1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
|
#!/usr/bin/env python
# coding: utf-8
# DO NOT EDIT
# Autogenerated from the notebook statespace_sarimax_stata.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT
# # SARIMAX: Introduction
# This notebook replicates examples from the Stata ARIMA time series
# estimation and postestimation documentation.
#
# First, we replicate the four estimation examples
# http://www.stata.com/manuals13/tsarima.pdf:
#
# 1. ARIMA(1,1,1) model on the U.S. Wholesale Price Index (WPI) dataset.
# 2. Variation of example 1 which adds an MA(4) term to the ARIMA(1,1,1)
# specification to allow for an additive seasonal effect.
# 3. ARIMA(2,1,0) x (1,1,0,12) model of monthly airline data. This example
# allows a multiplicative seasonal effect.
# 4. ARMA(1,1) model with exogenous regressors; describes consumption as
# an autoregressive process on which also the money supply is assumed to be
# an explanatory variable.
#
# Second, we demonstrate postestimation capabilities to replicate
# http://www.stata.com/manuals13/tsarimapostestimation.pdf. The model from
# example 4 is used to demonstrate:
#
# 1. One-step-ahead in-sample prediction
# 2. n-step-ahead out-of-sample forecasting
# 3. n-step-ahead in-sample dynamic prediction
import numpy as np
import pandas as pd
from scipy.stats import norm
import statsmodels.api as sm
import matplotlib.pyplot as plt
from datetime import datetime
import requests
from io import BytesIO
# Register converters to avoid warnings
pd.plotting.register_matplotlib_converters()
plt.rc("figure", figsize=(16, 8))
plt.rc("font", size=14)
