File: kernel_density.py

package info (click to toggle)
statsmodels 0.14.6%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 49,956 kB
  • sloc: python: 254,365; f90: 612; sh: 560; javascript: 337; asm: 156; makefile: 145; ansic: 32; xml: 9
file content (337 lines) | stat: -rw-r--r-- 8,838 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
#!/usr/bin/env python
# coding: utf-8

# DO NOT EDIT
# Autogenerated from the notebook kernel_density.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT

# # Kernel Density Estimation
#
# Kernel density estimation is the process of estimating an unknown
# probability density function using a *kernel function* $K(u)$. While a
# histogram counts the number of data points in somewhat arbitrary regions,
# a kernel density estimate is a function defined as the sum of a kernel
# function on every data point. The kernel function typically exhibits the
# following properties:
#
# 1. Symmetry such that $K(u) = K(-u)$.
# 2. Normalization such that $\int_{-\infty}^{\infty} K(u) \ du = 1$ .
# 3. Monotonically decreasing such that $K'(u) < 0$ when $u > 0$.
# 4. Expected value equal to zero such that $\mathrm{E}[K] = 0$.
#
# For more information about kernel density estimation, see for instance
# [Wikipedia - Kernel density
# estimation](https://en.wikipedia.org/wiki/Kernel_density_estimation).
#
# A univariate kernel density estimator is implemented in
# `sm.nonparametric.KDEUnivariate`.
# In this example we will show the following:
#
# * Basic usage, how to fit the estimator.
# * The effect of varying the bandwidth of the kernel using the `bw`
# argument.
# * The various kernel functions available using the `kernel` argument.

import numpy as np
from scipy import stats
import statsmodels.api as sm
import matplotlib.pyplot as plt
from statsmodels.distributions.mixture_rvs import mixture_rvs

# ## A univariate example

np.random.seed(
    12345)  # Seed the random number generator for reproducible results

# We create a bimodal distribution: a mixture of two normal distributions
# with locations at `-1` and `1`.

# Location, scale and weight for the two distributions
dist1_loc, dist1_scale, weight1 = -1, 0.5, 0.25
dist2_loc, dist2_scale, weight2 = 1, 0.5, 0.75

# Sample from a mixture of distributions
obs_dist = mixture_rvs(
    prob=[weight1, weight2],
    size=250,
    dist=[stats.norm, stats.norm],
    kwargs=(
        dict(loc=dist1_loc, scale=dist1_scale),
        dict(loc=dist2_loc, scale=dist2_scale),
    ),
)

# The simplest non-parametric technique for density estimation is the
# histogram.

fig = plt.figure(figsize=(12, 5))
ax = fig.add_subplot(111)

# Scatter plot of data samples and histogram
ax.scatter(
    obs_dist,
    np.abs(np.random.randn(obs_dist.size)),
    zorder=15,
    color="red",
    marker="x",
    alpha=0.5,
    label="Samples",
)
lines = ax.hist(obs_dist, bins=20, edgecolor="k", label="Histogram")

ax.legend(loc="best")
ax.grid(True, zorder=-5)

# ## Fitting with the default arguments

# The histogram above is discontinuous. To compute a continuous
# probability density function,
# we can use kernel density estimation.
#
# We initialize a univariate kernel density estimator using
# `KDEUnivariate`.

kde = sm.nonparametric.KDEUnivariate(obs_dist)
kde.fit()  # Estimate the densities

# We present a figure of the fit, as well as the true distribution.

fig = plt.figure(figsize=(12, 5))
ax = fig.add_subplot(111)

# Plot the histogram
ax.hist(
    obs_dist,
    bins=20,
    density=True,
    label="Histogram from samples",
    zorder=5,
    edgecolor="k",
    alpha=0.5,
)

# Plot the KDE as fitted using the default arguments
ax.plot(kde.support, kde.density, lw=3, label="KDE from samples", zorder=10)

# Plot the true distribution
true_values = (
    stats.norm.pdf(loc=dist1_loc, scale=dist1_scale, x=kde.support) * weight1 +
    stats.norm.pdf(loc=dist2_loc, scale=dist2_scale, x=kde.support) * weight2)
ax.plot(kde.support, true_values, lw=3, label="True distribution", zorder=15)

# Plot the samples
ax.scatter(
    obs_dist,
    np.abs(np.random.randn(obs_dist.size)) / 40,
    marker="x",
    color="red",
    zorder=20,
    label="Samples",
    alpha=0.5,
)

ax.legend(loc="best")
ax.grid(True, zorder=-5)

# In the code above, default arguments were used. We can also vary the
# bandwidth of the kernel, as we will now see.

# ## Varying the bandwidth using the `bw` argument

# The bandwidth of the kernel can be adjusted using the `bw` argument.
# In the following example, a bandwidth of `bw=0.2` seems to fit the data
# well.

fig = plt.figure(figsize=(12, 5))
ax = fig.add_subplot(111)

# Plot the histogram
ax.hist(
    obs_dist,
    bins=25,
    label="Histogram from samples",
    zorder=5,
    edgecolor="k",
    density=True,
    alpha=0.5,
)

