File: statespace_local_linear_trend.py

package info (click to toggle)
statsmodels 0.14.6%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 49,956 kB
  • sloc: python: 254,365; f90: 612; sh: 560; javascript: 337; asm: 156; makefile: 145; ansic: 32; xml: 9
file content (255 lines) | stat: -rw-r--r-- 9,914 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#!/usr/bin/env python
# coding: utf-8

# DO NOT EDIT
# Autogenerated from the notebook statespace_local_linear_trend.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT

# # State space modeling: Local Linear Trends

# This notebook describes how to extend the statsmodels statespace classes
# to create and estimate a custom model. Here we develop a local linear
# trend model.
#
# The Local Linear Trend model has the form (see Durbin and Koopman 2012,
# Chapter 3.2 for all notation and details):
#
# $$
# \begin{align}
# y_t & = \mu_t + \varepsilon_t \qquad & \varepsilon_t \sim
#     N(0, \sigma_\varepsilon^2) \\
# \mu_{t+1} & = \mu_t + \nu_t + \xi_t & \xi_t \sim N(0, \sigma_\xi^2) \\
# \nu_{t+1} & = \nu_t + \zeta_t & \zeta_t \sim N(0, \sigma_\zeta^2)
# \end{align}
# $$
#
# It is easy to see that this can be cast into state space form as:
#
# $$
# \begin{align}
# y_t & = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} \mu_t \\
# \nu_t \end{pmatrix} + \varepsilon_t \\
# \begin{pmatrix} \mu_{t+1} \\ \nu_{t+1} \end{pmatrix} & = \begin{bmatrix}
# 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \mu_t \\ \nu_t \end{pmatrix}
# + \begin{pmatrix} \xi_t \\ \zeta_t \end{pmatrix}
# \end{align}
# $$
#
# Notice that much of the state space representation is composed of known
# values; in fact the only parts in which parameters to be estimated appear
# are in the variance / covariance matrices:
#
# $$
# \begin{align}
# H_t & = \begin{bmatrix} \sigma_\varepsilon^2 \end{bmatrix} \\
# Q_t & = \begin{bmatrix} \sigma_\xi^2 & 0 \\ 0 & \sigma_\zeta^2
# \end{bmatrix}
# \end{align}
# $$

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import statsmodels.api as sm
from scipy.stats import norm

# To take advantage of the existing infrastructure, including Kalman
# filtering and maximum likelihood estimation, we create a new class which
# extends from `statsmodels.tsa.statespace.MLEModel`. There are a number of
# things that must be specified:
#
# 1. **k_states**, **k_posdef**: These two parameters must be provided to
# the base classes in initialization. The inform the statespace model about
# the size of, respectively, the state vector, above $\begin{pmatrix} \mu_t
# & \nu_t \end{pmatrix}'$, and   the state error vector, above
# $\begin{pmatrix} \xi_t & \zeta_t \end{pmatrix}'$. Note that the dimension
# of the endogenous vector does not have to be specified, since it can be
# inferred from the `endog` array.
# 2. **update**: The method `update`, with argument `params`, must be
# specified (it is used when `fit()` is called to calculate the MLE). It
# takes the parameters and fills them into the appropriate state space
# matrices. For example, below, the `params` vector contains variance
# parameters $\begin{pmatrix} \sigma_\varepsilon^2 & \sigma_\xi^2 &
# \sigma_\zeta^2\end{pmatrix}$, and the `update` method must place them in
# the observation and state covariance matrices. More generally, the
# parameter vector might be mapped into many different places in all of the
# statespace matrices.
# 3. **statespace matrices**: by default, all state space matrices
# (`obs_intercept, design, obs_cov, state_intercept, transition, selection,
# state_cov`) are set to zeros. Values that are fixed (like the ones in the
# design and transition matrices here) can be set in initialization, whereas
# values that vary with the parameters should be set in the `update` method.
# Note that it is easy to forget to set the selection matrix, which is often
# just the identity matrix (as it is here), but not setting it will lead to
# a very different model (one where there is not a stochastic component to
# the transition equation).
# 4. **start params**: start parameters must be set, even if it is just a
# vector of zeros, although often good start parameters can be found from
# the data. Maximum likelihood estimation by gradient methods (as employed
# here) can be sensitive to the starting parameters, so it is important to
# select good ones if possible. Here it does not matter too much (although
# as variances, they should't be set zero).
# 5. **initialization**: in addition to defined state space matrices, all
# state space models must be initialized with the mean and variance for the
# initial distribution of the state vector. If the distribution is known,
# `initialize_known(initial_state, initial_state_cov)` can be called, or if
# the model is stationary (e.g. an ARMA model), `initialize_stationary` can
# be used. Otherwise, `initialize_approximate_diffuse` is a reasonable
# generic initialization (exact diffuse initialization is not yet
# available). Since the local linear trend model is not stationary (it is
# composed of random walks) and since the distribution is not generally
# known, we use `initialize_approximate_diffuse` below.
#
# The above are the minimum necessary for a successful model. There are
# also a number of things that do not have to be set, but which may be
# helpful or important for some applications:
#
# 1. **transform / untransform**: when `fit` is called, the optimizer in
# the background will use gradient methods to select the parameters that
# maximize the likelihood function. By default it uses unbounded
# optimization, which means that it may select any parameter value. In many
# cases, that is not the desired behavior; variances, for example, cannot be
# negative. To get around this, the `transform` method takes the
# unconstrained vector of parameters provided by the optimizer and returns a
# constrained vector of parameters used in likelihood evaluation.
# `untransform` provides the reverse operation.
# 2. **param_names**: this internal method can be used to set names for
# the estimated parameters so that e.g. the summary provides meaningful
# names. If not present, parameters are named `param0`, `param1`, etc.
"""
Univariate Local Linear Trend Model
"""


