1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
|
#!/usr/bin/env python
# coding: utf-8
# DO NOT EDIT
# Autogenerated from the notebook statespace_custom_models.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT
# # Custom statespace models
#
# The true power of the state space model is to allow the creation and
# estimation of custom models. This notebook shows various statespace models
# that subclass `sm.tsa.statespace.MLEModel`.
#
# Remember the general state space model can be written in the following
# general way:
#
# $$
# \begin{aligned}
# y_t & = Z_t \alpha_{t} + d_t + \varepsilon_t \\
# \alpha_{t+1} & = T_t \alpha_{t} + c_t + R_t \eta_{t}
# \end{aligned}
# $$
#
# You can check the details and the dimensions of the objects [in this
# link](https://www.statsmodels.org/stable/statespace.html#custom-state-
# space-models)
#
# Most models won't include all of these elements. For example, the design
# matrix $Z_t$ might not depend on time ($\forall t \;Z_t = Z$), or the
# model won't have an observation intercept $d_t$.
#
# We'll start with something relatively simple and then show how to extend
# it bit by bit to include more elements.
#
# + Model 1: time-varying coefficients. One observation equation with two
# state equations
# + Model 2: time-varying parameters with non identity transition matrix
# + Model 3: multiple observation and multiple state equations
# + Bonus: pymc3 for Bayesian estimation
from collections import OrderedDict
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import statsmodels.api as sm
plt.rc("figure", figsize=(16, 8))
plt.rc("font", size=15)
# ## Model 1: time-varying coefficients
#
# $$
# \begin{aligned}
# y_t & = d + x_t \beta_{x,t} + w_t \beta_{w,t} + \varepsilon_t
# \hspace{4em} \varepsilon_t \sim N(0, \sigma_\varepsilon^2)\\
# \begin{bmatrix} \beta_{x,t} \\ \beta_{w,t} \end{bmatrix} & =
# \begin{bmatrix} \beta_{x,t-1} \\ \beta_{w,t-1} \end{bmatrix} +
# \begin{bmatrix} \zeta_{x,t} \\ \zeta_{w,t} \end{bmatrix} \hspace{3.7em}
# \begin{bmatrix} \zeta_{x,t} \\ \zeta_{w,t} \end{bmatrix} \sim N \left (
# \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{\beta, x}^2
# & 0 \\ 0 & \sigma_{\beta, w}^2 \end{bmatrix} \right )
# \end{aligned}
# $$
#
# The observed data is $y_t, x_t, w_t$. With $x_t, w_t$ being the
# exogenous variables. Notice that the design matrix is time-varying, so it
# will have three dimensions (`k_endog x k_states x nobs`)
#
# The states are $\beta_{x,t}$ and $\beta_{w,t}$. The state equation tells
# us these states evolve with a random walk. Thus, in this case the
# transition matrix is a 2 by 2 identity matrix.
#
# We'll first simulate the data, the construct a model and finally
# estimate it.
def gen_data_for_model1():
nobs = 1000
rs = np.random.RandomState(seed=93572)
d = 5
var_y = 5
var_coeff_x = 0.01
var_coeff_w = 0.5
x_t = rs.uniform(size=nobs)
w_t = rs.uniform(size=nobs)
eps = rs.normal(scale=var_y**0.5, size=nobs)
beta_x = np.cumsum(rs.normal(size=nobs, scale=var_coeff_x**0.5))
beta_w = np.cumsum(rs.normal(size=nobs, scale=var_coeff_w**0.5))
y_t = d + beta_x * x_t + beta_w * w_t + eps
return y_t, x_t, w_t, beta_x, beta_w
y_t, x_t, w_t, beta_x, beta_w = gen_data_for_model1()
_ = plt.plot(y_t)
class TVRegression(sm.tsa.statespace.MLEModel):
def __init__(self, y_t, x_t, w_t):
exog = np.c_[x_t, w_t] # shaped nobs x 2
super(TVRegression, self).__init__(endog=y_t,
exog=exog,
k_states=2,
initialization="diffuse")
# Since the design matrix is time-varying, it must be
# shaped k_endog x k_states x nobs
# Notice that exog.T is shaped k_states x nobs, so we
# just need to add a new first axis with shape 1
self.ssm["design"] = exog.T[np.newaxis, :, :] # shaped 1 x 2 x nobs
self.ssm["selection"] = np.eye(self.k_states)
self.ssm["transition"] = np.eye(self.k_states)
