1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
#!/usr/bin/env python
# coding: utf-8
# DO NOT EDIT
# Autogenerated from the notebook tsa_arma_0.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT
# # Autoregressive Moving Average (ARMA): Sunspots data
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import statsmodels.api as sm
from scipy import stats
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.graphics.api import qqplot
# ## Sunspots Data
print(sm.datasets.sunspots.NOTE)
dta = sm.datasets.sunspots.load_pandas().data
dta.index = pd.Index(sm.tsa.datetools.dates_from_range("1700", "2008"))
dta.index.freq = dta.index.inferred_freq
del dta["YEAR"]
dta.plot(figsize=(12, 8))
fig = plt.figure(figsize=(12, 8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(dta.values.squeeze(), lags=40, ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(dta, lags=40, ax=ax2)
arma_mod20 = ARIMA(dta, order=(2, 0, 0)).fit()
print(arma_mod20.params)
arma_mod30 = ARIMA(dta, order=(3, 0, 0)).fit()
print(arma_mod20.aic, arma_mod20.bic, arma_mod20.hqic)
print(arma_mod30.params)
print(arma_mod30.aic, arma_mod30.bic, arma_mod30.hqic)
# * Does our model obey the theory?
sm.stats.durbin_watson(arma_mod30.resid.values)
fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111)
ax = arma_mod30.resid.plot(ax=ax)
resid = arma_mod30.resid
stats.normaltest(resid)
fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111)
fig = qqplot(resid, line="q", ax=ax, fit=True)
fig = plt.figure(figsize=(12, 8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(resid.values.squeeze(), lags=40, ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(resid, lags=40, ax=ax2)
r, q, p = sm.tsa.acf(resid.values.squeeze(), fft=True, qstat=True)
data = np.c_[np.arange(1, 25), r[1:], q, p]
table = pd.DataFrame(data, columns=["lag", "AC", "Q", "Prob(>Q)"])
print(table.set_index("lag"))
# * This indicates a lack of fit.
# * In-sample dynamic prediction. How good does our model do?
predict_sunspots = arma_mod30.predict("1990", "2012", dynamic=True)
print(predict_sunspots)
def mean_forecast_err(y, yhat):
return y.sub(yhat).mean()
mean_forecast_err(dta.SUNACTIVITY, predict_sunspots)
# ### Exercise: Can you obtain a better fit for the Sunspots model? (Hint:
# sm.tsa.AR has a method select_order)
# ### Simulated ARMA(4,1): Model Identification is Difficult
from statsmodels.tsa.arima_process import ArmaProcess
np.random.seed(1234)
# include zero-th lag
arparams = np.array([1, 0.75, -0.65, -0.55, 0.9])
maparams = np.array([1, 0.65])
# Let's make sure this model is estimable.
arma_t = ArmaProcess(arparams, maparams)
arma_t.isinvertible
arma_t.isstationary
# * What does this mean?
fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111)
ax.plot(arma_t.generate_sample(nsample=50))
arparams = np.array([1, 0.35, -0.15, 0.55, 0.1])
maparams = np.array([1, 0.65])
arma_t = ArmaProcess(arparams, maparams)
arma_t.isstationary
arma_rvs = arma_t.generate_sample(nsample=500, burnin=250, scale=2.5)
fig = plt.figure(figsize=(12, 8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(arma_rvs, lags=40, ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(arma_rvs, lags=40, ax=ax2)
# * For mixed ARMA processes the Autocorrelation function is a mixture of
# exponentials and damped sine waves after (q-p) lags.
# * The partial autocorrelation function is a mixture of exponentials and
# dampened sine waves after (p-q) lags.
lags = int(10 * np.log10(arma_rvs.shape[0]))
arma11 = ARIMA(arma_rvs, order=(1, 0, 1)).fit()
resid = arma11.resid
r, q, p = sm.tsa.acf(resid, nlags=lags, fft=True, qstat=True)
data = np.c_[range(1, lags + 1), r[1:], q, p]
table = pd.DataFrame(data, columns=["lag", "AC", "Q", "Prob(>Q)"])
print(table.set_index("lag"))
arma41 = ARIMA(arma_rvs, order=(4, 0, 1)).fit()
resid = arma41.resid
r, q, p = sm.tsa.acf(resid, nlags=lags, fft=True, qstat=True)
data = np.c_[range(1, lags + 1), r[1:], q, p]
table = pd.DataFrame(data, columns=["lag", "AC", "Q", "Prob(>Q)"])
print(table.set_index("lag"))
# ### Exercise: How good of in-sample prediction can you do for another
# series, say, CPI
macrodta = sm.datasets.macrodata.load_pandas().data
macrodta.index = pd.Index(sm.tsa.datetools.dates_from_range(
"1959Q1", "2009Q3"))
cpi = macrodta["cpi"]
# #### Hint:
fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111)
ax = cpi.plot(ax=ax)
ax.legend()
# P-value of the unit-root test, resoundingly rejects the null of a unit-
# root.
print(sm.tsa.adfuller(cpi)[1])
|