# ### ARIMA Example 1: Arima
#
# As can be seen in the graphs from Example 2, the Wholesale price index
# (WPI) is growing over time (i.e. is not stationary). Therefore an ARMA
# model is not a good specification. In this first example, we consider a
# model where the original time series is assumed to be integrated of order
# 1, so that the difference is assumed to be stationary, and fit a model
# with one autoregressive lag and one moving average lag, as well as an
# intercept term.
#
# The postulated data process is then:
#
# $$
# \Delta y_t = c + \phi_1 \Delta y_{t-1} + \theta_1 \epsilon_{t-1} +
# \epsilon_{t}
# $$
#
# where $c$ is the intercept of the ARMA model, $\Delta$ is the first-
# difference operator, and we assume $\epsilon_{t} \sim N(0, \sigma^2)$.
# This can be rewritten to emphasize lag polynomials as (this will be useful
# in example 2, below):
#
# $$
# (1 - \phi_1 L ) \Delta y_t = c + (1 + \theta_1 L) \epsilon_{t}
# $$
#
# where $L$ is the lag operator.
#
# Notice that one difference between the Stata output and the output below
# is that Stata estimates the following model:
#
# $$
# (\Delta y_t - \beta_0) = \phi_1 ( \Delta y_{t-1} - \beta_0) + \theta_1
# \epsilon_{t-1} + \epsilon_{t}
# $$
#
# where $\beta_0$ is the mean of the process $y_t$. This model is
# equivalent to the one estimated in the statsmodels SARIMAX class, but the
# interpretation is different. To see the equivalence, note that:
#
# $$
# (\Delta y_t - \beta_0) = \phi_1 ( \Delta y_{t-1} - \beta_0) + \theta_1
# \epsilon_{t-1} + \epsilon_{t} \\
# \Delta y_t = (1 - \phi_1) \beta_0 + \phi_1 \Delta y_{t-1} + \theta_1
# \epsilon_{t-1} + \epsilon_{t}
# $$
#
# so that $c = (1 - \phi_1) \beta_0$.
# Dataset
wpi1 = requests.get('https://www.stata-press.com/data/r12/wpi1.dta').content
data = pd.read_stata(BytesIO(wpi1))
data.index = data.t
# Set the frequency
data.index.freq = "QS-OCT"
# Fit the model
mod = sm.tsa.statespace.SARIMAX(data['wpi'], trend='c', order=(1, 1, 1))
res = mod.fit(disp=False)
print(res.summary())
# Thus the maximum likelihood estimates imply that for the process above,
# we have:
#
# $$
# \Delta y_t = 0.0943 + 0.8742 \Delta y_{t-1} - 0.4120 \epsilon_{t-1} +
# \epsilon_{t}
# $$
#
# where $\epsilon_{t} \sim N(0, 0.5257)$. Finally, recall that $c = (1 -
# \phi_1) \beta_0$, and here $c = 0.0943$ and $\phi_1 = 0.8742$. To compare
# with the output from Stata, we could calculate the mean:
#
# $$\beta_0 = \frac{c}{1 - \phi_1} = \frac{0.0943}{1 - 0.8742} = 0.7496$$
#
# **Note**: This value is virtually identical to the value in the Stata
# documentation, $\beta_0 = 0.7498$. The slight difference is likely down to
# rounding and subtle differences in stopping criterion of the numerical
# optimizers used.
# ### ARIMA Example 2: Arima with additive seasonal effects
#
# This model is an extension of that from example 1. Here the data is
# assumed to follow the process:
#
# $$
# \Delta y_t = c + \phi_1 \Delta y_{t-1} + \theta_1 \epsilon_{t-1} +
# \theta_4 \epsilon_{t-4} + \epsilon_{t}
# $$
#
# The new part of this model is that there is allowed to be a annual
# seasonal effect (it is annual even though the periodicity is 4 because the
# dataset is quarterly). The second difference is that this model uses the
# log of the data rather than the level.
#
# Before estimating the dataset, graphs showing:
#
# 1. The time series (in logs)
# 2. The first difference of the time series (in logs)
# 3. The autocorrelation function
# 4. The partial autocorrelation function.
#
# From the first two graphs, we note that the original time series does
# not appear to be stationary, whereas the first-difference does. This
# supports either estimating an ARMA model on the first-difference of the
# data, or estimating an ARIMA model with 1 order of integration (recall
# that we are taking the latter approach). The last two graphs support the
# use of an ARMA(1,1,1) model.
# Dataset
data = pd.read_stata(BytesIO(wpi1))
data.index = data.t
data.index.freq = "QS-OCT"
data['ln_wpi'] = np.log(data['wpi'])
data['D.ln_wpi'] = data['ln_wpi'].diff()
# Graph data
fig, axes = plt.subplots(1, 2, figsize=(15, 4))
# Levels
axes[0].plot(data.index._mpl_repr(), data['wpi'], '-')
axes[0].set(title='US Wholesale Price Index')
# Log difference
axes[1].plot(data.index._mpl_repr(), data['D.ln_wpi'], '-')
axes[1].hlines(0, data.index[0], data.index[-1], 'r')
axes[1].set(title='US Wholesale Price Index - difference of logs')
# Graph data
fig, axes = plt.subplots(1, 2, figsize=(15, 4))
fig = sm.graphics.tsa.plot_acf(data.iloc[1:]['D.ln_wpi'], lags=40, ax=axes[0])
fig = sm.graphics.tsa.plot_pacf(data.iloc[1:]['D.ln_wpi'], lags=40, ax=axes[1])