# Which parameters need to be positive?
self.positive_parameters = slice(1, 4)
@property
def param_names(self):
return ["intercept", "var.e", "var.x.coeff", "var.w.coeff"]
@property
def start_params(self):
"""
Defines the starting values for the parameters
The linear regression gives us reasonable starting values for the constant
d and the variance of the epsilon error
"""
exog = sm.add_constant(self.exog)
res = sm.OLS(self.endog, exog).fit()
params = np.r_[res.params[0], res.scale, 0.001, 0.001]
return params
def transform_params(self, unconstrained):
"""
We constraint the last three parameters
('var.e', 'var.x.coeff', 'var.w.coeff') to be positive,
because they are variances
"""
constrained = unconstrained.copy()
constrained[self.positive_parameters] = (
constrained[self.positive_parameters]**2)
return constrained
def untransform_params(self, constrained):
"""
Need to unstransform all the parameters you transformed
in the `transform_params` function
"""
unconstrained = constrained.copy()
unconstrained[self.positive_parameters] = (
unconstrained[self.positive_parameters]**0.5)
return unconstrained
def update(self, params, **kwargs):
params = super(TVRegression, self).update(params, **kwargs)
self["obs_intercept", 0, 0] = params[0]
self["obs_cov", 0, 0] = params[1]
self["state_cov"] = np.diag(params[2:4])
# ### And then estimate it with our custom model class
mod = TVRegression(y_t, x_t, w_t)
res = mod.fit()
print(res.summary())
# The values that generated the data were:
#
# + intercept = 5
# + var.e = 5
# + var.x.coeff = 0.01
# + var.w.coeff = 0.5
#
#
# As you can see, the estimation recovered the real parameters pretty
# well.
#
# We can also recover the estimated evolution of the underlying
# coefficients (or states in Kalman filter talk)
fig, axes = plt.subplots(2, figsize=(16, 8))
ss = pd.DataFrame(res.smoothed_state.T, columns=["x", "w"])
axes[0].plot(beta_x, label="True")
axes[0].plot(ss["x"], label="Smoothed estimate")
axes[0].set(title="Time-varying coefficient on x_t")
axes[0].legend()
axes[1].plot(beta_w, label="True")
axes[1].plot(ss["w"], label="Smoothed estimate")
axes[1].set(title="Time-varying coefficient on w_t")
axes[1].legend()
fig.tight_layout()
