File: linear_regression_diagnostics_plots.py

package info (click to toggle)
statsmodels 0.14.6%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 49,956 kB
  • sloc: python: 254,365; f90: 612; sh: 560; javascript: 337; asm: 156; makefile: 145; ansic: 32; xml: 9
file content (474 lines) | stat: -rw-r--r-- 16,183 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
#!/usr/bin/env python
# coding: utf-8

# DO NOT EDIT
# Autogenerated from the notebook linear_regression_diagnostics_plots.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT

# # Linear regression diagnostics

# In real-life, relation between response and target variables are seldom
# linear. Here, we make use of outputs of ``statsmodels`` to visualise and
# identify potential problems that can occur from fitting ``linear
# regression`` model to non-linear relation. Primarily, the aim is to
# reproduce visualisations discussed in Potential Problems section (Chapter
# 3.3.3) of *An Introduction to Statistical Learning* (ISLR) book by James
# et al., Springer.

import statsmodels
import statsmodels.formula.api as smf
import pandas as pd

# #### Simple multiple linear regression
#
# Firstly, let us load the Advertising data from Chapter 2 of ISLR book
# and fit a linear model to it.

# Load data
data_url = "https://raw.githubusercontent.com/nguyen-toan/ISLR/07fd968ea484b5f6febc7b392a28eb64329a4945/dataset/Advertising.csv"
df = pd.read_csv(data_url).drop('Unnamed: 0', axis=1)
df.head()

# Fitting linear model
res = smf.ols(formula="Sales ~ TV + Radio + Newspaper", data=df).fit()
res.summary()

# #### Diagnostic Figures/Table
#
# In the following first we present a base code that we will later use to
# generate following diagnostic plots:
#
#     a. residual
#     b. qq
#     c. scale location
#     d. leverage
#
# and a table
#
#     a. vif

# base code
import numpy as np
import seaborn as sns
from statsmodels.tools.tools import maybe_unwrap_results
from statsmodels.graphics.gofplots import ProbPlot
from statsmodels.stats.outliers_influence import variance_inflation_factor
import matplotlib.pyplot as plt
from typing import Type

style_talk = 'seaborn-talk'  #refer to plt.style.available


class LinearRegDiagnostic():
    """
    Diagnostic plots to identify potential problems in a linear regression fit.
    Mainly,
        a. non-linearity of data
        b. Correlation of error terms
        c. non-constant variance
        d. outliers
        e. high-leverage points
        f. collinearity

    Authors:
        Prajwal Kafle (p33ajkafle@gmail.com, where 3 = r)
        Does not come with any sort of warranty.
        Please test the code one your end before using.

        Matt Spinelli (m3spinelli@gmail.com, where 3 = r)
        (1) Fixed incorrect annotation of the top most extreme residuals in
            the Residuals vs Fitted and, especially, the Normal Q-Q plots.
        (2) Changed Residuals vs Leverage plot to match closer the y-axis
            range shown in the equivalent plot in the R package ggfortify.
        (3) Added horizontal line at y=0 in Residuals vs Leverage plot to
            match the plots in R package ggfortify and base R.
        (4) Added option for placing a vertical guideline on the Residuals
            vs Leverage plot using the rule of thumb of h = 2p/n to denote
            high leverage (high_leverage_threshold=True).
        (5) Added two more ways to compute the Cook's Distance (D) threshold:
            * 'baseR': D > 1 and D > 0.5 (default)        
            * 'convention': D > 4/n
            * 'dof': D > 4 / (n - k - 1)
        (6) Fixed class name to conform to Pascal casing convention
        (7) Fixed Residuals vs Leverage legend to work with loc='best'
    """

    def __init__(
        self, results: Type[
            statsmodels.regression.linear_model.RegressionResultsWrapper]
    ) -> None:
        """
        For a linear regression model, generates following diagnostic plots:

        a. residual
        b. qq
        c. scale location and
        d. leverage

        and a table

        e. vif

        Args:
            results (Type[statsmodels.regression.linear_model.RegressionResultsWrapper]):
                must be instance of statsmodels.regression.linear_model object