# To understand how to specify this model in statsmodels, first recall
# that from example 1 we used the following code to specify the ARIMA(1,1,1)
# model:
#
# ```python
# mod = sm.tsa.statespace.SARIMAX(data['wpi'], trend='c', order=(1,1,1))
# ```
#
# The `order` argument is a tuple of the form `(AR specification,
# Integration order, MA specification)`. The integration order must be an
# integer (for example, here we assumed one order of integration, so it was
# specified as 1. In a pure ARMA model where the underlying data is already
# stationary, it would be 0).
#
# For the AR specification and MA specification components, there are two
# possibilities. The first is to specify the **maximum degree** of the
# corresponding lag polynomial, in which case the component is an integer.
# For example, if we wanted to specify an ARIMA(1,1,4) process, we would
# use:
#
# ```python
# mod = sm.tsa.statespace.SARIMAX(data['wpi'], trend='c', order=(1,1,4))
# ```
#
# and the corresponding data process would be:
#
# $$
# y_t = c + \phi_1 y_{t-1} + \theta_1 \epsilon_{t-1} + \theta_2
# \epsilon_{t-2} + \theta_3 \epsilon_{t-3} + \theta_4 \epsilon_{t-4} +
# \epsilon_{t}
# $$
#
# or
#
# $$
# (1 - \phi_1 L)\Delta y_t = c + (1 + \theta_1 L + \theta_2 L^2 + \theta_3
# L^3 + \theta_4 L^4) \epsilon_{t}
# $$
#
# When the specification parameter is given as a maximum degree of the lag
# polynomial, it implies that all polynomial terms up to that degree are
# included. Notice that this is *not* the model we want to use, because it
# would include terms for $\epsilon_{t-2}$ and $\epsilon_{t-3}$, which we do
# not want here.
#
# What we want is a polynomial that has terms for the 1st and 4th degrees,
# but leaves out the 2nd and 3rd terms. To do that, we need to provide a
# tuple for the specification parameter, where the tuple describes **the lag
# polynomial itself**. In particular, here we would want to use:
#
# ```python
# ar = 1 # this is the maximum degree specification
# ma = (1,0,0,1) # this is the lag polynomial specification
# mod = sm.tsa.statespace.SARIMAX(data['wpi'], trend='c',
# order=(ar,1,ma)))
# ```
#
# This gives the following form for the process of the data:
#
# $$
# \Delta y_t = c + \phi_1 \Delta y_{t-1} + \theta_1 \epsilon_{t-1} +
# \theta_4 \epsilon_{t-4} + \epsilon_{t} \\
# (1 - \phi_1 L)\Delta y_t = c + (1 + \theta_1 L + \theta_4 L^4)
# \epsilon_{t}
# $$
#
# which is what we want.
# Fit the model
mod = sm.tsa.statespace.SARIMAX(data['ln_wpi'],
trend='c',
order=(1, 1, (1, 0, 0, 1)))
res = mod.fit(disp=False)
print(res.summary())