# ## Model 2: time-varying parameters with non identity transition matrix
#
# This is a small extension from Model 1. Instead of having an identity
# transition matrix, we'll have one with two parameters ($\rho_1, \rho_2$)
# that we need to estimate.
#
#
# $$
# \begin{aligned}
# y_t & = d + x_t \beta_{x,t} + w_t \beta_{w,t} + \varepsilon_t
# \hspace{4em} \varepsilon_t \sim N(0, \sigma_\varepsilon^2)\\
# \begin{bmatrix} \beta_{x,t} \\ \beta_{w,t} \end{bmatrix} & =
# \begin{bmatrix} \rho_1 & 0 \\ 0 & \rho_2 \end{bmatrix} \begin{bmatrix}
# \beta_{x,t-1} \\ \beta_{w,t-1} \end{bmatrix} + \begin{bmatrix} \zeta_{x,t}
# \\ \zeta_{w,t} \end{bmatrix} \hspace{3.7em} \begin{bmatrix} \zeta_{x,t} \\
# \zeta_{w,t} \end{bmatrix} \sim N \left ( \begin{bmatrix} 0 \\ 0
# \end{bmatrix}, \begin{bmatrix} \sigma_{\beta, x}^2 & 0 \\ 0 &
# \sigma_{\beta, w}^2 \end{bmatrix} \right )
# \end{aligned}
# $$
#
#
# What should we modify in our previous class to make things work?
# + Good news: not a lot!
# + Bad news: we need to be careful about a few things
# ### 1) Change the starting parameters function
#
# We need to add names for the new parameters $\rho_1, \rho_2$ and we need
# to start corresponding starting values.
#
# The `param_names` function goes from:
#
# ```python
# def param_names(self):
# return ['intercept', 'var.e', 'var.x.coeff', 'var.w.coeff']
# ```
#
#
# to
#
# ```python
# def param_names(self):
# return ['intercept', 'var.e', 'var.x.coeff', 'var.w.coeff',
# 'rho1', 'rho2']
# ```
#
# and we change the `start_params` function from
#
# ```python
# def start_params(self):
# exog = sm.add_constant(self.exog)
# res = sm.OLS(self.endog, exog).fit()
# params = np.r_[res.params[0], res.scale, 0.001, 0.001]
# return params
# ```
#
# to
#
# ```python
# def start_params(self):
# exog = sm.add_constant(self.exog)
# res = sm.OLS(self.endog, exog).fit()
# params = np.r_[res.params[0], res.scale, 0.001, 0.001, 0.8, 0.8]
# return params
# ```
#
# 2) Change the `update` function
#
# It goes from
#
# ```python
# def update(self, params, **kwargs):
# params = super(TVRegression, self).update(params, **kwargs)
#
# self['obs_intercept', 0, 0] = params[0]
# self['obs_cov', 0, 0] = params[1]
# self['state_cov'] = np.diag(params[2:4])
# ```
#
#
# to
#
# ```python
# def update(self, params, **kwargs):
# params = super(TVRegression, self).update(params, **kwargs)
#
# self['obs_intercept', 0, 0] = params[0]
# self['obs_cov', 0, 0] = params[1]
# self['state_cov'] = np.diag(params[2:4])
# self['transition', 0, 0] = params[4]
# self['transition', 1, 1] = params[5]
# ```
#
#
# 3) (optional) change `transform_params` and `untransform_params`
#
# This is not required, but you might wanna restrict $\rho_1, \rho_2$ to
# lie between -1 and 1.
# In that case, we first import two utility functions from `statsmodels`.
#
#
# ```python
# from statsmodels.tsa.statespace.tools import (
# constrain_stationary_univariate, unconstrain_stationary_univariate)
# ```
#
# `constrain_stationary_univariate` constraint the value to be within -1
# and 1.
# `unconstrain_stationary_univariate` provides the inverse function.
# The transform and untransform parameters function would look like this
# (remember that $\rho_1, \rho_2$ are in the 4 and 5th index):
#
# ```python
# def transform_params(self, unconstrained):
# constrained = unconstrained.copy()
# constrained[self.positive_parameters] =
# constrained[self.positive_parameters]**2
# constrained[4] = constrain_stationary_univariate(constrained[4:5])
# constrained[5] = constrain_stationary_univariate(constrained[5:6])
# return constrained
#
# def untransform_params(self, constrained):
# unconstrained = constrained.copy()
# unconstrained[self.positive_parameters] =
# unconstrained[self.positive_parameters]**0.5
# unconstrained[4] =
# unconstrain_stationary_univariate(constrained[4:5])
# unconstrained[5] =
# unconstrain_stationary_univariate(constrained[5:6])
# return unconstrained
# ```
#
# I'll write the full class below (without the optional changes I have
# just discussed)
class TVRegressionExtended(sm.tsa.statespace.MLEModel):
def __init__(self, y_t, x_t, w_t):
exog = np.c_[x_t, w_t] # shaped nobs x 2
super(TVRegressionExtended, self).__init__(endog=y_t,
exog=exog,
k_states=2,
initialization="diffuse")
# Since the design matrix is time-varying, it must be
# shaped k_endog x k_states x nobs
# Notice that exog.T is shaped k_states x nobs, so we
# just need to add a new first axis with shape 1
self.ssm["design"] = exog.T[np.newaxis, :, :] # shaped 1 x 2 x nobs
self.ssm["selection"] = np.eye(self.k_states)
self.ssm["transition"] = np.eye(self.k_states)
