File: ols.py

package info (click to toggle)
statsmodels 0.14.6%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 49,956 kB
  • sloc: python: 254,365; f90: 612; sh: 560; javascript: 337; asm: 156; makefile: 145; ansic: 32; xml: 9
file content (231 lines) | stat: -rw-r--r-- 5,894 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#!/usr/bin/env python
# coding: utf-8

# DO NOT EDIT
# Autogenerated from the notebook ols.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT

# # Ordinary Least Squares

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import statsmodels.api as sm

np.random.seed(9876789)

# ## OLS estimation
#
# Artificial data:

nsample = 100
x = np.linspace(0, 10, 100)
X = np.column_stack((x, x**2))
beta = np.array([1, 0.1, 10])
e = np.random.normal(size=nsample)

# Our model needs an intercept so we add a column of 1s:

X = sm.add_constant(X)
y = np.dot(X, beta) + e

# Fit and summary:

model = sm.OLS(y, X)
results = model.fit()
print(results.summary())

# Quantities of interest can be extracted directly from the fitted model.
# Type ``dir(results)`` for a full list. Here are some examples:

print("Parameters: ", results.params)
print("R2: ", results.rsquared)

# ## OLS non-linear curve but linear in parameters
#
# We simulate artificial data with a non-linear relationship between x and
# y:

nsample = 50
sig = 0.5
x = np.linspace(0, 20, nsample)
X = np.column_stack((x, np.sin(x), (x - 5)**2, np.ones(nsample)))
beta = [0.5, 0.5, -0.02, 5.0]

y_true = np.dot(X, beta)
y = y_true + sig * np.random.normal(size=nsample)

# Fit and summary:

res = sm.OLS(y, X).fit()
print(res.summary())

# Extract other quantities of interest:

print("Parameters: ", res.params)
print("Standard errors: ", res.bse)
print("Predicted values: ", res.predict())

# Draw a plot to compare the true relationship to OLS predictions.
# Confidence intervals around the predictions are built using the
# ``wls_prediction_std`` command.

pred_ols = res.get_prediction()
iv_l = pred_ols.summary_frame()["obs_ci_lower"]
iv_u = pred_ols.summary_frame()["obs_ci_upper"]

fig, ax = plt.subplots(figsize=(8, 6))

ax.plot(x, y, "o", label="data")
ax.plot(x, y_true, "b-", label="True")
ax.plot(x, res.fittedvalues, "r--.", label="OLS")
ax.plot(x, iv_u, "r--")
ax.plot(x, iv_l, "r--")
ax.legend(loc="best")

# ## OLS with dummy variables
#
# We generate some artificial data. There are 3 groups which will be
# modelled using dummy variables. Group 0 is the omitted/benchmark category.

nsample = 50
groups = np.zeros(nsample, int)
groups[20:40] = 1
groups[40:] = 2
# dummy = (groups[:,None] == np.unique(groups)).astype(float)

dummy = pd.get_dummies(groups).values
x = np.linspace(0, 20, nsample)
# drop reference category
X = np.column_stack((x, dummy[:, 1:]))
X = sm.add_constant(X, prepend=False)

beta = [1.0, 3, -3, 10]
y_true = np.dot(X, beta)
e = np.random.normal(size=nsample)
y = y_true + e

# Inspect the data:

print(X[:5, :])
print(y[:5])
print(groups)
print(dummy[:5, :])

# Fit and summary:

res2 = sm.OLS(y, X).fit()
print(res2.summary())

# Draw a plot to compare the true relationship to OLS predictions:

pred_ols2 = res2.get_prediction()
iv_l = pred_ols2.summary_frame()["obs_ci_lower"]
iv_u = pred_ols2.summary_frame()["obs_ci_upper"]

fig, ax = plt.subplots(figsize=(8, 6))

ax.plot(x, y, "o", label="Data")
ax.plot(x, y_true, "b-", label="True")
ax.plot(x, res2.fittedvalues, "r--.", label="Predicted")
ax.plot(x, iv_u, "r--")
ax.plot(x, iv_l, "r--")
legend = ax.legend(loc="best")

# ## Joint hypothesis test
#
# ### F test
#
# We want to test the hypothesis that both coefficients on the dummy
# variables are equal to zero, that is, $R \times \beta = 0$. An F test
# leads us to strongly reject the null hypothesis of identical constant in
# the 3 groups:

R = [[0, 1, 0, 0], [0, 0, 1, 0]]
print(np.array(R))
print(res2.f_test(R))

# You can also use formula-like syntax to test hypotheses

print(res2.f_test("x2 = x3 = 0"))

# ### Small group effects
#
# If we generate artificial data with smaller group effects, the T test
# can no longer reject the Null hypothesis:

beta = [1.0, 0.3, -0.0, 10]
y_true = np.dot(X, beta)
y = y_true + np.random.normal(size=nsample)

res3 = sm.OLS(y, X).fit()

print(res3.f_test(R))

print(res3.f_test("x2 = x3 = 0"))

# ### Multicollinearity
#
# The Longley dataset is well known to have high multicollinearity. That
# is, the exogenous predictors are highly correlated. This is problematic
# because it can affect the stability of our coefficient estimates as we
# make minor changes to model specification.

from statsmodels.datasets.longley import load_pandas

y = load_pandas().endog
X = load_pandas().exog
X = sm.add_constant(X)

# Fit and summary:

ols_model = sm.OLS(y, X)
ols_results = ols_model.fit()
print(ols_results.summary())

# #### Condition number
#
# One way to assess multicollinearity is to compute the condition number.
# Values over 20 are worrisome (see Greene 4.9). The first step is to
# normalize the independent variables to have unit length:

norm_x = X.values
for i, name in enumerate(X):
    if name == "const":
        continue
    norm_x[:, i] = X[name] / np.linalg.norm(X[name])
norm_xtx = np.dot(norm_x.T, norm_x)

# Then, we take the square root of the ratio of the biggest to the
# smallest eigen values.

eigs = np.linalg.eigvals(norm_xtx)
condition_number = np.sqrt(eigs.max() / eigs.min())
print(condition_number)

# #### Dropping an observation
#
# Greene also points out that dropping a single observation can have a
# dramatic effect on the coefficient estimates:

ols_results2 = sm.OLS(y.iloc[:14], X.iloc[:14]).fit()
print("Percentage change %4.2f%%\n" * 7 % tuple([
    i for i in (ols_results2.params - ols_results.params) /
    ols_results.params * 100
]))

# We can also look at formal statistics for this such as the DFBETAS -- a
# standardized measure of how much each coefficient changes when that
# observation is left out.

infl = ols_results.get_influence()

# In general we may consider DBETAS in absolute value greater than
# $2/\sqrt{N}$ to be influential observations

2.0 / len(X)**0.5

print(infl.summary_frame().filter(regex="dfb"))