
"affairs_mean ~ rate_marriage + age + yrs_married",
data=df_a,
family=sm.families.Poisson(),
var_weights=np.asarray(df_a["affairs_count"]),
)
res_a = glm.fit()
print(res_a.summary())
# ### Comparison
#
# We saw in the summary prints above that ``params`` and ``cov_params``
# with associated Wald inference agree across versions. We summarize this in
# the following comparing individual results attributes across versions.
#
# Parameter estimates `params`, standard errors of the parameters `bse`
# and `pvalues` of the parameters for the tests that the parameters are
# zeros all agree. However, the likelihood and goodness-of-fit statistics,
# `llf`, `deviance` and `pearson_chi2` only partially agree. Specifically,
# the aggregated version do not agree with the results using the original
# data.
#
# **Warning**: The behavior of `llf`, `deviance` and `pearson_chi2` might
# still change in future versions.
#
# Both the sum and average of the response variable for unique values of
# the explanatory variables have a proper likelihood interpretation.
# However, this interpretation is not reflected in these three statistics.
# Computationally this might be due to missing adjustments when aggregated
# data is used. However, theoretically we can think in these cases,
# especially for `var_weights` of the misspecified case when likelihood
# analysis is inappropriate and the results should be interpreted as quasi-
# likelihood estimates. There is an ambiguity in the definition of
# ``var_weights`` because they can be used for averages with correctly
# specified likelihood as well as for variance adjustments in the quasi-
# likelihood case. We are currently not trying to match the likelihood
# specification. However, in the next section we show that likelihood ratio
# type tests still produce the same result for all aggregation versions when
# we assume that the underlying model is correctly specified.
results_all = [res_o, res_f, res_e, res_a]
names = "res_o res_f res_e res_a".split()
pd.concat([r.params for r in results_all], axis=1, keys=names)
pd.concat([r.bse for r in results_all], axis=1, keys=names)
pd.concat([r.pvalues for r in results_all], axis=1, keys=names)
pd.DataFrame(
np.column_stack([[r.llf, r.deviance, r.pearson_chi2]
for r in results_all]),
columns=names,
index=["llf", "deviance", "pearson chi2"],
)
# ### Likelihood Ratio type tests
#
# We saw above that likelihood and related statistics do not agree between
# the aggregated and original, individual data. We illustrate in the
# following that likelihood ratio test and difference in deviance agree
# across versions, however Pearson chi-squared does not.
#
# As before: This is not sufficiently clear yet and could change.
#
# As a test case we drop the `age` variable and compute the likelihood
# ratio type statistics as difference between reduced or constrained and
# full or unconstrained model.
# #### original observations and frequency weights
glm = smf.glm("affairs ~ rate_marriage + yrs_married",
data=data,
family=sm.families.Poisson())
res_o2 = glm.fit()
# print(res_f2.summary())
res_o2.pearson_chi2 - res_o.pearson_chi2, res_o2.deviance - res_o.deviance, res_o2.llf - res_o.llf
glm = smf.glm(
"affairs ~ rate_marriage + yrs_married",
data=dc,
family=sm.families.Poisson(),
freq_weights=np.asarray(dc["freq"]),
)
res_f2 = glm.fit()
# print(res_f2.summary())
res_f2.pearson_chi2 - res_f.pearson_chi2, res_f2.deviance - res_f.deviance, res_f2.llf - res_f.llf
# #### aggregated data: ``exposure`` and ``var_weights``
#
# Note: LR test agrees with original observations, ``pearson_chi2``
# differs and has the wrong sign.
glm = smf.glm(
"affairs_sum ~ rate_marriage + yrs_married",
data=df_a,
family=sm.families.Poisson(),
exposure=np.asarray(df_a["affairs_count"]),
)
res_e2 = glm.fit()
res_e2.pearson_chi2 - res_e.pearson_chi2, res_e2.deviance - res_e.deviance, res_e2.llf - res_e.llf
glm = smf.glm(
"affairs_mean ~ rate_marriage + yrs_married",
data=df_a,
family=sm.families.Poisson(),
var_weights=np.asarray(df_a["affairs_count"]),
)
res_a2 = glm.fit()
res_a2.pearson_chi2 - res_a.pearson_chi2, res_a2.deviance - res_a.deviance, res_a2.llf - res_a.llf
# ### Investigating Pearson chi-square statistic
#
# First, we do some sanity checks that there are no basic bugs in the
# computation of `pearson_chi2` and `resid_pearson`.
res_e2.pearson_chi2, res_e.pearson_chi2, (res_e2.resid_pearson**2).sum(), (
res_e.resid_pearson**2).sum()
res_e._results.resid_response.mean(), res_e.model.family.variance(
res_e.mu)[:5], res_e.mu[:5]
(res_e._results.resid_response**2 /
res_e.model.family.variance(res_e.mu)).sum()
res_e2._results.resid_response.mean(), res_e2.model.family.variance(
res_e2.mu)[:5], res_e2.mu[:5]
(res_e2._results.resid_response**2 /
res_e2.model.family.variance(res_e2.mu)).sum()
(res_e2._results.resid_response**2).sum(), (
res_e._results.resid_response**2).sum()
# One possible reason for the incorrect sign is that we are subtracting
# quadratic terms that are divided by different denominators. In some
# related cases, the recommendation in the literature is to use a common
# denominator. We can compare pearson chi-squared statistic using the same
# variance assumption in the full and reduced model.
#
# In this case we obtain the same pearson chi2 scaled difference between
# reduced and full model across all versions. (Issue
# [#3616](https://github.com/statsmodels/statsmodels/issues/3616) is
# intended to track this further.)
((res_e2._results.resid_response**2 - res_e._results.resid_response**2) /
res_e2.model.family.variance(res_e2.mu)).sum()
((res_a2._results.resid_response**2 - res_a._results.resid_response**2) /
res_a2.model.family.variance(res_a2.mu) * res_a2.model.var_weights).sum()
((res_f2._results.resid_response**2 - res_f._results.resid_response**2) /
res_f2.model.family.variance(res_f2.mu) * res_f2.model.freq_weights).sum()
((res_o2._results.resid_response**2 - res_o._results.resid_response**2) /
res_o2.model.family.variance(res_o2.mu)).sum()
# ## Remainder
#
# The remainder of the notebook just contains some additional checks and
# can be ignored.
np.exp(res_e2.model.exposure)[:5], np.asarray(df_a["affairs_count"])[:5]
res_e2.resid_pearson.sum() - res_e.resid_pearson.sum()
res_e2.mu[:5]
res_a2.pearson_chi2, res_a.pearson_chi2, res_a2.resid_pearson.sum(
), res_a.resid_pearson.sum()
((res_a2._results.resid_response**2) /
res_a2.model.family.variance(res_a2.mu) * res_a2.model.var_weights).sum()
((res_a._results.resid_response**2) / res_a.model.family.variance(res_a.mu) *
res_a.model.var_weights).sum()
((res_a._results.resid_response**2) / res_a.model.family.variance(res_a2.mu) *
res_a.model.var_weights).sum()
res_e.model.endog[:5], res_e2.model.endog[:5]
res_a.model.endog[:5], res_a2.model.endog[:5]
res_a2.model.endog[:5] * np.exp(res_e2.model.exposure)[:5]
res_a2.model.endog[:5] * res_a2.model.var_weights[:5]
from scipy import stats
stats.chi2.sf(27.19530754604785, 1), stats.chi2.sf(29.083798806764687, 1)
res_o.pvalues
print(res_e2.summary())
print(res_e.summary())
print(res_f2.summary())
print(res_f.summary())
|