1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
#!/usr/bin/env python
# coding: utf-8
# DO NOT EDIT
# Autogenerated from the notebook recursive_ls.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT
# # Recursive least squares
#
# Recursive least squares is an expanding window version of ordinary least
# squares. In addition to availability of regression coefficients computed
# recursively, the recursively computed residuals the construction of
# statistics to investigate parameter instability.
#
# The `RecursiveLS` class allows computation of recursive residuals and
# computes CUSUM and CUSUM of squares statistics. Plotting these statistics
# along with reference lines denoting statistically significant deviations
# from the null hypothesis of stable parameters allows an easy visual
# indication of parameter stability.
#
# Finally, the `RecursiveLS` model allows imposing linear restrictions on
# the parameter vectors, and can be constructed using the formula interface.
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import statsmodels.api as sm
from pandas_datareader.data import DataReader
np.set_printoptions(suppress=True)
# ## Example 1: Copper
#
# We first consider parameter stability in the copper dataset (description
# below).
print(sm.datasets.copper.DESCRLONG)
dta = sm.datasets.copper.load_pandas().data
dta.index = pd.date_range("1951-01-01", "1975-01-01", freq="YS")
endog = dta["WORLDCONSUMPTION"]
# To the regressors in the dataset, we add a column of ones for an
# intercept
exog = sm.add_constant(
dta[["COPPERPRICE", "INCOMEINDEX", "ALUMPRICE", "INVENTORYINDEX"]])
# First, construct and fit the model, and print a summary. Although the
# `RLS` model computes the regression parameters recursively, so there are
# as many estimates as there are datapoints, the summary table only presents
# the regression parameters estimated on the entire sample; except for small
# effects from initialization of the recursions, these estimates are
# equivalent to OLS estimates.
mod = sm.RecursiveLS(endog, exog)
res = mod.fit()
print(res.summary())
# The recursive coefficients are available in the `recursive_coefficients`
# attribute. Alternatively, plots can generated using the
# `plot_recursive_coefficient` method.
print(res.recursive_coefficients.filtered[0])
res.plot_recursive_coefficient(range(mod.k_exog), alpha=None, figsize=(10, 6))
# The CUSUM statistic is available in the `cusum` attribute, but usually
# it is more convenient to visually check for parameter stability using the
# `plot_cusum` method. In the plot below, the CUSUM statistic does not move
# outside of the 5% significance bands, so we fail to reject the null
# hypothesis of stable parameters at the 5% level.
print(res.cusum)
fig = res.plot_cusum()
# Another related statistic is the CUSUM of squares. It is available in
# the `cusum_squares` attribute, but it is similarly more convenient to
# check it visually, using the `plot_cusum_squares` method. In the plot
# below, the CUSUM of squares statistic does not move outside of the 5%
# significance bands, so we fail to reject the null hypothesis of stable
# parameters at the 5% level.
res.plot_cusum_squares()
# ## Example 2: Quantity theory of money
#
# The quantity theory of money suggests that "a given change in the rate
# of change in the quantity of money induces ... an equal change in the rate
# of price inflation" (Lucas, 1980). Following Lucas, we examine the
# relationship between double-sided exponentially weighted moving averages
# of money growth and CPI inflation. Although Lucas found the relationship
# between these variables to be stable, more recently it appears that the
# relationship is unstable; see e.g. Sargent and Surico (2010).
start = "1959-12-01"
end = "2015-01-01"
m2 = DataReader("M2SL", "fred", start=start, end=end)
cpi = DataReader("CPIAUCSL", "fred", start=start, end=end)
def ewma(series, beta, n_window):
nobs = len(series)
scalar = (1 - beta) / (1 + beta)
ma = []
k = np.arange(n_window, 0, -1)
weights = np.r_[beta**k, 1, beta**k[::-1]]
for t in range(n_window, nobs - n_window):
window = series.iloc[t - n_window:t + n_window + 1].values
ma.append(scalar * np.sum(weights * window))
return pd.Series(ma,
name=series.name,
index=series.iloc[n_window:-n_window].index)
m2_ewma = ewma(
np.log(m2["M2SL"].resample("QS").mean()).diff().iloc[1:], 0.95, 10 * 4)
cpi_ewma = ewma(
np.log(cpi["CPIAUCSL"].resample("QS").mean()).diff().iloc[1:], 0.95,
10 * 4)
# After constructing the moving averages using the $\beta = 0.95$ filter
# of Lucas (with a window of 10 years on either side), we plot each of the
# series below. Although they appear to move together prior for part of the
# sample, after 1990 they appear to diverge.
fig, ax = plt.subplots(figsize=(13, 3))
ax.plot(m2_ewma, label="M2 Growth (EWMA)")
ax.plot(cpi_ewma, label="CPI Inflation (EWMA)")
ax.legend()
endog = cpi_ewma
exog = sm.add_constant(m2_ewma)
exog.columns = ["const", "M2"]
mod = sm.RecursiveLS(endog, exog)
res = mod.fit()
print(res.summary())
res.plot_recursive_coefficient(1, alpha=None)
# The CUSUM plot now shows substantial deviation at the 5% level,
# suggesting a rejection of the null hypothesis of parameter stability.
res.plot_cusum()
# Similarly, the CUSUM of squares shows substantial deviation at the 5%
# level, also suggesting a rejection of the null hypothesis of parameter
# stability.
res.plot_cusum_squares()
# ## Example 3: Linear restrictions and formulas
# ## Linear restrictions
#
# It is not hard to implement linear restrictions, using the `constraints`
# parameter in constructing the model.
endog = dta["WORLDCONSUMPTION"]
exog = sm.add_constant(
dta[["COPPERPRICE", "INCOMEINDEX", "ALUMPRICE", "INVENTORYINDEX"]])
mod = sm.RecursiveLS(endog, exog, constraints="COPPERPRICE = ALUMPRICE")
res = mod.fit()
print(res.summary())
# ## Formula
#
# One could fit the same model using the class method `from_formula`.
mod = sm.RecursiveLS.from_formula(
"WORLDCONSUMPTION ~ COPPERPRICE + INCOMEINDEX + ALUMPRICE + INVENTORYINDEX",
dta,
constraints="COPPERPRICE = ALUMPRICE",
)
res = mod.fit()
print(res.summary())
|