# Which parameters need to be positive?
self.positive_parameters = slice(1, 4)
@property
def param_names(self):
return [
"intercept", "var.e", "var.x.coeff", "var.w.coeff", "rho1", "rho2"
]
@property
def start_params(self):
"""
Defines the starting values for the parameters
The linear regression gives us reasonable starting values for the constant
d and the variance of the epsilon error
"""
exog = sm.add_constant(self.exog)
res = sm.OLS(self.endog, exog).fit()
params = np.r_[res.params[0], res.scale, 0.001, 0.001, 0.7, 0.8]
return params
def transform_params(self, unconstrained):
"""
We constraint the last three parameters
('var.e', 'var.x.coeff', 'var.w.coeff') to be positive,
because they are variances
"""
constrained = unconstrained.copy()
constrained[self.positive_parameters] = (
constrained[self.positive_parameters]**2)
return constrained
def untransform_params(self, constrained):
"""
Need to unstransform all the parameters you transformed
in the `transform_params` function
"""
unconstrained = constrained.copy()
unconstrained[self.positive_parameters] = (
unconstrained[self.positive_parameters]**0.5)
return unconstrained
def update(self, params, **kwargs):
params = super(TVRegressionExtended, self).update(params, **kwargs)
self["obs_intercept", 0, 0] = params[0]
self["obs_cov", 0, 0] = params[1]
self["state_cov"] = np.diag(params[2:4])
self["transition", 0, 0] = params[4]
self["transition", 1, 1] = params[5]
# To estimate, we'll use the same data as in model 1 and expect the
# $\rho_1, \rho_2$ to be near 1.
#
# The results look pretty good!
# Note that this estimation can be quite sensitive to the starting value
# of $\rho_1, \rho_2$. If you try lower values, you'll see it fails to
# converge.
mod = TVRegressionExtended(y_t, x_t, w_t)
res = mod.fit(maxiter=2000) # it doesn't converge with 50 iters
print(res.summary())
