1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
#!/usr/bin/env python
# coding: utf-8
# DO NOT EDIT
# Autogenerated from the notebook rolling_ls.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT
# # Rolling Regression
#
# Rolling OLS applies OLS across a fixed windows of observations and then
# rolls
# (moves or slides) the window across the data set. They key parameter is
# `window`
# which determines the number of observations used in each OLS regression.
# By
# default, `RollingOLS` drops missing values in the window and so will
# estimate
# the model using the available data points.
#
# Estimated values are aligned so that models estimated using data points
# $i+1, i+2, ... i+window$ are stored in location $i+window$.
#
# Start by importing the modules that are used in this notebook.
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pandas_datareader as pdr
import seaborn
import statsmodels.api as sm
from statsmodels.regression.rolling import RollingOLS
seaborn.set_style("darkgrid")
pd.plotting.register_matplotlib_converters()
# `pandas-datareader` is used to download data from
# [Ken French's website](https://mba.tuck.dartmouth.edu/pages/faculty/ken.
# french/data_library.html).
# The two data sets downloaded are the 3 Fama-French factors and the 10
# industry portfolios.
# Data is available from 1926.
#
# The data are monthly returns for the factors or industry portfolios.
factors = pdr.get_data_famafrench("F-F_Research_Data_Factors",
start="1-1-1926")[0]
factors.head()
industries = pdr.get_data_famafrench("10_Industry_Portfolios",
start="1-1-1926")[0]
industries.head()
# The first model estimated is a rolling version of the CAPM that
# regresses
# the excess return of Technology sector firms on the excess return of the
# market.
#
# The window is 60 months, and so results are available after the first 60
# (`window`)
# months. The first 59 (`window - 1`) estimates are all `nan` filled.
endog = industries.HiTec - factors.RF.values
exog = sm.add_constant(factors["Mkt-RF"])
rols = RollingOLS(endog, exog, window=60)
rres = rols.fit()
params = rres.params.copy()
params.index = np.arange(1, params.shape[0] + 1)
params.head()
params.iloc[57:62]
params.tail()
# We next plot the market loading along with a 95% point-wise confidence
# interval.
# The `alpha=False` omits the constant column, if present.
fig = rres.plot_recursive_coefficient(variables=["Mkt-RF"], figsize=(14, 6))
# Next, the model is expanded to include all three factors, the excess
# market, the size factor
# and the value factor.
exog_vars = ["Mkt-RF", "SMB", "HML"]
exog = sm.add_constant(factors[exog_vars])
rols = RollingOLS(endog, exog, window=60)
rres = rols.fit()
fig = rres.plot_recursive_coefficient(variables=exog_vars, figsize=(14, 18))
# ## Formulas
#
# `RollingOLS` and `RollingWLS` both support model specification using the
# formula interface. The example below is equivalent to the 3-factor model
# estimated previously. Note that one variable is renamed to have a valid
# Python variable name.
joined = pd.concat([factors, industries], axis=1)
joined["Mkt_RF"] = joined["Mkt-RF"]
mod = RollingOLS.from_formula("HiTec ~ Mkt_RF + SMB + HML",
data=joined,
window=60)
rres = mod.fit()
rres.params.tail()
# ## `RollingWLS`: Rolling Weighted Least Squares
#
# The `rolling` module also provides `RollingWLS` which takes an optional
# `weights` input to perform rolling weighted least squares. It produces
# results that match `WLS` when applied to rolling windows of data.
# ## Fit Options
#
# Fit accepts other optional keywords to set the covariance estimator.
# Only two estimators are supported, `'nonrobust'` (the classic OLS
# estimator) and `'HC0'` which is White's heteroskedasticity robust
# estimator.
#
# You can set `params_only=True` to only estimate the model parameters.
# This is substantially faster than computing the full set of values
# required to perform inference.
#
# Finally, the parameter `reset` can be set to a positive integer to
# control estimation error in very long samples. `RollingOLS` avoids the
# full matrix product when rolling by only adding the most recent
# observation and removing the dropped observation as it rolls through the
# sample. Setting `reset` uses the full inner product every `reset` periods.
# In most applications this parameter can be omitted.
# ## Expanding Sample
# It is possible to expand the sample until sufficient observations are
# available for the full window length. In this example, we start once we
# have 12 observations available, and then increase the sample until we have
# 60 observations available. The first non-`nan` value is computed using 12
# observations, the second 13, and so on. All other estimates are computed
# using 60 observations.
res = RollingOLS(endog, exog, window=60, min_nobs=12, expanding=True).fit()
res.params.iloc[10:15]
res.nobs[10:15]
|