1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
#!/usr/bin/env python
# coding: utf-8
# DO NOT EDIT
# Autogenerated from the notebook interactions_anova.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT
# # Interactions and ANOVA
# Note: This script is based heavily on Jonathan Taylor's class notes
# https://web.stanford.edu/class/stats191/notebooks/Interactions.html
#
# Download and format data:
import os
import shutil
import numpy as np
import requests
np.set_printoptions(precision=4, suppress=True)
import pandas as pd
pd.set_option("display.width", 100)
import matplotlib.pyplot as plt
from statsmodels.formula.api import ols
from statsmodels.graphics.api import abline_plot, interaction_plot
from statsmodels.stats.anova import anova_lm
def download_file(url, mode="t"):
local_filename = url.split("/")[-1]
if os.path.exists(local_filename):
return local_filename
with requests.get(url, stream=True) as r:
with open(local_filename, f"w{mode}") as f:
f.write(r.text)
return local_filename
url = "https://raw.githubusercontent.com/statsmodels/smdatasets/main/data/anova/salary/salary.table"
salary_table = pd.read_csv(download_file(url), sep="\t")
E = salary_table.E
M = salary_table.M
X = salary_table.X
S = salary_table.S
# Take a look at the data:
plt.figure(figsize=(6, 6))
symbols = ["D", "^"]
colors = ["r", "g", "blue"]
factor_groups = salary_table.groupby(["E", "M"])
for values, group in factor_groups:
i, j = values
plt.scatter(group["X"],
group["S"],
marker=symbols[j],
color=colors[i - 1],
s=144)
plt.xlabel("Experience")
plt.ylabel("Salary")
# Fit a linear model:
formula = "S ~ C(E) + C(M) + X"
lm = ols(formula, salary_table).fit()
print(lm.summary())
# Have a look at the created design matrix:
lm.model.exog[:5]
# Or since we initially passed in a DataFrame, we have a DataFrame
# available in
lm.model.data.orig_exog[:5]
# We keep a reference to the original untouched data in
lm.model.data.frame[:5]
# Influence statistics
infl = lm.get_influence()
print(infl.summary_table())
# or get a dataframe
df_infl = infl.summary_frame()
df_infl[:5]
# Now plot the residuals within the groups separately:
resid = lm.resid
plt.figure(figsize=(6, 6))
for values, group in factor_groups:
i, j = values
group_num = i * 2 + j - 1 # for plotting purposes
x = [group_num] * len(group)
plt.scatter(
x,
resid[group.index],
marker=symbols[j],
color=colors[i - 1],
s=144,
edgecolors="black",
)
plt.xlabel("Group")
plt.ylabel("Residuals")
# Now we will test some interactions using anova or f_test
interX_lm = ols("S ~ C(E) * X + C(M)", salary_table).fit()
print(interX_lm.summary())
# Do an ANOVA check
from statsmodels.stats.api import anova_lm
table1 = anova_lm(lm, interX_lm)
print(table1)
interM_lm = ols("S ~ X + C(E)*C(M)", data=salary_table).fit()
print(interM_lm.summary())
table2 = anova_lm(lm, interM_lm)
print(table2)
# The design matrix as a DataFrame
interM_lm.model.data.orig_exog[:5]
# The design matrix as an ndarray
interM_lm.model.exog
interM_lm.model.exog_names
infl = interM_lm.get_influence()
resid = infl.resid_studentized_internal
plt.figure(figsize=(6, 6))
for values, group in factor_groups:
i, j = values
idx = group.index
plt.scatter(
X[idx],
resid[idx],
marker=symbols[j],
color=colors[i - 1],
s=144,
edgecolors="black",
)
plt.xlabel("X")
plt.ylabel("standardized resids")
