1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
:orphan:
.. currentmodule:: statsmodels.tsa.vector_ar.var_model
.. _var:
Vector Autoregressions :mod:`tsa.vector_ar`
===========================================
VAR(p) processes
----------------
We are interested in modeling a :math:`T \times K` multivariate time series
:math:`Y`, where :math:`T` denotes the number of observations and :math:`K` the
number of variables. One way of estimating relationships between the time series
and their lagged values is the *vector autoregression process*:
.. math::
Y_t = A_1 Y_{t-1} + \ldots + A_p Y_{t-p} + u_t
u_t \sim {\sf Normal}(0, \Sigma_u)
where :math:`A_i` is a :math:`K \times K` coefficient matrix.
We follow in large part the methods and notation of `Lutkepohl (2005)
<http://www.springer.com/economics/econometrics/book/978-3-540-26239-8>`__,
which we will not develop here.
Model fitting
~~~~~~~~~~~~~
.. note::
The classes referenced below are accessible via the
:mod:`statsmodels.tsa.api` module.
To estimate a VAR model, one must first create the model using an `ndarray` of
homogeneous or structured dtype. When using a structured or record array, the
class will use the passed variable names. Otherwise they can be passed
explicitly:
::
# some example data
>>> mdata = sm.datasets.macrodata.load().data
>>> mdata = mdata[['realgdp','realcons','realinv']]
>>> names = mdata.dtype.names
>>> data = mdata.view((float,3))
>>> data = np.diff(np.log(data), axis=0)
>>> model = VAR(data, names=names)
.. note::
The :class:`VAR` class assumes that the passed time series are
stationary. Non-stationary or trending data can often be transformed to be
stationary by first-differencing or some other method. For direct analysis of
non-stationary time series, a standard stable VAR(p) model is not
appropriate.
To actually do the estimation, call the `fit` method with the desired lag
order. Or you can have the model select a lag order based on a standard
information criterion (see below):
::
>>> results = model.fit(2)
>>> results.summary()
Summary of Regression Results
==================================
Model: VAR
Method: OLS
Date: Fri, 08, Jul, 2011
Time: 11:30:22
--------------------------------------------------------------------
No. of Equations: 3.00000 BIC: -27.5830
Nobs: 200.000 HQIC: -27.7892
Log likelihood: 1962.57 FPE: 7.42129e-13
AIC: -27.9293 Det(Omega_mle): 6.69358e-13
--------------------------------------------------------------------
Results for equation realgdp
==============================================================================
coefficient std. error t-stat prob
------------------------------------------------------------------------------
const 0.001527 0.001119 1.365 0.174
L1.realgdp -0.279435 0.169663 -1.647 0.101
L1.realcons 0.675016 0.131285 5.142 0.000
L1.realinv 0.033219 0.026194 1.268 0.206
L2.realgdp 0.008221 0.173522 0.047 0.962
L2.realcons 0.290458 0.145904 1.991 0.048
L2.realinv -0.007321 0.025786 -0.284 0.777
==============================================================================
Results for equation realcons
==============================================================================
coefficient std. error t-stat prob
------------------------------------------------------------------------------
const 0.005460 0.000969 5.634 0.000
L1.realgdp -0.100468 0.146924 -0.684 0.495
L1.realcons 0.268640 0.113690 2.363 0.019
L1.realinv 0.025739 0.022683 1.135 0.258
L2.realgdp -0.123174 0.150267 -0.820 0.413
L2.realcons 0.232499 0.126350 1.840 0.067
L2.realinv 0.023504 0.022330 1.053 0.294
==============================================================================
Results for equation realinv
==============================================================================
coefficient std. error t-stat prob
------------------------------------------------------------------------------
const -0.023903 0.005863 -4.077 0.000
L1.realgdp -1.970974 0.888892 -2.217 0.028
L1.realcons 4.414162 0.687825 6.418 0.000
L1.realinv 0.225479 0.137234 1.643 0.102
L2.realgdp 0.380786 0.909114 0.419 0.676
L2.realcons 0.800281 0.764416 1.047 0.296
L2.realinv -0.124079 0.135098 -0.918 0.360
==============================================================================
Correlation matrix of residuals
realgdp realcons realinv
realgdp 1.000000 0.603316 0.750722
realcons 0.603316 1.000000 0.131951
realinv 0.750722 0.131951 1.000000
Several ways to visualize the data using `matplotlib` are available.