        Raises:
            TypeError: if instance does not belong to above object

        Example:
        >>> import numpy as np
        >>> import pandas as pd
        >>> import statsmodels.formula.api as smf
        >>> x = np.linspace(-np.pi, np.pi, 100)
        >>> y = 3*x + 8 + np.random.normal(0,1, 100)
        >>> df = pd.DataFrame({'x':x, 'y':y})
        >>> res = smf.ols(formula= "y ~ x", data=df).fit()
        >>> cls = Linear_Reg_Diagnostic(res)
        >>> cls(plot_context="seaborn-v0_8-paper")

        In case you do not need all plots you can also independently make an individual plot/table
        in following ways

        >>> cls = Linear_Reg_Diagnostic(res)
        >>> cls.residual_plot()
        >>> cls.qq_plot()
        >>> cls.scale_location_plot()
        >>> cls.leverage_plot()
        >>> cls.vif_table()
        """

        if isinstance(
                results, statsmodels.regression.linear_model.
                RegressionResultsWrapper) is False:
            raise TypeError(
                "result must be instance of statsmodels.regression.linear_model.RegressionResultsWrapper object"
            )

        self.results = maybe_unwrap_results(results)

        self.y_true = self.results.model.endog
        self.y_predict = self.results.fittedvalues
        self.xvar = self.results.model.exog
        self.xvar_names = self.results.model.exog_names

        self.residual = np.array(self.results.resid)
        influence = self.results.get_influence()
        self.residual_norm = influence.resid_studentized_internal
        self.leverage = influence.hat_matrix_diag
        self.cooks_distance = influence.cooks_distance[0]
        self.nparams = len(self.results.params)
        self.nresids = len(self.residual_norm)

    def __call__(self, plot_context='seaborn-v0_8-paper', **kwargs):
        # print(plt.style.available)
        with plt.style.context(plot_context):
            fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(10, 10))
            self.residual_plot(ax=ax[0, 0])
            self.qq_plot(ax=ax[0, 1])
            self.scale_location_plot(ax=ax[1, 0])
            self.leverage_plot(
                ax=ax[1, 1],
                high_leverage_threshold=kwargs.get('high_leverage_threshold'),
                cooks_threshold=kwargs.get('cooks_threshold'))
            plt.show()

        return self.vif_table(), fig, ax,

    def residual_plot(self, ax=None):
        """
        Residual vs Fitted Plot

        Graphical tool to identify non-linearity.
        (Roughly) Horizontal red line is an indicator that the residual has a linear pattern
        """
        if ax is None:
            fig, ax = plt.subplots()

        sns.residplot(x=self.y_predict,
                      y=self.residual,
                      lowess=True,
                      scatter_kws={'alpha': 0.5},
                      line_kws={
                          'color': 'red',
                          'lw': 1,
                          'alpha': 0.8
                      },
                      ax=ax)

        # annotations
        residual_abs = np.abs(self.residual)
        abs_resid = np.flip(np.argsort(residual_abs), 0)
        abs_resid_top_3 = abs_resid[:3]
        for i in abs_resid_top_3:
            ax.annotate(i,
                        xy=(self.y_predict[i], self.residual[i]),
                        color='C3')

        ax.set_title('Residuals vs Fitted', fontweight="bold")
        ax.set_xlabel('Fitted values')
        ax.set_ylabel('Residuals')
        return ax

    def qq_plot(self, ax=None):
        """
        Standarized Residual vs Theoretical Quantile plot

        Used to visually check if residuals are normally distributed.
        Points spread along the diagonal line will suggest so.
        """
        if ax is None:
            fig, ax = plt.subplots()

        QQ = ProbPlot(self.residual_norm)
        fig = QQ.qqplot(line='45', alpha=0.5, lw=1, ax=ax)