# Looks like one observation is an outlier.
drop_idx = abs(resid).argmax()
print(drop_idx) # zero-based index
idx = salary_table.index.drop(drop_idx)
lm32 = ols("S ~ C(E) + X + C(M)", data=salary_table, subset=idx).fit()
print(lm32.summary())
print("\n")
interX_lm32 = ols("S ~ C(E) * X + C(M)", data=salary_table, subset=idx).fit()
print(interX_lm32.summary())
print("\n")
table3 = anova_lm(lm32, interX_lm32)
print(table3)
print("\n")
interM_lm32 = ols("S ~ X + C(E) * C(M)", data=salary_table, subset=idx).fit()
table4 = anova_lm(lm32, interM_lm32)
print(table4)
print("\n")
# Replot the residuals
resid = interM_lm32.get_influence().summary_frame()["standard_resid"]
plt.figure(figsize=(6, 6))
resid = resid.reindex(X.index)
for values, group in factor_groups:
i, j = values
idx = group.index
plt.scatter(
X.loc[idx],
resid.loc[idx],
marker=symbols[j],
color=colors[i - 1],
s=144,
edgecolors="black",
)
plt.xlabel("X[~[32]]")
plt.ylabel("standardized resids")
# Plot the fitted values
lm_final = ols("S ~ X + C(E)*C(M)", data=salary_table.drop([drop_idx])).fit()
mf = lm_final.model.data.orig_exog
lstyle = ["-", "--"]
plt.figure(figsize=(6, 6))
for values, group in factor_groups:
i, j = values
idx = group.index
plt.scatter(
X[idx],
S[idx],
marker=symbols[j],
color=colors[i - 1],
s=144,
edgecolors="black",
)
# drop NA because there is no idx 32 in the final model
fv = lm_final.fittedvalues.reindex(idx).dropna()
x = mf.X.reindex(idx).dropna()
plt.plot(x, fv, ls=lstyle[j], color=colors[i - 1])
plt.xlabel("Experience")
plt.ylabel("Salary")
# From our first look at the data, the difference between Master's and PhD
# in the management group is different than in the non-management group.
# This is an interaction between the two qualitative variables management,M
# and education,E. We can visualize this by first removing the effect of
# experience, then plotting the means within each of the 6 groups using
# interaction.plot.
U = S - X * interX_lm32.params["X"]
plt.figure(figsize=(6, 6))
interaction_plot(E,
M,
U,
colors=["red", "blue"],
markers=["^", "D"],
markersize=10,
ax=plt.gca())
# ## Ethnic Employment Data
url = "https://raw.githubusercontent.com/statsmodels/smdatasets/main/data/anova/jobtest/jobtest.table"
jobtest_table = pd.read_csv(download_file(url), sep="\t")
factor_group = jobtest_table.groupby(["ETHN"])
fig, ax = plt.subplots(figsize=(6, 6))
colors = ["purple", "green"]
markers = ["o", "v"]
for factor, group in factor_group:
factor_id = np.squeeze(factor)
ax.scatter(
group["TEST"],
group["JPERF"],
color=colors[factor_id],
marker=markers[factor_id],
s=12**2,
)
ax.set_xlabel("TEST")
ax.set_ylabel("JPERF")
min_lm = ols("JPERF ~ TEST", data=jobtest_table).fit()
print(min_lm.summary())
fig, ax = plt.subplots(figsize=(6, 6))
for factor, group in factor_group:
factor_id = np.squeeze(factor)
ax.scatter(
group["TEST"],
group["JPERF"],
color=colors[factor_id],
marker=markers[factor_id],
s=12**2,
)
ax.set_xlabel("TEST")
ax.set_ylabel("JPERF")
fig = abline_plot(model_results=min_lm, ax=ax)
min_lm2 = ols("JPERF ~ TEST + TEST:ETHN", data=jobtest_table).fit()
print(min_lm2.summary())
fig, ax = plt.subplots(figsize=(6, 6))
for factor, group in factor_group:
factor_id = np.squeeze(factor)
ax.scatter(
group["TEST"],
group["JPERF"],
color=colors[factor_id],
marker=markers[factor_id],
s=12**2,
)
fig = abline_plot(
intercept=min_lm2.params["Intercept"],
slope=min_lm2.params["TEST"],
ax=ax,
color="purple",
)
fig = abline_plot(
intercept=min_lm2.params["Intercept"],
slope=min_lm2.params["TEST"] + min_lm2.params["TEST:ETHN"],
ax=ax,
color="green",
)
min_lm3 = ols("JPERF ~ TEST + ETHN", data=jobtest_table).fit()
print(min_lm3.summary())
fig, ax = plt.subplots(figsize=(6, 6))
for factor, group in factor_group:
factor_id = np.squeeze(factor)
ax.scatter(
group["TEST"],
group["JPERF"],
color=colors[factor_id],
marker=markers[factor_id],
s=12**2,
)
fig = abline_plot(
intercept=min_lm3.params["Intercept"],
slope=min_lm3.params["TEST"],
ax=ax,
color="purple",
)
fig = abline_plot(
intercept=min_lm3.params["Intercept"] + min_lm3.params["ETHN"],
slope=min_lm3.params["TEST"],
ax=ax,
color="green",
)
min_lm4 = ols("JPERF ~ TEST * ETHN", data=jobtest_table).fit()
print(min_lm4.summary())
fig, ax = plt.subplots(figsize=(8, 6))
for factor, group in factor_group:
factor_id = np.squeeze(factor)
ax.scatter(
group["TEST"],
group["JPERF"],
color=colors[factor_id],
marker=markers[factor_id],
s=12**2,
)
fig = abline_plot(
intercept=min_lm4.params["Intercept"],
slope=min_lm4.params["TEST"],
ax=ax,
color="purple",
)
fig = abline_plot(
intercept=min_lm4.params["Intercept"] + min_lm4.params["ETHN"],
slope=min_lm4.params["TEST"] + min_lm4.params["TEST:ETHN"],
ax=ax,
color="green",
)