class LocalLinearTrend(sm.tsa.statespace.MLEModel):

    def __init__(self, endog):
        # Model order
        k_states = k_posdef = 2

        # Initialize the statespace
        super(LocalLinearTrend, self).__init__(
            endog,
            k_states=k_states,
            k_posdef=k_posdef,
            initialization="approximate_diffuse",
            loglikelihood_burn=k_states,
        )

        # Initialize the matrices
        self.ssm["design"] = np.array([1, 0])
        self.ssm["transition"] = np.array([[1, 1], [0, 1]])
        self.ssm["selection"] = np.eye(k_states)

        # Cache some indices
        self._state_cov_idx = ("state_cov", ) + np.diag_indices(k_posdef)

    @property
    def param_names(self):
        return ["sigma2.measurement", "sigma2.level", "sigma2.trend"]

    @property
    def start_params(self):
        return [np.std(self.endog)] * 3

    def transform_params(self, unconstrained):
        return unconstrained**2

    def untransform_params(self, constrained):
        return constrained**0.5

    def update(self, params, *args, **kwargs):
        params = super(LocalLinearTrend, self).update(params, *args, **kwargs)

        # Observation covariance
        self.ssm["obs_cov", 0, 0] = params[0]

        # State covariance
        self.ssm[self._state_cov_idx] = params[1:]


# Using this simple model, we can estimate the parameters from a local
# linear trend model. The following example is from Commandeur and Koopman
# (2007), section 3.4., modeling motor vehicle fatalities in Finland.

from io import BytesIO
from zipfile import ZipFile

import requests

# Download the dataset
df = pd.read_table(
    "https://raw.githubusercontent.com/statsmodels/smdatasets/refs/heads/main/data/statespace-local-linear-trend/NorwayFinland.txt",
    skiprows=1,
    header=None,
    sep=r"\s+",
    engine="python",
    names=["date", "nf", "ff"],
)

# Since we defined the local linear trend model as extending from
# `MLEModel`, the `fit()` method is immediately available, just as in other
# statsmodels maximum likelihood classes. Similarly, the returned results
# class supports many of the same post-estimation results, like the
# `summary` method.
#

# Load Dataset
df.index = pd.date_range(start="%d-01-01" % df.date[0],
                         end="%d-01-01" % df.iloc[-1, 0],
                         freq="YS")

# Log transform
df["lff"] = np.log(df["ff"])

# Setup the model
mod = LocalLinearTrend(df["lff"])

# Fit it using MLE (recall that we are fitting the three variance
# parameters)
res = mod.fit(disp=False)
print(res.summary())

# Finally, we can do post-estimation prediction and forecasting. Notice
# that the end period can be specified as a date.

# Perform prediction and forecasting
predict = res.get_prediction()
forecast = res.get_forecast("2014")

fig, ax = plt.subplots(figsize=(10, 4))

# Plot the results
df["lff"].plot(ax=ax, style="k.", label="Observations")
predict.predicted_mean.plot(ax=ax, label="One-step-ahead Prediction")
predict_ci = predict.conf_int(alpha=0.05)
predict_index = np.arange(len(predict_ci))
ax.fill_between(predict_index[2:],
                predict_ci.iloc[2:, 0],
                predict_ci.iloc[2:, 1],
                alpha=0.1)

forecast.predicted_mean.plot(ax=ax, style="r", label="Forecast")
forecast_ci = forecast.conf_int()
forecast_index = np.arange(len(predict_ci), len(predict_ci) + len(forecast_ci))
ax.fill_between(forecast_index,
                forecast_ci.iloc[:, 0],
                forecast_ci.iloc[:, 1],
                alpha=0.1)

# Cleanup the image
ax.set_ylim((4, 8))
legend = ax.legend(loc="lower left")

# ### References
#
#     Commandeur, Jacques J. F., and Siem Jan Koopman. 2007.
#     An Introduction to State Space Time Series Analysis.
#     Oxford ; New York: Oxford University Press.
#
#     Durbin, James, and Siem Jan Koopman. 2012.
#     Time Series Analysis by State Space Methods: Second Edition.
#     Oxford University Press.