        # annotations
        abs_norm_resid = np.flip(np.argsort(np.abs(self.residual_norm)), 0)
        abs_norm_resid_top_3 = abs_norm_resid[:3]
        for i, x, y in self.__qq_top_resid(QQ.theoretical_quantiles,
                                           abs_norm_resid_top_3):
            ax.annotate(i, xy=(x, y), ha='right', color='C3')

        ax.set_title('Normal Q-Q', fontweight="bold")
        ax.set_xlabel('Theoretical Quantiles')
        ax.set_ylabel('Standardized Residuals')
        return ax

    def scale_location_plot(self, ax=None):
        """
        Sqrt(Standarized Residual) vs Fitted values plot

        Used to check homoscedasticity of the residuals.
        Horizontal line will suggest so.
        """
        if ax is None:
            fig, ax = plt.subplots()

        residual_norm_abs_sqrt = np.sqrt(np.abs(self.residual_norm))

        ax.scatter(self.y_predict, residual_norm_abs_sqrt, alpha=0.5)
        sns.regplot(x=self.y_predict,
                    y=residual_norm_abs_sqrt,
                    scatter=False,
                    ci=False,
                    lowess=True,
                    line_kws={
                        'color': 'red',
                        'lw': 1,
                        'alpha': 0.8
                    },
                    ax=ax)

        # annotations
        abs_sq_norm_resid = np.flip(np.argsort(residual_norm_abs_sqrt), 0)
        abs_sq_norm_resid_top_3 = abs_sq_norm_resid[:3]
        for i in abs_sq_norm_resid_top_3:
            ax.annotate(i,
                        xy=(self.y_predict[i], residual_norm_abs_sqrt[i]),
                        color='C3')

        ax.set_title('Scale-Location', fontweight="bold")
        ax.set_xlabel('Fitted values')
        ax.set_ylabel(r'$\sqrt{|\mathrm{Standardized\ Residuals}|}$')
        return ax

    def leverage_plot(self,
                      ax=None,
                      high_leverage_threshold=False,
                      cooks_threshold='baseR'):
        """
        Residual vs Leverage plot

        Points falling outside Cook's distance curves are considered observation that can sway the fit
        aka are influential.
        Good to have none outside the curves.
        """
        if ax is None:
            fig, ax = plt.subplots()

        ax.scatter(self.leverage, self.residual_norm, alpha=0.5)

        sns.regplot(x=self.leverage,
                    y=self.residual_norm,
                    scatter=False,
                    ci=False,
                    lowess=True,
                    line_kws={
                        'color': 'red',
                        'lw': 1,
                        'alpha': 0.8
                    },
                    ax=ax)

        # annotations
        leverage_top_3 = np.flip(np.argsort(self.cooks_distance), 0)[:3]
        for i in leverage_top_3:
            ax.annotate(i,
                        xy=(self.leverage[i], self.residual_norm[i]),
                        color='C3')

        factors = []
        if cooks_threshold == 'baseR' or cooks_threshold is None:
            factors = [1, 0.5]
        elif cooks_threshold == 'convention':
            factors = [4 / self.nresids]
        elif cooks_threshold == 'dof':
            factors = [4 / (self.nresids - self.nparams)]
        else:
            raise ValueError(
                "threshold_method must be one of the following: 'convention', 'dof', or 'baseR' (default)"
            )
        for i, factor in enumerate(factors):
            label = "Cook's distance" if i == 0 else None
            xtemp, ytemp = self.__cooks_dist_line(factor)
            ax.plot(xtemp, ytemp, label=label, lw=1.25, ls='--', color='red')
            ax.plot(xtemp, np.negative(ytemp), lw=1.25, ls='--', color='red')

        if high_leverage_threshold:
            high_leverage = 2 * self.nparams / self.nresids
            if max(self.leverage) > high_leverage:
                ax.axvline(high_leverage,
                           label='High leverage',
                           ls='-.',
                           color='purple',
                           lw=1)