Plotting input time series:
::
>>> model.plot()
.. plot:: plots/var_plot_input.py
Plotting time series autocorrelation function:
::
>>> model.plot_acorr()
.. plot:: plots/var_plot_acorr.py
Lag order selection
~~~~~~~~~~~~~~~~~~~
Choice of lag order can be a difficult problem. Standard analysis employs
likelihood test or information criteria-based order selection. We have
implemented the latter, accessable through the :class:`VAR` class:
::
>>> model.select_order(15)
VAR Order Selection
======================================================
aic bic fpe hqic
------------------------------------------------------
0 -27.64 -27.59 9.960e-13 -27.62
1 -27.94 -27.74* 7.372e-13 -27.86*
2 -27.93 -27.58 7.421e-13 -27.79
3 -27.92 -27.43 7.476e-13 -27.72
4 -27.94 -27.29 7.328e-13 -27.68
5 -27.97 -27.17 7.107e-13 -27.65
6 -27.94 -26.99 7.324e-13 -27.56
7 -27.93 -26.82 7.418e-13 -27.48
8 -27.93 -26.66 7.475e-13 -27.41
9 -27.98* -26.56 7.101e-13* -27.40
10 -27.93 -26.36 7.458e-13 -27.29
11 -27.88 -26.15 7.850e-13 -27.18
12 -27.84 -25.94 8.271e-13 -27.07
13 -27.80 -25.74 8.594e-13 -26.97
14 -27.79 -25.57 8.733e-13 -26.89
15 -27.81 -25.43 8.599e-13 -26.85
======================================================
* Minimum
{'aic': 9, 'bic': 1, 'fpe': 9, 'hqic': 1}
When calling the `fit` function, one can pass a maximum number of lags and the
order criterion to use for order selection:
::
>>> results = model.fit(maxlags=15, ic='aic')
Forecasting
~~~~~~~~~~~
The linear predictor is the optimal h-step ahead forecast in terms of
mean-squared error:
.. math::
y_t(h) = \nu + A_1 y_t(h − 1) + \cdots + A_p y_t(h − p)
We can use the `forecast` function to produce this forecast. Note that we have
to specify the "initial value" for the forecast:
::
>>> results.forecast(data[lag_order:], 5)
array([[ 0.00503, 0.00537, 0.00512],
[ 0.00594, 0.00785, -0.00302],
[ 0.00663, 0.00764, 0.00393],
[ 0.00732, 0.00797, 0.00657],
[ 0.00733, 0.00809, 0.0065 ]])
The `forecast_interval` function will produce the above forecast along with
asymptotic standard errors. These can be visualized using the `plot_forecast`
function:
.. plot:: plots/var_plot_forecast.py
Impulse Response Analysis
-------------------------
*Impulse responses* are of interest in econometric studies: they are the
estimated responses to a unit impulse in one of the variables. They are computed
in practice using the MA(:math:`\infty`) representation of the VAR(p) process:
.. math::
Y_t = \mu + \sum_{i=0}^\infty \Phi_i u_{t-i}
We can perform an impulse response analysis by calling the `irf` function on a
`VARResults` object:
::
>>> irf = results.irf(10)
These can be visualized using the `plot` function, in either orthogonalized or
non-orthogonalized form. Asymptotic standard errors are plotted by default at
the 95% significance level, which can be modified by the user.
.. note::
Orthogonalization is done using the Cholesky decomposition of the estimated
error covariance matrix :math:`\hat \Sigma_u` and hence interpretations may
change depending on variable ordering.
::
>>> irf.plot(orth=False)
.. plot:: plots/var_plot_irf.py
Note the `plot` function is flexible and can plot only variables of interest if
so desired:
::
>>> irf.plot(impulse='realgdp')
The cumulative effects :math:`\Psi_n = \sum_{i=0}^n \Phi_i` can be plotted with
the long run effects as follows:
::
>>> irf.plot_cum_effects(orth=False)
.. plot:: plots/var_plot_irf_cum.py
Forecast Error Variance Decomposition (FEVD)
--------------------------------------------
Forecast errors of component j on k in an i-step ahead forecast can be
decomposed using the orthogonalized impulse responses :math:`\Theta_i`:
.. math::
\omega_{jk, i} = \sum_{i=0}^{h-1} (e_j^\prime \Theta_i e_k)^2 / \mathrm{MSE}_j(h)
\mathrm{MSE}_j(h) = \sum_{i=0}^{h-1} e_j^\prime \Phi_i \Sigma_u \Phi_i^\prime e_j
These are computed via the `fevd` function up through a total number of steps ahead:
::
>>> fevd = results.fevd(5)
>>> fevd.summary()
FEVD for realgdp
realgdp realcons realinv
0 1.000000 0.000000 0.000000
1 0.863082 0.130030 0.006888
2 0.816610 0.176750 0.006639
3 0.808872 0.181086 0.010042
4 0.803461 0.185049 0.011490
FEVD for realcons
realgdp realcons realinv
0 0.363990 0.636010 0.000000
1 0.369771 0.623928 0.006301
2 0.367706 0.616831 0.015463
3 0.367450 0.615517 0.017033
4 0.367197 0.614903 0.017901
FEVD for realinv
realgdp realcons realinv
0 0.563584 0.161984 0.274432
1 0.471910 0.307875 0.220215
2 0.463240 0.328467 0.208292
3 0.462148 0.328914 0.208938
4 0.461211 0.330359 0.208430
They can also be visualized through the returned :class:`FEVD` object:
::
>>> results.fevd(20).plot()
.. plot:: plots/var_plot_fevd.py
Statistical tests
-----------------
A number of different methods are provided to carry out hypothesis tests about
the model results and also the validity of the model assumptions (normality,
whiteness / "iid-ness" of errors, etc.).