# Plot the KDE for various bandwidths
for bandwidth in [0.1, 0.2, 0.4]:
    kde.fit(bw=bandwidth)  # Estimate the densities
    ax.plot(
        kde.support,
        kde.density,
        "--",
        lw=2,
        color="k",
        zorder=10,
        label="KDE from samples, bw = {}".format(round(bandwidth, 2)),
    )

# Plot the true distribution
ax.plot(kde.support, true_values, lw=3, label="True distribution", zorder=15)

# Plot the samples
ax.scatter(
    obs_dist,
    np.abs(np.random.randn(obs_dist.size)) / 50,
    marker="x",
    color="red",
    zorder=20,
    label="Data samples",
    alpha=0.5,
)

ax.legend(loc="best")
ax.set_xlim([-3, 3])
ax.grid(True, zorder=-5)

# ## Comparing kernel functions

# In the example above, a Gaussian kernel was used. Several other kernels
# are also available.

from statsmodels.nonparametric.kde import kernel_switch

list(kernel_switch.keys())

# ### The available kernel functions

# Create a figure
fig = plt.figure(figsize=(12, 5))

# Enumerate every option for the kernel
for i, (ker_name, ker_class) in enumerate(kernel_switch.items()):

    # Initialize the kernel object
    kernel = ker_class()

    # Sample from the domain
    domain = kernel.domain or [-3, 3]
    x_vals = np.linspace(*domain, num=2**10)
    y_vals = kernel(x_vals)

    # Create a subplot, set the title
    ax = fig.add_subplot(3, 3, i + 1)
    ax.set_title('Kernel function "{}"'.format(ker_name))
    ax.plot(x_vals, y_vals, lw=3, label="{}".format(ker_name))
    ax.scatter([0], [0], marker="x", color="red")
    plt.grid(True, zorder=-5)
    ax.set_xlim(domain)

plt.tight_layout()

# ### The available kernel functions on three data points

# We now examine how the kernel density estimate will fit to three equally
# spaced data points.

# Create three equidistant points
data = np.linspace(-1, 1, 3)
kde = sm.nonparametric.KDEUnivariate(data)

# Create a figure
fig = plt.figure(figsize=(12, 5))

# Enumerate every option for the kernel
for i, kernel in enumerate(kernel_switch.keys()):

    # Create a subplot, set the title
    ax = fig.add_subplot(3, 3, i + 1)
    ax.set_title('Kernel function "{}"'.format(kernel))

    # Fit the model (estimate densities)
    kde.fit(kernel=kernel, fft=False, gridsize=2**10)

    # Create the plot
    ax.plot(kde.support,
            kde.density,
            lw=3,
            label="KDE from samples",
            zorder=10)
    ax.scatter(data, np.zeros_like(data), marker="x", color="red")
    plt.grid(True, zorder=-5)
    ax.set_xlim([-3, 3])

plt.tight_layout()

# ## A more difficult case
#
# The fit is not always perfect. See the example below for a harder case.

obs_dist = mixture_rvs(
    [0.25, 0.75],
    size=250,
    dist=[stats.norm, stats.beta],
    kwargs=(dict(loc=-1, scale=0.5), dict(loc=1, scale=1, args=(1, 0.5))),
)

kde = sm.nonparametric.KDEUnivariate(obs_dist)
kde.fit()

fig = plt.figure(figsize=(12, 5))
ax = fig.add_subplot(111)
ax.hist(obs_dist, bins=20, density=True, edgecolor="k", zorder=4, alpha=0.5)
ax.plot(kde.support, kde.density, lw=3, zorder=7)
# Plot the samples
ax.scatter(
    obs_dist,
    np.abs(np.random.randn(obs_dist.size)) / 50,
    marker="x",
    color="red",
    zorder=20,
    label="Data samples",
    alpha=0.5,
)
ax.grid(True, zorder=-5)

# ## The KDE is a distribution
#
# Since the KDE is a distribution, we can access attributes and methods
# such as:
#
# - `entropy`
# - `evaluate`
# - `cdf`
# - `icdf`
# - `sf`
# - `cumhazard`

obs_dist = mixture_rvs(
    [0.25, 0.75],
    size=1000,
    dist=[stats.norm, stats.norm],
    kwargs=(dict(loc=-1, scale=0.5), dict(loc=1, scale=0.5)),
)
kde = sm.nonparametric.KDEUnivariate(obs_dist)
kde.fit(gridsize=2**10)

kde.entropy

kde.evaluate(-1)

# ### Cumulative distribution, it's inverse, and the survival function

fig = plt.figure(figsize=(12, 5))
ax = fig.add_subplot(111)

ax.plot(kde.support, kde.cdf, lw=3, label="CDF")
ax.plot(np.linspace(0, 1, num=kde.icdf.size),
        kde.icdf,
        lw=3,
        label="Inverse CDF")
ax.plot(kde.support, kde.sf, lw=3, label="Survival function")
ax.legend(loc="best")
ax.grid(True, zorder=-5)

# ### The Cumulative Hazard Function

fig = plt.figure(figsize=(12, 5))
ax = fig.add_subplot(111)
ax.plot(kde.support, kde.cumhazard, lw=3, label="Cumulative Hazard Function")
ax.legend(loc="best")
ax.grid(True, zorder=-5)