# ### ARIMA Example 3: Airline Model
#
# In the previous example, we included a seasonal effect in an *additive*
# way, meaning that we added a term allowing the process to depend on the
# 4th MA lag. It may be instead that we want to model a seasonal effect in a
# multiplicative way. We often write the model then as an ARIMA $(p,d,q)
# \times (P,D,Q)_s$, where the lowercase letters indicate the specification
# for the non-seasonal component, and the uppercase letters indicate the
# specification for the seasonal component; $s$ is the periodicity of the
# seasons (e.g. it is often 4 for quarterly data or 12 for monthly data).
# The data process can be written generically as:
#
# $$
# \phi_p (L) \tilde \phi_P (L^s) \Delta^d \Delta_s^D y_t = A(t) + \theta_q
# (L) \tilde \theta_Q (L^s) \epsilon_t
# $$
#
# where:
#
# - $\phi_p (L)$ is the non-seasonal autoregressive lag polynomial
# - $\tilde \phi_P (L^s)$ is the seasonal autoregressive lag polynomial
# - $\Delta^d \Delta_s^D y_t$ is the time series, differenced $d$ times,
# and seasonally differenced $D$ times.
# - $A(t)$ is the trend polynomial (including the intercept)
# - $\theta_q (L)$ is the non-seasonal moving average lag polynomial
# - $\tilde \theta_Q (L^s)$ is the seasonal moving average lag polynomial
#
# sometimes we rewrite this as:
#
# $$
# \phi_p (L) \tilde \phi_P (L^s) y_t^* = A(t) + \theta_q (L) \tilde
# \theta_Q (L^s) \epsilon_t
# $$
#
# where $y_t^* = \Delta^d \Delta_s^D y_t$. This emphasizes that just as in
# the simple case, after we take differences (here both non-seasonal and
# seasonal) to make the data stationary, the resulting model is just an ARMA
# model.
#
# As an example, consider the airline model ARIMA $(2,1,0) \times
# (1,1,0)_{12}$, with an intercept. The data process can be written in the
# form above as:
#
# $$
# (1 - \phi_1 L - \phi_2 L^2) (1 - \tilde \phi_1 L^{12}) \Delta
# \Delta_{12} y_t = c + \epsilon_t
# $$
#
# Here, we have:
#
# - $\phi_p (L) = (1 - \phi_1 L - \phi_2 L^2)$
# - $\tilde \phi_P (L^s) = (1 - \phi_1 L^12)$
# - $d = 1, D = 1, s=12$ indicating that $y_t^*$ is derived from $y_t$ by
# taking first-differences and then taking 12-th differences.
# - $A(t) = c$ is the *constant* trend polynomial (i.e. just an intercept)
# - $\theta_q (L) = \tilde \theta_Q (L^s) = 1$ (i.e. there is no moving
# average effect)
#
# It may still be confusing to see the two lag polynomials in front of the
# time-series variable, but notice that we can multiply the lag polynomials
# together to get the following model:
#
# $$
# (1 - \phi_1 L - \phi_2 L^2 - \tilde \phi_1 L^{12} + \phi_1 \tilde \phi_1
# L^{13} + \phi_2 \tilde \phi_1 L^{14} ) y_t^* = c + \epsilon_t
# $$
#
# which can be rewritten as:
#
# $$
# y_t^* = c + \phi_1 y_{t-1}^* + \phi_2 y_{t-2}^* + \tilde \phi_1
# y_{t-12}^* - \phi_1 \tilde \phi_1 y_{t-13}^* - \phi_2 \tilde \phi_1
# y_{t-14}^* + \epsilon_t
# $$
#
# This is similar to the additively seasonal model from example 2, but the
# coefficients in front of the autoregressive lags are actually combinations
# of the underlying seasonal and non-seasonal parameters.
#
# Specifying the model in statsmodels is done simply by adding the
# `seasonal_order` argument, which accepts a tuple of the form `(Seasonal AR
# specification, Seasonal Integration order, Seasonal MA, Seasonal
# periodicity)`. The seasonal AR and MA specifications, as before, can be
# expressed as a maximum polynomial degree or as the lag polynomial itself.
# Seasonal periodicity is an integer.
#
# For the airline model ARIMA $(2,1,0) \times (1,1,0)_{12}$ with an
# intercept, the command is:
#
# ```python
# mod = sm.tsa.statespace.SARIMAX(data['lnair'], order=(2,1,0),
# seasonal_order=(1,1,0,12))
# ```
# Dataset
air2 = requests.get('https://www.stata-press.com/data/r12/air2.dta').content
data = pd.read_stata(BytesIO(air2))
data.index = pd.date_range(start=datetime(int(data.time[0]), 1, 1),
periods=len(data),
freq='MS')
data['lnair'] = np.log(data['air'])
# Fit the model
mod = sm.tsa.statespace.SARIMAX(data['lnair'],
order=(2, 1, 0),
seasonal_order=(1, 1, 0, 12),
simple_differencing=True)
res = mod.fit(disp=False)
print(res.summary())