Granger causality
~~~~~~~~~~~~~~~~~
One is often interested in whether a variable or group of variables is "causal"
for another variable, for some definition of "causal". In the context of VAR
models, one can say that a set of variables are Granger-causal within one of the
VAR equations. We will not detail the mathematics or definition of Granger
causality, but leave it to the reader. The :class:`VARResults` object has the
`test_causality` method for performing either a Wald (:math:`\chi^2`) test or an
F-test.
::
>>> est.test_causality('realgdp', ['realinv', 'realcons'], kind='f')
Granger causality f-test
=============================================================
Test statistic Critical Value p-value df
-------------------------------------------------------------
9.904841 2.387325 0.000 (4, 579)
=============================================================
H_0: ['realinv', 'realcons'] do not Granger-cause realgdp
Conclusion: reject H_0 at 5.00% significance level
{'conclusion': 'reject',
'crit_value': 2.3873247573799259,
'df': (4, 579),
'pvalue': 9.3171720876318303e-08,
'signif': 0.050000000000000003,
'statistic': 9.9048411456983949}
Normality
~~~~~~~~~
Whiteness of residuals
~~~~~~~~~~~~~~~~~~~~~~
Dynamic Vector Autoregressions
------------------------------
.. note::
To use this functionality, `pandas <http://pypi.python.org/pypi/pandas>`__
must be installed. See the `pandas documentation
<http://pandas.sourceforge.net>`__ for more information on the below data
structures.
One is often interested in estimating a moving-window regression on time series
data for the purposes of making forecasts throughout the data sample. For
example, we may wish to produce the series of 2-step-ahead forecasts produced by
a VAR(p) model estimated at each point in time.
::
>>> data
<class 'pandas.core.frame.DataFrame'>
Index: 500 entries , 2000-01-03 00:00:00 to 2001-11-30 00:00:00
A 500 non-null values
B 500 non-null values
C 500 non-null values
D 500 non-null values
>>> var = DynamicVAR(data, lag_order=2, window_type='expanding')
The estimated coefficients for the dynamic model are returned as a
:class:`pandas.WidePanel` object, which can allow you to easily examine, for
example, all of the model coefficients by equation or by date:
::
>>> var.coefs
<class 'pandas.core.panel.WidePanel'>
Dimensions: 9 (items) x 489 (major) x 4 (minor)
Items: L1.A to intercept
Major axis: 2000-01-18 00:00:00 to 2001-11-30 00:00:00
Minor axis: A to D
# all estimated coefficients for equation A
>>> var.coefs.minor_xs('A').info()
Index: 489 entries , 2000-01-18 00:00:00 to 2001-11-30 00:00:00
Data columns:
L1.A 489 non-null values
L1.B 489 non-null values
L1.C 489 non-null values
L1.D 489 non-null values
L2.A 489 non-null values
L2.B 489 non-null values
L2.C 489 non-null values
L2.D 489 non-null values
intercept 489 non-null values
dtype: float64(9)
# coefficients on 11/30/2001
>>> var.coefs.major_xs(datetime(2001, 11, 30)).T
A B C D
L1.A 0.9567 -0.07389 0.0588 -0.02848
L1.B -0.00839 0.9757 -0.004945 0.005938
L1.C -0.01824 0.1214 0.8875 0.01431
L1.D 0.09964 0.02951 0.05275 1.037
L2.A 0.02481 0.07542 -0.04409 0.06073
L2.B 0.006359 0.01413 0.02667 0.004795
L2.C 0.02207 -0.1087 0.08282 -0.01921
L2.D -0.08795 -0.04297 -0.06505 -0.06814
intercept 0.07778 -0.283 -0.1009 -0.6426
Dynamic forecasts for a given number of steps ahead can be produced using the
`forecast` function and return a :class:`pandas.DataMatrix` object:
::
>>> In [76]: var.forecast(2)
A B C D
<snip>
2001-11-23 00:00:00 -6.661 43.18 33.43 -23.71
2001-11-26 00:00:00 -5.942 43.58 34.04 -22.13
2001-11-27 00:00:00 -6.666 43.64 33.99 -22.85
2001-11-28 00:00:00 -6.521 44.2 35.34 -24.29
2001-11-29 00:00:00 -6.432 43.92 34.85 -26.68
2001-11-30 00:00:00 -5.445 41.98 34.87 -25.94
The forecasts can be visualized using `plot_forecast`:
::
>>> var.plot_forecast(2)
Class Reference
---------------
.. currentmodule:: statsmodels.tsa.vector_ar
.. autosummary::
:toctree: generated/
var_model.VAR
var_model.VARProcess
var_model.VARResults
irf.IRAnalysis
var_model.FEVD
dynamic.DynamicVAR
|