        ax.axhline(0, ls='dotted', color='black', lw=1.25)
        ax.set_xlim(0, max(self.leverage) + 0.01)
        ax.set_ylim(
            min(self.residual_norm) - 0.1,
            max(self.residual_norm) + 0.1)
        ax.set_title('Residuals vs Leverage', fontweight="bold")
        ax.set_xlabel('Leverage')
        ax.set_ylabel('Standardized Residuals')
        plt.legend(loc='best')
        return ax

    def vif_table(self):
        """
        VIF table

        VIF, the variance inflation factor, is a measure of multicollinearity.
        VIF > 5 for a variable indicates that it is highly collinear with the
        other input variables.
        """
        vif_df = pd.DataFrame()
        vif_df["Features"] = self.xvar_names
        vif_df["VIF Factor"] = [
            variance_inflation_factor(self.xvar, i)
            for i in range(self.xvar.shape[1])
        ]

        return (vif_df.sort_values("VIF Factor").round(2))

    def __cooks_dist_line(self, factor):
        """
        Helper function for plotting Cook's distance curves
        """
        p = self.nparams
        formula = lambda x: np.sqrt((factor * p * (1 - x)) / x)
        x = np.linspace(0.001, max(self.leverage), 50)
        y = formula(x)
        return x, y

    def __qq_top_resid(self, quantiles, top_residual_indices):
        """
        Helper generator function yielding the index and coordinates
        """
        offset = 0
        quant_index = 0
        previous_is_negative = None
        for resid_index in top_residual_indices:
            y = self.residual_norm[resid_index]
            is_negative = y < 0
            if previous_is_negative == None or previous_is_negative == is_negative:
                offset += 1
            else:
                quant_index -= offset
            x = quantiles[quant_index] if is_negative else np.flip(
                quantiles, 0)[quant_index]
            quant_index += 1
            previous_is_negative = is_negative
            yield resid_index, x, y


# Making use of the
#
#     * fitted model on the Advertising data above and
#     * the base code provided
# now we generate diagnostic plots one by one.

cls = LinearRegDiagnostic(res)

# **A. Residual vs Fitted values**
#
# Graphical tool to identify non-linearity.
#
# In the graph red (roughly) horizontal line is an indicator that the
# residual has a linear pattern.

cls.residual_plot()

# **B. Standarized Residual vs Theoretical Quantile**
#
# This plot is used to visually check if residuals are normally
# distributed.
#
# Points spread along the diagonal line will suggest so.

cls.qq_plot()

# **C. Sqrt(Standarized Residual) vs Fitted values**
#
# This plot is used to check homoscedasticity of the residuals.
#
# A near horizontal red line in the graph would suggest so.

cls.scale_location_plot()

# **D. Residual vs Leverage**
#
# Points falling outside the Cook's distance curves are considered
# observation that can sway the fit aka are influential.
#
# Good to have no points outside these curves.

cls.leverage_plot()

# Cook's distance curves can be drawn using other rules of thumbs:
#
# | Rule of Thumb    | Threshold(s) |
# | :----------- | ----------- |
# | `'baseR'` (**default**) | $$D_i > 1 \mid D_i > 0.5$$ |
# | `'convention'` | $$D_i > { 4 \over n}$$ |
# | `'dof'` | $$D_i > {4 \over n - k - 1}$$ |
#
# A high leverage guideline can also be displayed using the convention:
# $h_{ii} > {2p \over n}$.

cls.leverage_plot(high_leverage_threshold=True, cooks_threshold='dof')

# **E. VIF**
#
# The variance inflation factor (VIF), is a measure of multicollinearity.
#
# VIF > 5 for a variable indicates that it is highly collinear with the
# other input variables.

cls.vif_table()

# Alternatively, all diagnostics can be generated in one go as follows.
# Fig and ax can be used to modify axes or plot properties after the fact.
cls = LinearRegDiagnostic(res)
vif, fig, ax = cls()
print(vif)

#fig.savefig('../../docs/source/_static/images/linear_regression_diagnosti
# cs_plots.png')

# For detail discussions on the interpretation and caveats of the above
# plots please refer to the ISLR book.