# Notice that here we used an additional argument
# `simple_differencing=True`. This controls how the order of integration is
# handled in ARIMA models. If `simple_differencing=True`, then the time
# series provided as `endog` is literally differenced and an ARMA model is
# fit to the resulting new time series. This implies that a number of
# initial periods are lost to the differencing process, however it may be
# necessary either to compare results to other packages (e.g. Stata's
# `arima` always uses simple differencing) or if the seasonal periodicity
# is large.
#
# The default is `simple_differencing=False`, in which case the
# integration component is implemented as part of the state space
# formulation, and all of the original data can be used in estimation.
# ### ARIMA Example 4: ARMAX (Friedman)
#
# This model demonstrates the use of explanatory variables (the X part of
# ARMAX). When exogenous regressors are included, the SARIMAX module uses
# the concept of "regression with SARIMA errors" (see
# http://robjhyndman.com/hyndsight/arimax/ for details of regression with
# ARIMA errors versus alternative specifications), so that the model is
# specified as:
#
# $$
# y_t = \beta_t x_t + u_t \\
# \phi_p (L) \tilde \phi_P (L^s) \Delta^d \Delta_s^D u_t = A(t) +
# \theta_q (L) \tilde \theta_Q (L^s) \epsilon_t
# $$
#
# Notice that the first equation is just a linear regression, and the
# second equation just describes the process followed by the error component
# as SARIMA (as was described in example 3). One reason for this
# specification is that the estimated parameters have their natural
# interpretations.
#
# This specification nests many simpler specifications. For example,
# regression with AR(2) errors is:
#
# $$
# y_t = \beta_t x_t + u_t \\
# (1 - \phi_1 L - \phi_2 L^2) u_t = A(t) + \epsilon_t
# $$
#
# The model considered in this example is regression with ARMA(1,1)
# errors. The process is then written:
#
# $$
# \text{consump}_t = \beta_0 + \beta_1 \text{m2}_t + u_t \\
# (1 - \phi_1 L) u_t = (1 - \theta_1 L) \epsilon_t
# $$
#
# Notice that $\beta_0$ is, as described in example 1 above, *not* the
# same thing as an intercept specified by `trend='c'`. Whereas in the
# examples above we estimated the intercept of the model via the trend
# polynomial, here, we demonstrate how to estimate $\beta_0$ itself by
# adding a constant to the exogenous dataset. In the output, the $beta_0$ is
# called `const`, whereas above the intercept $c$ was called `intercept` in
# the output.
# Dataset
friedman2 = requests.get(
'https://www.stata-press.com/data/r12/friedman2.dta').content
data = pd.read_stata(BytesIO(friedman2))
data.index = data.time
data.index.freq = "QS-OCT"
# Variables
endog = data.loc['1959':'1981', 'consump']
exog = sm.add_constant(data.loc['1959':'1981', 'm2'])
# Fit the model
mod = sm.tsa.statespace.SARIMAX(endog, exog, order=(1, 0, 1))
res = mod.fit(disp=False)
print(res.summary())
# ### ARIMA Postestimation: Example 1 - Dynamic Forecasting
#
# Here we describe some of the post-estimation capabilities of
# statsmodels' SARIMAX.
#
# First, using the model from example, we estimate the parameters using
# data that *excludes the last few observations* (this is a little
# artificial as an example, but it allows considering performance of out-of-
# sample forecasting and facilitates comparison to Stata's documentation).
# Dataset
raw = pd.read_stata(BytesIO(friedman2))
raw.index = raw.time
raw.index.freq = "QS-OCT"
data = raw.loc[:'1981']
# Variables
endog = data.loc['1959':, 'consump']
exog = sm.add_constant(data.loc['1959':, 'm2'])
nobs = endog.shape[0]
# Fit the model
mod = sm.tsa.statespace.SARIMAX(endog.loc[:'1978-01-01'],
exog=exog.loc[:'1978-01-01'],
order=(1, 0, 1))
fit_res = mod.fit(disp=False, maxiter=250)
print(fit_res.summary())
# Next, we want to get results for the full dataset but using the
# estimated parameters (on a subset of the data).
mod = sm.tsa.statespace.SARIMAX(endog, exog=exog, order=(1, 0, 1))
res = mod.filter(fit_res.params)