# is there any effect of ETHN on slope or intercept?
table5 = anova_lm(min_lm, min_lm4)
print(table5)
# is there any effect of ETHN on intercept
table6 = anova_lm(min_lm, min_lm3)
print(table6)
# is there any effect of ETHN on slope
table7 = anova_lm(min_lm, min_lm2)
print(table7)
# is it just the slope or both?
table8 = anova_lm(min_lm2, min_lm4)
print(table8)
# ## One-way ANOVA
url = "https://raw.githubusercontent.com/statsmodels/smdatasets/main/data/anova/rehab/rehab.csv"
rehab_table = pd.read_csv(download_file(url))
fig, ax = plt.subplots(figsize=(8, 6))
fig = rehab_table.boxplot("Time", "Fitness", ax=ax, grid=False)
rehab_lm = ols("Time ~ C(Fitness)", data=rehab_table).fit()
table9 = anova_lm(rehab_lm)
print(table9)
print(rehab_lm.model.data.orig_exog)
print(rehab_lm.summary())
# ## Two-way ANOVA
url = "https://raw.githubusercontent.com/statsmodels/smdatasets/main/data/anova/kidney/kidney.table"
kidney_table = pd.read_csv(download_file(url), sep=r"\s+", engine="python")
# Explore the dataset
kidney_table.head(10)
# Balanced panel
kt = kidney_table
plt.figure(figsize=(8, 6))
fig = interaction_plot(
kt["Weight"],
kt["Duration"],
np.log(kt["Days"] + 1),
colors=["red", "blue"],
markers=["D", "^"],
ms=10,
ax=plt.gca(),
)
# You have things available in the calling namespace available in the
# formula evaluation namespace
kidney_lm = ols("np.log(Days+1) ~ C(Duration) * C(Weight)", data=kt).fit()
table10 = anova_lm(kidney_lm)
print(
anova_lm(
ols("np.log(Days+1) ~ C(Duration) + C(Weight)", data=kt).fit(),
kidney_lm))
print(
anova_lm(
ols("np.log(Days+1) ~ C(Duration)", data=kt).fit(),
ols("np.log(Days+1) ~ C(Duration) + C(Weight, Sum)", data=kt).fit(),
))
print(
anova_lm(
ols("np.log(Days+1) ~ C(Weight)", data=kt).fit(),
ols("np.log(Days+1) ~ C(Duration) + C(Weight, Sum)", data=kt).fit(),
))
# ## Sum of squares
#
# Illustrates the use of different types of sums of squares (I,II,II)
# and how the Sum contrast can be used to produce the same output between
# the 3.
#
# Types I and II are equivalent under a balanced design.
#
# Do not use Type III with non-orthogonal contrast - ie., Treatment
sum_lm = ols("np.log(Days+1) ~ C(Duration, Sum) * C(Weight, Sum)",
data=kt).fit()
print(anova_lm(sum_lm))
print(anova_lm(sum_lm, typ=2))
print(anova_lm(sum_lm, typ=3))
nosum_lm = ols(
"np.log(Days+1) ~ C(Duration, Treatment) * C(Weight, Treatment)",
data=kt).fit()
print(anova_lm(nosum_lm))
print(anova_lm(nosum_lm, typ=2))
print(anova_lm(nosum_lm, typ=3))
|