1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
#!/usr/bin/env python
# coding: utf-8
# DO NOT EDIT
# Autogenerated from the notebook statespace_sarimax_internet.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT
# # SARIMAX: Model selection, missing data
# The example mirrors Durbin and Koopman (2012), Chapter 8.4 in
# application of Box-Jenkins methodology to fit ARMA models. The novel
# feature is the ability of the model to work on datasets with missing
# values.
import numpy as np
import pandas as pd
from scipy.stats import norm
import statsmodels.api as sm
import matplotlib.pyplot as plt
import requests
from io import BytesIO
from zipfile import ZipFile
# Download the dataset
df = pd.read_table(
"https://raw.githubusercontent.com/jrnold/ssmodels-in-stan/master/StanStateSpace/data-raw/DK-data/internet.dat",
skiprows=1,
header=None,
sep='\s+',
engine='python',
names=['internet', 'dinternet'])
# ### Model Selection
#
# As in Durbin and Koopman, we force a number of the values to be missing.
# Get the basic series
dta_full = df.dinternet[1:].values
dta_miss = dta_full.copy()
# Remove datapoints
missing = np.r_[6, 16, 26, 36, 46, 56, 66, 72, 73, 74, 75, 76, 86, 96] - 1
dta_miss[missing] = np.nan
# Then we can consider model selection using the Akaike information
# criteria (AIC), but running the model for each variant and selecting the
# model with the lowest AIC value.
#
# There are a couple of things to note here:
#
# - When running such a large batch of models, particularly when the
# autoregressive and moving average orders become large, there is the
# possibility of poor maximum likelihood convergence. Below we ignore the
# warnings since this example is illustrative.
# - We use the option `enforce_invertibility=False`, which allows the
# moving average polynomial to be non-invertible, so that more of the models
# are estimable.
# - Several of the models do not produce good results, and their AIC value
# is set to NaN. This is not surprising, as Durbin and Koopman note
# numerical problems with the high order models.
import warnings
aic_full = pd.DataFrame(np.zeros((6, 6), dtype=float))
aic_miss = pd.DataFrame(np.zeros((6, 6), dtype=float))
warnings.simplefilter('ignore')
# Iterate over all ARMA(p,q) models with p,q in [0,6]
for p in range(6):
for q in range(6):
if p == 0 and q == 0:
continue
# Estimate the model with no missing datapoints
mod = sm.tsa.statespace.SARIMAX(dta_full,
order=(p, 0, q),
enforce_invertibility=False)
try:
res = mod.fit(disp=False)
aic_full.iloc[p, q] = res.aic
except:
aic_full.iloc[p, q] = np.nan
# Estimate the model with missing datapoints
mod = sm.tsa.statespace.SARIMAX(dta_miss,
order=(p, 0, q),
enforce_invertibility=False)
try:
res = mod.fit(disp=False)
aic_miss.iloc[p, q] = res.aic
except:
aic_miss.iloc[p, q] = np.nan
# For the models estimated over the full (non-missing) dataset, the AIC
# chooses ARMA(1,1) or ARMA(3,0). Durbin and Koopman suggest the ARMA(1,1)
# specification is better due to parsimony.
#
# $$
# \text{Replication of:}\\
# \textbf{Table 8.1} ~~ \text{AIC for different ARMA models.}\\
# \newcommand{\r}[1]{{\color{red}{#1}}}
# \begin{array}{lrrrrrr}
# \hline
# q & 0 & 1 & 2 & 3 & 4 & 5 \\
# \hline
# p & {} & {} & {} & {} & {} & {} \\
# 0 & 0.00 & 549.81 & 519.87 & 520.27 & 519.38 & 518.86 \\
# 1 & 529.24 & \r{514.30} & 516.25 & 514.58 & 515.10 & 516.28 \\
# 2 & 522.18 & 516.29 & 517.16 & 515.77 & 513.24 & 514.73 \\
# 3 & \r{511.99} & 513.94 & 515.92 & 512.06 & 513.72 & 514.50 \\
# 4 & 513.93 & 512.89 & nan & nan & 514.81 & 516.08 \\
# 5 & 515.86 & 517.64 & nan & nan & nan & nan \\
# \hline
# \end{array}
# $$
#
# For the models estimated over missing dataset, the AIC chooses ARMA(1,1)
#
# $$
# \text{Replication of:}\\
# \textbf{Table 8.2} ~~ \text{AIC for different ARMA models with missing
# observations.}\\
# \begin{array}{lrrrrrr}
# \hline
# q & 0 & 1 & 2 & 3 & 4 & 5 \\
# \hline
# p & {} & {} & {} & {} & {} & {} \\
# 0 & 0.00 & 488.93 & 464.01 & 463.86 & 462.63 & 463.62 \\
# 1 & 468.01 & \r{457.54} & 459.35 & 458.66 & 459.15 & 461.01 \\
# 2 & 469.68 & nan & 460.48 & 459.43 & 459.23 & 460.47 \\
# 3 & 467.10 & 458.44 & 459.64 & 456.66 & 459.54 & 460.05 \\
# 4 & 469.00 & 459.52 & nan & 463.04 & 459.35 & 460.96 \\
# 5 & 471.32 & 461.26 & nan & nan & 461.00 & 462.97 \\
# \hline
# \end{array}
# $$
#
# **Note**: the AIC values are calculated differently than in Durbin and
# Koopman, but show overall similar trends.
# ### Postestimation
#
# Using the ARMA(1,1) specification selected above, we perform in-sample
# prediction and out-of-sample forecasting.
# Statespace
mod = sm.tsa.statespace.SARIMAX(dta_miss, order=(1, 0, 1))
res = mod.fit(disp=False)
print(res.summary())
# In-sample one-step-ahead predictions, and out-of-sample forecasts
nforecast = 20
predict = res.get_prediction(end=mod.nobs + nforecast)
idx = np.arange(len(predict.predicted_mean))
predict_ci = predict.conf_int(alpha=0.5)
# Graph
fig, ax = plt.subplots(figsize=(12, 6))
ax.xaxis.grid()
ax.plot(dta_miss, 'k.')
# Plot
ax.plot(idx[:-nforecast], predict.predicted_mean[:-nforecast], 'gray')
ax.plot(idx[-nforecast:],
predict.predicted_mean[-nforecast:],
'k--',
linestyle='--',
linewidth=2)
ax.fill_between(idx, predict_ci[:, 0], predict_ci[:, 1], alpha=0.15)
ax.set(title='Figure 8.9 - Internet series')
|