1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
|
#!/usr/bin/env python
# coding: utf-8
# DO NOT EDIT
# Autogenerated from the notebook statespace_arma_0.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT
# # Autoregressive Moving Average (ARMA): Sunspots data
# This notebook replicates the existing ARMA notebook using the
# `statsmodels.tsa.statespace.SARIMAX` class rather than the
# `statsmodels.tsa.ARMA` class.
import numpy as np
from scipy import stats
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.graphics.api import qqplot
# ## Sunspots Data
print(sm.datasets.sunspots.NOTE)
dta = sm.datasets.sunspots.load_pandas().data
dta.index = pd.Index(pd.date_range("1700", end="2009", freq="YE-DEC"))
del dta["YEAR"]
dta.plot(figsize=(12, 4))
fig = plt.figure(figsize=(12, 8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(dta.values.squeeze(), lags=40, ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(dta, lags=40, ax=ax2)
arma_mod20 = sm.tsa.statespace.SARIMAX(dta, order=(2, 0, 0),
trend='c').fit(disp=False)
print(arma_mod20.params)
arma_mod30 = sm.tsa.statespace.SARIMAX(dta, order=(3, 0, 0),
trend='c').fit(disp=False)
print(arma_mod20.aic, arma_mod20.bic, arma_mod20.hqic)
print(arma_mod30.params)
print(arma_mod30.aic, arma_mod30.bic, arma_mod30.hqic)
# * Does our model obey the theory?
sm.stats.durbin_watson(arma_mod30.resid)
fig = plt.figure(figsize=(12, 4))
ax = fig.add_subplot(111)
ax = plt.plot(arma_mod30.resid)
resid = arma_mod30.resid
stats.normaltest(resid)
fig = plt.figure(figsize=(12, 4))
ax = fig.add_subplot(111)
fig = qqplot(resid, line='q', ax=ax, fit=True)
fig = plt.figure(figsize=(12, 8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(resid, lags=40, ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(resid, lags=40, ax=ax2)
r, q, p = sm.tsa.acf(resid, fft=True, qstat=True)
data = np.c_[r[1:], q, p]
index = pd.Index(range(1, q.shape[0] + 1), name="lag")
table = pd.DataFrame(data, columns=["AC", "Q", "Prob(>Q)"], index=index)
print(table)
# * This indicates a lack of fit.
# * In-sample dynamic prediction. How good does our model do?
predict_sunspots = arma_mod30.predict(start='1990', end='2012', dynamic=True)
fig, ax = plt.subplots(figsize=(12, 8))
dta.loc['1950':].plot(ax=ax)
predict_sunspots.plot(ax=ax, style='r')
def mean_forecast_err(y, yhat):
return y.sub(yhat).mean()
mean_forecast_err(dta.SUNACTIVITY, predict_sunspots)
|