1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
.. currentmodule:: statsmodels.tsa
.. _tsa:
Time Series analysis :mod:`tsa`
===============================
:mod:`statsmodels.tsa` contains model classes and functions that are useful
for time series analysis. This currently includes univariate autoregressive models (AR),
vector autoregressive models (VAR) and univariate autoregressive moving average models
(ARMA). It also includes descriptive statistics for time series, for example autocorrelation, partial
autocorrelation function and periodogram, as well as the corresponding theoretical properties
of ARMA or related processes. It also includes methods to work with autoregressive and
moving average lag-polynomials.
Additionally, related statistical tests and some useful helper functions are available.
Estimation is either done by exact or conditional Maximum Likelihood or conditional
least-squares, either using Kalman Filter or direct filters.
Currently, functions and classes have to be imported from the corresponding module, but
the main classes will be made available in the statsmodels.tsa namespace. The module
structure is within statsmodels.tsa is
- stattools : empirical properties and tests, acf, pacf, granger-causality,
adf unit root test, ljung-box test and others.
- ar_model : univariate autoregressive process, estimation with conditional
and exact maximum likelihood and conditional least-squares
- arima_model : univariate ARMA process, estimation with conditional
and exact maximum likelihood and conditional least-squares
- vector_ar, var : vector autoregressive process (VAR) estimation models,
impulse response analysis, forecast error variance decompositions, and data
visualization tools
- kalmanf : estimation classes for ARMA and other models with exact MLE using
Kalman Filter
- arma_process : properties of arma processes with given parameters, this
includes tools to convert between ARMA, MA and AR representation as well as
acf, pacf, spectral density, impulse response function and similar
- sandbox.tsa.fftarma : similar to arma_process but working in frequency domain
- tsatools : additional helper functions, to create arrays of lagged variables,
construct regressors for trend, detrend and similar.
- filters : helper function for filtering time series
Some additional functions that are also useful for time series analysis are in
other parts of statsmodels, for example additional statistical tests.
Some related functions are also available in matplotlib, nitime, and
scikits.talkbox. Those functions are designed more for the use in signal
processing where longer time series are available and work more often in the
frequency domain.
.. currentmodule:: statsmodels.tsa
Descriptive Statistics and Tests
""""""""""""""""""""""""""""""""
.. autosummary::
:toctree: generated/
stattools.acovf
stattools.acf
stattools.pacf
stattools.pacf_yw
stattools.pacf_ols
stattools.ccovf
stattools.ccf
stattools.periodogram
stattools.adfuller
stattools.q_stat
stattools.grangercausalitytests
stattools.levinson_durbin
Estimation
""""""""""
The following are the main estimation classes, which can be accessed through
statsmodels.tsa.api and their result classes
Univariate Autogressive Processes (AR)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. currentmodule:: statsmodels.tsa
.. autosummary::
:toctree: generated/
ar_model.AR
ar_model.ARResults
Autogressive Moving-Average Processes (ARMA) and Kalman Filter
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. currentmodule:: statsmodels.tsa
.. autosummary::
:toctree: generated/
arima_model.ARMA
arima_model.ARMAResults
kalmanf.kalmanfilter.KalmanFilter
Vector Autogressive Processes (VAR)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
:toctree: generated/
vector_ar.var_model.VAR
vector_ar.var_model.VARResults
vector_ar.dynamic.DynamicVAR
.. seealso:: :ref:`VAR documentation <var>`
.. currentmodule:: statsmodels.tsa
Vector Autogressive Processes (VAR)
"""""""""""""""""""""""""""""""""""
Besides estimation, several process properties and additional results after
estimation are available for vector autoregressive processes.
.. autosummary::
:toctree: generated/
vector_ar.var_model.VAR
vector_ar.var_model.VARProcess
vector_ar.var_model.VARResults
vector_ar.irf.IRAnalysis
vector_ar.var_model.FEVD
vector_ar.dynamic.DynamicVAR
.. seealso:: :ref:`VAR documentation <var>`
ARMA Process
""""""""""""
The following are tools to work with the theoretical properties of an ARMA
process for given lag-polynomials.
.. autosummary::
:toctree: generated/
arima_process.ArmaProcess
arima_process.ar2arma
arima_process.arma2ar
arima_process.arma2ma
arima_process.arma_acf
arima_process.arma_acovf
arima_process.arma_generate_sample
arima_process.arma_impulse_response
arima_process.arma_pacf
arima_process.arma_periodogram
arima_process.deconvolve
arima_process.index2lpol
arima_process.lpol2index
arima_process.lpol_fiar
arima_process.lpol_fima
arima_process.lpol_sdiff
.. currentmodule:: statsmodels
.. autosummary::
:toctree: generated/
sandbox.tsa.fftarma.ArmaFft
.. currentmodule:: statsmodels.tsa
Other Time Series Filters
"""""""""""""""""""""""""
.. autosummary::
:toctree: generated/
filters.bkfilter
filters.hpfilter
filters.arfilter
filters.cffilter
filters.miso_lfilter
filters.filtertools.fftconvolve3
filters.filtertools.fftconvolveinv
TSA Tools
"""""""""
.. autosummary::
:toctree: generated/
tsatools.add_constant
tsatools.add_trend
tsatools.detrend
tsatools.lagmat
tsatools.lagmat2ds
VARMA Process
"""""""""""""
.. autosummary::
:toctree: generated/
varma_process.VarmaPoly
Interpolation
"""""""""""""
.. autosummary::
:toctree: generated/
interp.denton.dentonm
|