1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
#!/usr/bin/env python
# coding: utf-8
# DO NOT EDIT
# Autogenerated from the notebook ols.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT
# # Ordinary Least Squares
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import statsmodels.api as sm
np.random.seed(9876789)
# ## OLS estimation
#
# Artificial data:
nsample = 100
x = np.linspace(0, 10, 100)
X = np.column_stack((x, x**2))
beta = np.array([1, 0.1, 10])
e = np.random.normal(size=nsample)
# Our model needs an intercept so we add a column of 1s:
X = sm.add_constant(X)
y = np.dot(X, beta) + e
# Fit and summary:
model = sm.OLS(y, X)
results = model.fit()
print(results.summary())
# Quantities of interest can be extracted directly from the fitted model.
# Type ``dir(results)`` for a full list. Here are some examples:
print("Parameters: ", results.params)
print("R2: ", results.rsquared)
# ## OLS non-linear curve but linear in parameters
#
# We simulate artificial data with a non-linear relationship between x and
# y:
nsample = 50
sig = 0.5
x = np.linspace(0, 20, nsample)
X = np.column_stack((x, np.sin(x), (x - 5)**2, np.ones(nsample)))
beta = [0.5, 0.5, -0.02, 5.0]
y_true = np.dot(X, beta)
y = y_true + sig * np.random.normal(size=nsample)
# Fit and summary:
res = sm.OLS(y, X).fit()
print(res.summary())
# Extract other quantities of interest:
print("Parameters: ", res.params)
print("Standard errors: ", res.bse)
print("Predicted values: ", res.predict())
# Draw a plot to compare the true relationship to OLS predictions.
# Confidence intervals around the predictions are built using the
# ``wls_prediction_std`` command.
pred_ols = res.get_prediction()
iv_l = pred_ols.summary_frame()["obs_ci_lower"]
iv_u = pred_ols.summary_frame()["obs_ci_upper"]
fig, ax = plt.subplots(figsize=(8, 6))
ax.plot(x, y, "o", label="data")
ax.plot(x, y_true, "b-", label="True")
ax.plot(x, res.fittedvalues, "r--.", label="OLS")
ax.plot(x, iv_u, "r--")
ax.plot(x, iv_l, "r--")
ax.legend(loc="best")
# ## OLS with dummy variables
#
# We generate some artificial data. There are 3 groups which will be
# modelled using dummy variables. Group 0 is the omitted/benchmark category.
nsample = 50
groups = np.zeros(nsample, int)
groups[20:40] = 1
groups[40:] = 2
# dummy = (groups[:,None] == np.unique(groups)).astype(float)
dummy = pd.get_dummies(groups).values
x = np.linspace(0, 20, nsample)
# drop reference category
X = np.column_stack((x, dummy[:, 1:]))
X = sm.add_constant(X, prepend=False)
beta = [1.0, 3, -3, 10]
y_true = np.dot(X, beta)
e = np.random.normal(size=nsample)
y = y_true + e
# Inspect the data:
print(X[:5, :])
print(y[:5])
print(groups)
print(dummy[:5, :])
# Fit and summary:
res2 = sm.OLS(y, X).fit()
print(res2.summary())
# Draw a plot to compare the true relationship to OLS predictions:
pred_ols2 = res2.get_prediction()
iv_l = pred_ols2.summary_frame()["obs_ci_lower"]
iv_u = pred_ols2.summary_frame()["obs_ci_upper"]
fig, ax = plt.subplots(figsize=(8, 6))
ax.plot(x, y, "o", label="Data")
ax.plot(x, y_true, "b-", label="True")
ax.plot(x, res2.fittedvalues, "r--.", label="Predicted")
ax.plot(x, iv_u, "r--")
ax.plot(x, iv_l, "r--")
legend = ax.legend(loc="best")
# ## Joint hypothesis test
#
# ### F test
#
# We want to test the hypothesis that both coefficients on the dummy
# variables are equal to zero, that is, $R \times \beta = 0$. An F test
# leads us to strongly reject the null hypothesis of identical constant in
# the 3 groups:
R = [[0, 1, 0, 0], [0, 0, 1, 0]]
print(np.array(R))
print(res2.f_test(R))
# You can also use formula-like syntax to test hypotheses
print(res2.f_test("x2 = x3 = 0"))
# ### Small group effects
#
# If we generate artificial data with smaller group effects, the T test
# can no longer reject the Null hypothesis:
beta = [1.0, 0.3, -0.0, 10]
y_true = np.dot(X, beta)
y = y_true + np.random.normal(size=nsample)
res3 = sm.OLS(y, X).fit()
print(res3.f_test(R))
print(res3.f_test("x2 = x3 = 0"))
# ### Multicollinearity
#
# The Longley dataset is well known to have high multicollinearity. That
# is, the exogenous predictors are highly correlated. This is problematic
# because it can affect the stability of our coefficient estimates as we
# make minor changes to model specification.
from statsmodels.datasets.longley import load_pandas
y = load_pandas().endog
X = load_pandas().exog
X = sm.add_constant(X)
# Fit and summary:
ols_model = sm.OLS(y, X)
ols_results = ols_model.fit()
print(ols_results.summary())
# #### Condition number
#
# One way to assess multicollinearity is to compute the condition number.
# Values over 20 are worrisome (see Greene 4.9). The first step is to
# normalize the independent variables to have unit length:
norm_x = X.values
for i, name in enumerate(X):
if name == "const":
continue
norm_x[:, i] = X[name] / np.linalg.norm(X[name])
norm_xtx = np.dot(norm_x.T, norm_x)
# Then, we take the square root of the ratio of the biggest to the
# smallest eigen values.
eigs = np.linalg.eigvals(norm_xtx)
condition_number = np.sqrt(eigs.max() / eigs.min())
print(condition_number)
# #### Dropping an observation
#
# Greene also points out that dropping a single observation can have a
# dramatic effect on the coefficient estimates:
ols_results2 = sm.OLS(y.iloc[:14], X.iloc[:14]).fit()
print("Percentage change %4.2f%%\n" * 7 % tuple([
i for i in (ols_results2.params - ols_results.params) /
ols_results.params * 100
]))
# We can also look at formal statistics for this such as the DFBETAS -- a
# standardized measure of how much each coefficient changes when that
# observation is left out.
infl = ols_results.get_influence()
# In general we may consider DBETAS in absolute value greater than
# $2/\sqrt{N}$ to be influential observations
2.0 / len(X)**0.5
print(infl.summary_frame().filter(regex="dfb"))
|