# ## Model 3: multiple observation and state equations
#
# We'll keep the time-varying parameters, but this time we'll also have
# two observation equations.
#
# ### Observation equations
#
# $\hat{i_t}, \hat{M_t}, \hat{s_t}$ are observed each period.
#
# The model for the observation equation has two equations:
#
# $$ \hat{i_t} = \alpha_1 * \hat{s_t} + \varepsilon_1 $$
#
# $$ \hat{M_t} = \alpha_2 + \varepsilon_2 $$
#
# Following the [general notation from state space
# models](https://www.statsmodels.org/stable/statespace.html), the
# endogenous part of the observation equation is $y_t = (\hat{i_t},
# \hat{M_t})$ and we only have one exogenous variable $\hat{s_t}$
#
#
# ### State equations
#
#
# $$ \alpha_{1, t+1} = \delta_1 \alpha_{1, t} + \delta_2 \alpha_{2, t} +
# W_1 $$
#
# $$ \alpha_{2, t+1} = \delta_3 \alpha_{2, t} + W_2 $$
#
#
# ### Matrix notation for the state space model
#
# $$
# \begin{aligned}
# \begin{bmatrix} \hat{i_t} \\ \hat{M_t} \end{bmatrix} &=
# \begin{bmatrix} \hat{s_t} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix}
# \alpha_{1, t} \\ \alpha_{2, t} \end{bmatrix} + \begin{bmatrix}
# \varepsilon_{1, t} \\ \varepsilon_{1, t} \end{bmatrix} \hspace{6.5em}
# \varepsilon_t \sim N \left ( \begin{bmatrix} 0 \\ 0 \end{bmatrix},
# \begin{bmatrix} \sigma_{\varepsilon_1}^2 & 0 \\ 0 &
# \sigma_{\varepsilon_2}^2 \end{bmatrix} \right )
# \\
# \begin{bmatrix} \alpha_{1, t+1} \\ \alpha_{2, t+1} \end{bmatrix} & =
# \begin{bmatrix} \delta_1 & \delta_1 \\ 0 & \delta_3 \end{bmatrix}
# \begin{bmatrix} \alpha_{1, t} \\ \alpha_{2, t} \end{bmatrix} +
# \begin{bmatrix} W_1 \\ W_2 \end{bmatrix} \hspace{3.em} \begin{bmatrix} W_1
# \\ W_2 \end{bmatrix} \sim N \left ( \begin{bmatrix} 0 \\ 0 \end{bmatrix},
# \begin{bmatrix} \sigma_{W_1}^2 & 0 \\ 0 & \sigma_{W_2}^2 \end{bmatrix}
# \right )
# \end{aligned}
# $$
#
# I'll simulate some data, talk about what we need to modify and finally
# estimate the model to see if we're recovering something reasonable.
#
true_values = {
"var_e1": 0.01,
"var_e2": 0.01,
"var_w1": 0.01,
"var_w2": 0.01,
"delta1": 0.8,
"delta2": 0.5,
"delta3": 0.7,
}
def gen_data_for_model3():
# Starting values
alpha1_0 = 2.1
alpha2_0 = 1.1
t_max = 500
def gen_i(alpha1, s):
return alpha1 * s + np.sqrt(true_values["var_e1"]) * np.random.randn()
def gen_m_hat(alpha2):
return 1 * alpha2 + np.sqrt(true_values["var_e2"]) * np.random.randn()
def gen_alpha1(alpha1, alpha2):
w1 = np.sqrt(true_values["var_w1"]) * np.random.randn()
return true_values["delta1"] * alpha1 + true_values[
"delta2"] * alpha2 + w1
def gen_alpha2(alpha2):
w2 = np.sqrt(true_values["var_w2"]) * np.random.randn()
return true_values["delta3"] * alpha2 + w2
s_t = 0.3 + np.sqrt(1.4) * np.random.randn(t_max)
i_hat = np.empty(t_max)
m_hat = np.empty(t_max)
current_alpha1 = alpha1_0
current_alpha2 = alpha2_0
for t in range(t_max):
# Obs eqns
i_hat[t] = gen_i(current_alpha1, s_t[t])
m_hat[t] = gen_m_hat(current_alpha2)
# state eqns
new_alpha1 = gen_alpha1(current_alpha1, current_alpha2)
new_alpha2 = gen_alpha2(current_alpha2)
# Update states for next period
current_alpha1 = new_alpha1
current_alpha2 = new_alpha2
return i_hat, m_hat, s_t
i_hat, m_hat, s_t = gen_data_for_model3()
