1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
#!/usr/bin/env python
# coding: utf-8
# DO NOT EDIT
# Autogenerated from the notebook theta-model.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT
# # The Theta Model
#
# The Theta model of Assimakopoulos & Nikolopoulos (2000) is a simple
# method for forecasting the involves fitting two $\theta$-lines,
# forecasting the lines using a Simple Exponential Smoother, and then
# combining the forecasts from the two lines to produce the final forecast.
# The model is implemented in steps:
#
#
# 1. Test for seasonality
# 2. Deseasonalize if seasonality detected
# 3. Estimate $\alpha$ by fitting a SES model to the data and $b_0$ by
# OLS.
# 4. Forecast the series
# 5. Reseasonalize if the data was deseasonalized.
#
# The seasonality test examines the ACF at the seasonal lag $m$. If this
# lag is significantly different from zero then the data is deseasonalize
# using `statsmodels.tsa.seasonal_decompose` use either a multiplicative
# method (default) or additive.
#
# The parameters of the model are $b_0$ and $\alpha$ where $b_0$ is
# estimated from the OLS regression
#
# $$
# X_t = a_0 + b_0 (t-1) + \epsilon_t
# $$
#
# and $\alpha$ is the SES smoothing parameter in
#
# $$
# \tilde{X}_t = (1-\alpha) X_t + \alpha \tilde{X}_{t-1}
# $$
#
# The forecasts are then
#
# $$
# \hat{X}_{T+h|T} = \frac{\theta-1}{\theta} \hat{b}_0
# \left[h - 1 + \frac{1}{\hat{\alpha}}
# - \frac{(1-\hat{\alpha})^T}{\hat{\alpha}} \right]
# + \tilde{X}_{T+h|T}
# $$
#
# Ultimately $\theta$ only plays a role in determining how much the trend
# is damped. If $\theta$ is very large, then the forecast of the model is
# identical to that from an Integrated Moving Average with a drift,
#
# $$
# X_t = X_{t-1} + b_0 + (\alpha-1)\epsilon_{t-1} + \epsilon_t.
# $$
#
# Finally, the forecasts are reseasonalized if needed.
#
# This module is based on:
#
# * Assimakopoulos, V., & Nikolopoulos, K. (2000). The theta model: a
# decomposition
# approach to forecasting. International journal of forecasting, 16(4),
# 521-530.
# * Hyndman, R. J., & Billah, B. (2003). Unmasking the Theta method.
# International Journal of Forecasting, 19(2), 287-290.
# * Fioruci, J. A., Pellegrini, T. R., Louzada, F., & Petropoulos, F.
# (2015). The optimized theta method. arXiv preprint arXiv:1503.03529.
# ## Imports
#
# We start with the standard set of imports and some tweaks to the default
# matplotlib style.
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pandas_datareader as pdr
import seaborn as sns
plt.rc("figure", figsize=(16, 8))
plt.rc("font", size=15)
plt.rc("lines", linewidth=3)
sns.set_style("darkgrid")
# ## Load some Data
#
# We will first look at housing starts using US data. This series is
# clearly seasonal but does not have a clear trend during the same.
reader = pdr.fred.FredReader(["HOUST"], start="1980-01-01", end="2020-04-01")
data = reader.read()
housing = data.HOUST
housing.index.freq = housing.index.inferred_freq
ax = housing.plot()
# We fit specify the model without any options and fit it. The summary
# shows that the data was deseasonalized using the multiplicative method.
# The drift is modest and negative, and the smoothing parameter is fairly
# low.
from statsmodels.tsa.forecasting.theta import ThetaModel
tm = ThetaModel(housing)
res = tm.fit()
print(res.summary())
# The model is first and foremost a forecasting method. Forecasts are
# produced using the `forecast` method from fitted model. Below we produce a
# hedgehog plot by forecasting 2-years ahead every 2 years.
#
# **Note**: the default $\theta$ is 2.
forecasts = {"housing": housing}
for year in range(1995, 2020, 2):
sub = housing[:str(year)]
res = ThetaModel(sub).fit()
fcast = res.forecast(24)
forecasts[str(year)] = fcast
forecasts = pd.DataFrame(forecasts)
ax = forecasts["1995":].plot(legend=False)
children = ax.get_children()
children[0].set_linewidth(4)
children[0].set_alpha(0.3)
children[0].set_color("#000000")
ax.set_title("Housing Starts")
plt.tight_layout(pad=1.0)
# We could alternatively fit the log of the data. Here it makes more
# sense to force the deseasonalizing to use the additive method, if needed.
# We also fit the model parameters using MLE. This method fits the IMA
#
# $$ X_t = X_{t-1} + \gamma\epsilon_{t-1} + \epsilon_t $$
#
# where $\hat{\alpha}$ = $\min(\hat{\gamma}+1, 0.9998)$ using
# `statsmodels.tsa.SARIMAX`. The parameters are similar although the drift
# is closer to zero.
tm = ThetaModel(np.log(housing), method="additive")
res = tm.fit(use_mle=True)
print(res.summary())
# The forecast only depends on the forecast trend component,
# $$
# \hat{b}_0
# \left[h - 1 + \frac{1}{\hat{\alpha}}
# - \frac{(1-\hat{\alpha})^T}{\hat{\alpha}} \right],
# $$
#
# the forecast from the SES (which does not change with the horizon), and
# the seasonal. These three components are available using the
# `forecast_components`. This allows forecasts to be constructed using
# multiple choices of $\theta$ using the weight expression above.
res.forecast_components(12)
# ## Personal Consumption Expenditure
#
# We next look at personal consumption expenditure. This series has a
# clear seasonal component and a drift.
reader = pdr.fred.FredReader(["NA000349Q"],
start="1980-01-01",
end="2020-04-01")
pce = reader.read()
pce.columns = ["PCE"]
pce.index.freq = "QS-OCT"
_ = pce.plot()
# Since this series is always positive, we model the $\ln$.
mod = ThetaModel(np.log(pce))
res = mod.fit()
print(res.summary())
# Next we explore differenced in the forecast as $\theta$ changes. When
# $\theta$ is close to 1, the drift is nearly absent. As $\theta$
# increases, the drift becomes more obvious.
forecasts = pd.DataFrame({
"ln PCE": np.log(pce.PCE),
"theta=1.2": res.forecast(12, theta=1.2),
"theta=2": res.forecast(12),
"theta=3": res.forecast(12, theta=3),
"No damping": res.forecast(12, theta=np.inf),
})
_ = forecasts.tail(36).plot()
plt.title("Forecasts of ln PCE")
plt.tight_layout(pad=1.0)
# Finally, `plot_predict` can be used to visualize the predictions and
# prediction intervals which are constructed assuming the IMA is true.
ax = res.plot_predict(24, theta=2)
# We conclude be producing a hedgehog plot using 2-year non-overlapping
# samples.
ln_pce = np.log(pce.PCE)
forecasts = {"ln PCE": ln_pce}
for year in range(1995, 2020, 3):
sub = ln_pce[:str(year)]
res = ThetaModel(sub).fit()
fcast = res.forecast(12)
forecasts[str(year)] = fcast
forecasts = pd.DataFrame(forecasts)
ax = forecasts["1995":].plot(legend=False)
children = ax.get_children()
children[0].set_linewidth(4)
children[0].set_alpha(0.3)
children[0].set_color("#000000")
ax.set_title("ln PCE")
plt.tight_layout(pad=1.0)
|