File: statespace_varmax.py

package info (click to toggle)
statsmodels 0.14.6%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 49,956 kB
  • sloc: python: 254,365; f90: 612; sh: 560; javascript: 337; asm: 156; makefile: 145; ansic: 32; xml: 9
file content (108 lines) | stat: -rw-r--r-- 3,796 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#!/usr/bin/env python
# coding: utf-8

# DO NOT EDIT
# Autogenerated from the notebook statespace_varmax.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT

# # VARMAX models
#
# This is a brief introduction notebook to VARMAX models in statsmodels.
# The VARMAX model is generically specified as:
# $$
# y_t = \nu + A_1 y_{t-1} + \dots + A_p y_{t-p} + B x_t + \epsilon_t +
# M_1 \epsilon_{t-1} + \dots M_q \epsilon_{t-q}
# $$
#
# where $y_t$ is a $\text{k_endog} \times 1$ vector.

import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt

import requests
import shutil


def download_file(url):
    local_filename = url.split('/')[-1]
    with requests.get(url, stream=True) as r:
        with open(local_filename, 'wb') as f:
            shutil.copyfileobj(r.raw, f)

    return local_filename


filename = download_file("https://www.stata-press.com/data/r12/lutkepohl2.dta")

dta = pd.read_stata(filename)
dta.index = dta.qtr
dta.index.freq = dta.index.inferred_freq
endog = dta.loc['1960-04-01':'1978-10-01',
                ['dln_inv', 'dln_inc', 'dln_consump']]

# ## Model specification
#
# The `VARMAX` class in statsmodels allows estimation of VAR, VMA, and
# VARMA models (through the `order` argument), optionally with a constant
# term (via the `trend` argument). Exogenous regressors may also be included
# (as usual in statsmodels, by the `exog` argument), and in this way a time
# trend may be added. Finally, the class allows measurement error (via the
# `measurement_error` argument) and allows specifying either a diagonal or
# unstructured innovation covariance matrix (via the `error_cov_type`
# argument).

# ## Example 1: VAR
#
# Below is a simple VARX(2) model in two endogenous variables and an
# exogenous series, but no constant term. Notice that we needed to allow for
# more iterations than the default (which is `maxiter=50`) in order for the
# likelihood estimation to converge. This is not unusual in VAR models which
# have to estimate a large number of parameters, often on a relatively small
# number of time series: this model, for example, estimates 27 parameters
# off of 75 observations of 3 variables.

exog = endog['dln_consump']
mod = sm.tsa.VARMAX(endog[['dln_inv', 'dln_inc']],
                    order=(2, 0),
                    trend='n',
                    exog=exog)
res = mod.fit(maxiter=1000, disp=False)
print(res.summary())

# From the estimated VAR model, we can plot the impulse response functions
# of the endogenous variables.

ax = res.impulse_responses(10, orthogonalized=True,
                           impulse=[1, 0]).plot(figsize=(13, 3))
ax.set(xlabel='t', title='Responses to a shock to `dln_inv`')

# ## Example 2: VMA
#
# A vector moving average model can also be formulated. Below we show a
# VMA(2) on the same data, but where the innovations to the process are
# uncorrelated. In this example we leave out the exogenous regressor but now
# include the constant term.

mod = sm.tsa.VARMAX(endog[['dln_inv', 'dln_inc']],
                    order=(0, 2),
                    error_cov_type='diagonal')
res = mod.fit(maxiter=1000, disp=False)
print(res.summary())

# ## Caution: VARMA(p,q) specifications
#
# Although the model allows estimating VARMA(p,q) specifications, these
# models are not identified without additional restrictions on the
# representation matrices, which are not built-in. For this reason, it is
# recommended that the user proceed with error (and indeed a warning is
# issued when these models are specified). Nonetheless, they may in some
# circumstances provide useful information.

mod = sm.tsa.VARMAX(endog[['dln_inv', 'dln_inc']], order=(1, 1))
res = mod.fit(maxiter=1000, disp=False)
print(res.summary())