# ### What do we need to modify?
#
# Once again, we don't need to change much, but we need to be careful
# about the dimensions.
#
# #### 1) The `__init__` function changes from
#
#
# ```python
# def __init__(self, y_t, x_t, w_t):
# exog = np.c_[x_t, w_t]
#
# super(TVRegressionExtended, self).__init__(
# endog=y_t, exog=exog, k_states=2,
# initialization='diffuse')
#
# self.ssm['design'] = exog.T[np.newaxis, :, :] # shaped 1 x 2 x
# nobs
# self.ssm['selection'] = np.eye(self.k_states)
# self.ssm['transition'] = np.eye(self.k_states)
# ```
#
# to
#
#
# ```python
# def __init__(self, i_t: np.array, s_t: np.array, m_t: np.array):
#
# exog = np.c_[s_t, np.repeat(1, len(s_t))] # exog.shape =>
# (nobs, 2)
#
# super(MultipleYsModel, self).__init__(
# endog=np.c_[i_t, m_t], exog=exog, k_states=2,
# initialization='diffuse')
#
# self.ssm['design'] = np.zeros((self.k_endog, self.k_states,
# self.nobs))
# self.ssm['design', 0, 0, :] = s_t
# self.ssm['design', 1, 1, :] = 1
# ```
#
# Note that we did not have to specify `k_endog` anywhere. The
# initialization does this for us after checking the dimensions of the
# `endog` matrix.
#
#
# #### 2) The `update()` function
#
# changes from
#
# ```python
# def update(self, params, **kwargs):
# params = super(TVRegressionExtended, self).update(params, **kwargs)
#
# self['obs_intercept', 0, 0] = params[0]
# self['obs_cov', 0, 0] = params[1]
#
# self['state_cov'] = np.diag(params[2:4])
# self['transition', 0, 0] = params[4]
# self['transition', 1, 1] = params[5]
# ```
#
#
# to
#
#
# ```python
# def update(self, params, **kwargs):
# params = super(MultipleYsModel, self).update(params, **kwargs)
#
#
# #The following line is not needed (by default, this matrix is
# initialized by zeroes),
# #But I leave it here so the dimensions are clearer
# self['obs_intercept'] = np.repeat([np.array([0, 0])], self.nobs,
# axis=0).T
# self['obs_cov', 0, 0] = params[0]
# self['obs_cov', 1, 1] = params[1]
#
# self['state_cov'] = np.diag(params[2:4])
# #delta1, delta2, delta3
# self['transition', 0, 0] = params[4]
# self['transition', 0, 1] = params[5]
# self['transition', 1, 1] = params[6]
# ```
#
# The rest of the methods change in pretty obvious ways (need to add
# parameter names, make sure the indexes work, etc). The full code for the
# function is right below
starting_values = {
"var_e1": 0.2,
"var_e2": 0.1,
"var_w1": 0.15,
"var_w2": 0.18,
"delta1": 0.7,
"delta2": 0.1,
"delta3": 0.85,
}
class MultipleYsModel(sm.tsa.statespace.MLEModel):
def __init__(self, i_t: np.array, s_t: np.array, m_t: np.array):
exog = np.c_[s_t, np.repeat(1, len(s_t))] # exog.shape => (nobs, 2)
super(MultipleYsModel, self).__init__(endog=np.c_[i_t, m_t],
exog=exog,
k_states=2,
initialization="diffuse")
self.ssm["design"] = np.zeros((self.k_endog, self.k_states, self.nobs))
self.ssm["design", 0, 0, :] = s_t
self.ssm["design", 1, 1, :] = 1
# These have ok shape. Placeholders since I'm changing them
# in the update() function
self.ssm["selection"] = np.eye(self.k_states)
self.ssm["transition"] = np.eye(self.k_states)
# Dictionary of positions to names
self.position_dict = OrderedDict(var_e1=1,
var_e2=2,
var_w1=3,
var_w2=4,
delta1=5,
delta2=6,
delta3=7)
self.initial_values = starting_values
self.positive_parameters = slice(0, 4)
@property
def param_names(self):
return list(self.position_dict.keys())
@property
def start_params(self):
"""
Initial values
"""
# (optional) Use scale for var_e1 and var_e2 starting values
params = np.r_[
self.initial_values["var_e1"],
self.initial_values["var_e2"],
self.initial_values["var_w1"],
self.initial_values["var_w2"],
self.initial_values["delta1"],
self.initial_values["delta2"],
self.initial_values["delta3"],
]
return params
def transform_params(self, unconstrained):
"""
If you need to restrict parameters
For example, variances should be > 0
Parameters maybe have to be within -1 and 1
"""
constrained = unconstrained.copy()
constrained[self.positive_parameters] = (
constrained[self.positive_parameters]**2)
return constrained
def untransform_params(self, constrained):
"""
Need to reverse what you did in transform_params()
"""
unconstrained = constrained.copy()
unconstrained[self.positive_parameters] = (
unconstrained[self.positive_parameters]**0.5)
return unconstrained
def update(self, params, **kwargs):
params = super(MultipleYsModel, self).update(params, **kwargs)
# The following line is not needed (by default, this matrix is initialized by zeroes),
# But I leave it here so the dimensions are clearer
self["obs_intercept"] = np.repeat([np.array([0, 0])],
self.nobs,
axis=0).T
self["obs_cov", 0, 0] = params[0]
self["obs_cov", 1, 1] = params[1]
self["state_cov"] = np.diag(params[2:4])
# delta1, delta2, delta3
self["transition", 0, 0] = params[4]
self["transition", 0, 1] = params[5]
self["transition", 1, 1] = params[6]
mod = MultipleYsModel(i_hat, s_t, m_hat)
res = mod.fit()
print(res.summary())