# The `predict` command is first applied here to get in-sample
# predictions. We use the `full_results=True` argument to allow us to
# calculate confidence intervals (the default output of `predict` is just
# the predicted values).
#
# With no other arguments, `predict` returns the one-step-ahead in-sample
# predictions for the entire sample.
# In-sample one-step-ahead predictions
predict = res.get_prediction()
predict_ci = predict.conf_int()
# We can also get *dynamic predictions*. One-step-ahead prediction uses
# the true values of the endogenous values at each step to predict the next
# in-sample value. Dynamic predictions use one-step-ahead prediction up to
# some point in the dataset (specified by the `dynamic` argument); after
# that, the previous *predicted* endogenous values are used in place of the
# true endogenous values for each new predicted element.
#
# The `dynamic` argument is specified to be an *offset* relative to the
# `start` argument. If `start` is not specified, it is assumed to be `0`.
#
# Here we perform dynamic prediction starting in the first quarter of
# 1978.
# Dynamic predictions
predict_dy = res.get_prediction(dynamic='1978-01-01')
predict_dy_ci = predict_dy.conf_int()
# We can graph the one-step-ahead and dynamic predictions (and the
# corresponding confidence intervals) to see their relative performance.
# Notice that up to the point where dynamic prediction begins (1978:Q1), the
# two are the same.
# Graph
fig, ax = plt.subplots(figsize=(9, 4))
npre = 4
ax.set(title='Personal consumption',
xlabel='Date',
ylabel='Billions of dollars')
# Plot data points
data.loc['1977-07-01':, 'consump'].plot(ax=ax, style='o', label='Observed')
# Plot predictions
predict.predicted_mean.loc['1977-07-01':].plot(ax=ax,
style='r--',
label='One-step-ahead forecast')
ci = predict_ci.loc['1977-07-01':]
ax.fill_between(ci.index, ci.iloc[:, 0], ci.iloc[:, 1], color='r', alpha=0.1)
predict_dy.predicted_mean.loc['1977-07-01':].plot(
ax=ax, style='g', label='Dynamic forecast (1978)')
ci = predict_dy_ci.loc['1977-07-01':]
ax.fill_between(ci.index, ci.iloc[:, 0], ci.iloc[:, 1], color='g', alpha=0.1)
legend = ax.legend(loc='lower right')
# Finally, graph the prediction *error*. It is obvious that, as one would
# suspect, one-step-ahead prediction is considerably better.
# Prediction error
# Graph
fig, ax = plt.subplots(figsize=(9, 4))
npre = 4
ax.set(title='Forecast error', xlabel='Date', ylabel='Forecast - Actual')
# In-sample one-step-ahead predictions and 95% confidence intervals
predict_error = predict.predicted_mean - endog
predict_error.loc['1977-10-01':].plot(ax=ax, label='One-step-ahead forecast')
ci = predict_ci.loc['1977-10-01':].copy()
ci.iloc[:, 0] -= endog.loc['1977-10-01':]
ci.iloc[:, 1] -= endog.loc['1977-10-01':]
ax.fill_between(ci.index, ci.iloc[:, 0], ci.iloc[:, 1], alpha=0.1)
# Dynamic predictions and 95% confidence intervals
predict_dy_error = predict_dy.predicted_mean - endog
predict_dy_error.loc['1977-10-01':].plot(ax=ax,
style='r',
label='Dynamic forecast (1978)')
ci = predict_dy_ci.loc['1977-10-01':].copy()
ci.iloc[:, 0] -= endog.loc['1977-10-01':]
ci.iloc[:, 1] -= endog.loc['1977-10-01':]
ax.fill_between(ci.index, ci.iloc[:, 0], ci.iloc[:, 1], color='r', alpha=0.1)
legend = ax.legend(loc='lower left')
legend.get_frame().set_facecolor('w')
|