# ## Bonus: pymc3 for fast Bayesian estimation
#
# In this section I'll show how you can take your custom state space model
# and easily plug it to `pymc3` and estimate it with Bayesian methods. In
# particular, this example will show you an estimation with a version of
# Hamiltonian Monte Carlo called the No-U-Turn Sampler (NUTS).
#
# I'm basically copying the ideas contained [in this notebook](https://www
# .statsmodels.org/dev/examples/notebooks/generated/statespace_sarimax_pymc3
# .html), so make sure to check that for more details.
# Extra requirements
import pymc3 as pm
import theano
import theano.tensor as tt
# We need to define some helper functions to connect theano to the
# likelihood function that is implied in our model
class Loglike(tt.Op):
itypes = [tt.dvector] # expects a vector of parameter values when called
otypes = [tt.dscalar] # outputs a single scalar value (the log likelihood)
def __init__(self, model):
self.model = model
self.score = Score(self.model)
def perform(self, node, inputs, outputs):
(theta, ) = inputs # contains the vector of parameters
llf = self.model.loglike(theta)
outputs[0][0] = np.array(llf) # output the log-likelihood
def grad(self, inputs, g):
# the method that calculates the gradients - it actually returns the
# vector-Jacobian product - g[0] is a vector of parameter values
(theta, ) = inputs # our parameters
out = [g[0] * self.score(theta)]
return out
class Score(tt.Op):
itypes = [tt.dvector]
otypes = [tt.dvector]
def __init__(self, model):
self.model = model
def perform(self, node, inputs, outputs):
(theta, ) = inputs
outputs[0][0] = self.model.score(theta)
# We'll simulate again the data we used for model 1.
# We'll also `fit` it again and save the results to compare them to the
# Bayesian posterior we get.
y_t, x_t, w_t, beta_x, beta_w = gen_data_for_model1()
plt.plot(y_t)
mod = TVRegression(y_t, x_t, w_t)
res_mle = mod.fit(disp=False)
print(res_mle.summary())
# ### Bayesian estimation
#
# We need to define a prior for each parameter and the number of draws and
# burn-in points
# Set sampling params
ndraws = 3000 # 3000 number of draws from the distribution
nburn = 600 # 600 number of "burn-in points" (which will be discarded)
# Construct an instance of the Theano wrapper defined above, which
# will allow PyMC3 to compute the likelihood and Jacobian in a way
# that it can make use of. Here we are using the same model instance
# created earlier for MLE analysis (we could also create a new model
# instance if we preferred)
loglike = Loglike(mod)
with pm.Model():
# Priors
intercept = pm.Uniform("intercept", 1, 10)
var_e = pm.InverseGamma("var.e", 2.3, 0.5)
var_x_coeff = pm.InverseGamma("var.x.coeff", 2.3, 0.1)
var_w_coeff = pm.InverseGamma("var.w.coeff", 2.3, 0.1)
# convert variables to tensor vectors
theta = tt.as_tensor_variable([intercept, var_e, var_x_coeff, var_w_coeff])
# use a DensityDist (use a lamdba function to "call" the Op)
pm.DensityDist("likelihood", loglike, observed=theta)
# Draw samples
trace = pm.sample(
ndraws,
tune=nburn,
return_inferencedata=True,
cores=1,
compute_convergence_checks=False,
)
# ### How does the posterior distribution compare with the MLE estimation?
#
# The clearly peak around the MLE estimate.
results_dict = {
"intercept": res_mle.params[0],
"var.e": res_mle.params[1],
"var.x.coeff": res_mle.params[2],
"var.w.coeff": res_mle.params[3],
}
plt.tight_layout()
_ = pm.plot_trace(
trace,
lines=[(k, {}, [v]) for k, v in dict(results_dict).items()],
combined=True,
figsize=(12, 12),
)
|